
Pine Script™ v5 User Manual

TradingView

Feb 06, 2024

CONTENTS

1 Welcome to Pine Script™ v5 1

2 Pine Script™ primer 3
2.1 First steps . 3

2.1.1 Introduction . 3
2.1.2 Using scripts . 4
2.1.3 Reading scripts . 7
2.1.4 Writing scripts . 8

2.2 First indicator . 8
2.2.1 The Pine Editor . 8
2.2.2 First version . 9
2.2.3 Second version . 10
2.2.4 Next . 12

2.3 Next steps . 12
2.3.1 “indicators” vs “strategies” . 12
2.3.2 How scripts are executed . 13
2.3.3 Time series . 13
2.3.4 Publishing scripts . 13
2.3.5 Getting around the Pine Script™ documentation . 14
2.3.6 Where to go from here? . 14

3 Language 15
3.1 Execution model . 15

3.1.1 Calculation based on historical bars . 16
3.1.2 Calculation based on realtime bars . 17
3.1.3 Events triggering the execution of a script . 18
3.1.4 More information . 18
3.1.5 Historical values of functions . 19

3.2 Time series . 22
3.3 Script structure . 23

3.3.1 Version . 24
3.3.2 Declaration statement . 24
3.3.3 Code . 24
3.3.4 Comments . 26
3.3.5 Line wrapping . 26
3.3.6 Compiler annotations . 27

3.4 Identifiers . 29
3.5 Operators . 30

3.5.1 Introduction . 30
3.5.2 Arithmetic operators . 31

i

3.5.3 Comparison operators . 31
3.5.4 Logical operators . 32
3.5.5 `?:` ternary operator . 32
3.5.6 `[]` history-referencing operator . 33
3.5.7 Operator precedence . 34
3.5.8 `=` assignement operator . 34
3.5.9 `:=` reassignement operator . 34

3.6 Variable declarations . 36
3.6.1 Introduction . 36
3.6.2 Variable reassignment . 37
3.6.3 Declaration modes . 38

3.7 Conditional structures . 41
3.7.1 Introduction . 41
3.7.2 `if` structure . 42
3.7.3 `switch` structure . 44
3.7.4 Matching local block type requirement . 46

3.8 Loops . 47
3.8.1 Introduction . 47
3.8.2 `for` . 48
3.8.3 `while` . 51

3.9 Type system . 53
3.9.1 Introduction . 53
3.9.2 Qualifiers . 53
3.9.3 Types . 57
3.9.4 `na` value . 63
3.9.5 Type templates . 65
3.9.6 Type casting . 66
3.9.7 Tuples . 67

3.10 Built-ins . 69
3.10.1 Introduction . 70
3.10.2 Built-in variables . 70
3.10.3 Built-in functions . 71

3.11 User-defined functions . 73
3.11.1 Introduction . 74
3.11.2 Single-line functions . 74
3.11.3 Multi-line functions . 75
3.11.4 Scopes in the script . 75
3.11.5 Functions that return multiple results . 76
3.11.6 Limitations . 76

3.12 Objects . 76
3.12.1 Introduction . 77
3.12.2 Creating objects . 77
3.12.3 Changing field values . 79
3.12.4 Collecting objects . 79
3.12.5 Copying objects . 80
3.12.6 Shadowing . 82

3.13 Methods . 83
3.13.1 Introduction . 83
3.13.2 Built-in methods . 83
3.13.3 User-defined methods . 85
3.13.4 Method overloading . 88
3.13.5 Advanced example . 90

3.14 Arrays . 94
3.14.1 Introduction . 94

ii

3.14.2 Declaring arrays . 95
3.14.3 Reading and writing array elements . 97
3.14.4 Looping through array elements . 99
3.14.5 Scope . 100
3.14.6 History referencing . 101
3.14.7 Inserting and removing array elements . 101
3.14.8 Calculations on arrays . 105
3.14.9 Manipulating arrays . 105
3.14.10 Searching arrays . 109
3.14.11 Error handling . 109

3.15 Matrices . 112
3.15.1 Introduction . 112
3.15.2 Declaring a matrix . 112
3.15.3 Reading and writing matrix elements . 114
3.15.4 Rows and columns . 116
3.15.5 Looping through a matrix . 122
3.15.6 Copying a matrix . 125
3.15.7 Scope and history . 130
3.15.8 Inspecting a matrix . 132
3.15.9 Manipulating a matrix . 134
3.15.10 Matrix calculations . 141
3.15.11 Error handling . 151

3.16 Maps . 154
3.16.1 Introduction . 155
3.16.2 Declaring a map . 155
3.16.3 Reading and writing . 157
3.16.4 Looping through a map . 165
3.16.5 Copying a map . 168
3.16.6 Scope and history . 170
3.16.7 Maps of other collections . 172

4 Concepts 175
4.1 Alerts . 175

4.1.1 Introduction . 175
4.1.2 Script alerts . 177
4.1.3 `alertcondition()` events . 181
4.1.4 Avoiding repainting with alerts . 184

4.2 Backgrounds . 185
4.3 Bar coloring . 188
4.4 Bar plotting . 189

4.4.1 Introduction . 189
4.4.2 Plotting candles with `plotcandle()` . 189
4.4.3 Plotting bars with `plotbar()` . 192

4.5 Bar states . 192
4.5.1 Introduction . 193
4.5.2 Bar state built-in variables . 193
4.5.3 Example . 195

4.6 Chart information . 197
4.6.1 Introduction . 197
4.6.2 Prices and volume . 198
4.6.3 Symbol information . 198
4.6.4 Chart timeframe . 200
4.6.5 Session information . 200

4.7 Colors . 201

iii

4.7.1 Introduction . 201
4.7.2 Constant colors . 202
4.7.3 Conditional coloring . 203
4.7.4 Calculated colors . 205
4.7.5 Mixing transparencies . 209
4.7.6 Tips . 211

4.8 Fills . 214
4.8.1 Introduction . 215
4.8.2 `plot()` and `hline()` fills . 215
4.8.3 Line fills . 217

4.9 Inputs . 218
4.9.1 Introduction . 219
4.9.2 Input functions . 220
4.9.3 Input function parameters . 220
4.9.4 Input types . 221
4.9.5 Other features affecting Inputs . 230
4.9.6 Tips . 230

4.10 Levels . 232
4.10.1 `hline()` levels . 232
4.10.2 Fills between levels . 233

4.11 Libraries . 234
4.11.1 Introduction . 235
4.11.2 Creating a library . 235
4.11.3 Publishing a library . 239
4.11.4 Using a library . 241

4.12 Lines and boxes . 242
4.12.1 Introduction . 242
4.12.2 Lines . 243
4.12.3 Boxes . 253
4.12.4 Polylines . 264
4.12.5 Realtime behavior . 275
4.12.6 Limitations . 276

4.13 Non-standard charts data . 278
4.13.1 Introduction . 278
4.13.2 `ticker.heikinashi()` . 278
4.13.3 `ticker.renko()` . 281
4.13.4 `ticker.linebreak()` . 281
4.13.5 `ticker.kagi()` . 281
4.13.6 `ticker.pointfigure()` . 281

4.14 Other timeframes and data . 282
4.14.1 Introduction . 282
4.14.2 Common characteristics . 284
4.14.3 Data feeds . 290
4.14.4 `request.security()` . 291
4.14.5 `request.security_lower_tf()` . 306
4.14.6 Custom contexts . 313
4.14.7 Historical and realtime behavior . 317
4.14.8 `request.currency_rate()` . 322
4.14.9 `request.dividends()`, `request.splits()`, and `request.earnings()` 323
4.14.10 `request.quandl()` . 326
4.14.11 `request.financial()` . 327
4.14.12 `request.economic()` . 336
4.14.13 `request.seed()` . 348

4.15 Plots . 350

iv

4.15.1 Introduction . 350
4.15.2 `plot()` parameters . 352
4.15.3 Plotting conditionally . 355
4.15.4 Levels . 358
4.15.5 Offsets . 359
4.15.6 Plot count limit . 359
4.15.7 Scale . 360

4.16 Repainting . 362
4.16.1 Introduction . 362
4.16.2 Historical vs realtime calculations . 364
4.16.3 Plotting in the past . 369
4.16.4 Dataset variations . 370

4.17 Sessions . 371
4.17.1 Introduction . 371
4.17.2 Session strings . 372
4.17.3 Session states . 374
4.17.4 Using sessions with `request.security()` . 374

4.18 Strategies . 376
4.18.1 Introduction . 376
4.18.2 A simple strategy example . 377
4.18.3 Applying a strategy to a chart . 377
4.18.4 Strategy tester . 378
4.18.5 Broker emulator . 381
4.18.6 Orders and entries . 384
4.18.7 Position sizing . 406
4.18.8 Closing a market position . 408
4.18.9 OCA groups . 410
4.18.10 Currency . 414
4.18.11 Altering calculation behavior . 415
4.18.12 Simulating trading costs . 419
4.18.13 Risk management . 425
4.18.14 Margin . 426
4.18.15 Strategy Alerts . 427
4.18.16 Notes on testing strategies . 430

4.19 Tables . 431
4.19.1 Introduction . 431
4.19.2 Creating tables . 432
4.19.3 Tips . 438

4.20 Text and shapes . 439
4.20.1 Introduction . 439
4.20.2 `plotchar()` . 441
4.20.3 `plotshape()` . 443
4.20.4 `plotarrow()` . 445
4.20.5 Labels . 447

4.21 Time . 455
4.21.1 Introduction . 456
4.21.2 Time variables . 459
4.21.3 Time functions . 461
4.21.4 Formatting dates and time . 464

4.22 Timeframes . 466
4.22.1 Introduction . 466
4.22.2 Timeframe string specifications . 467
4.22.3 Comparing timeframes . 467

v

5 Writing scripts 469
5.1 Style guide . 469

5.1.1 Introduction . 469
5.1.2 Naming Conventions . 470
5.1.3 Script organization . 470
5.1.4 Spacing . 474
5.1.5 Line wrapping . 474
5.1.6 Vertical alignment . 474
5.1.7 Explicit typing . 475

5.2 Debugging . 475
5.2.1 Introduction . 475
5.2.2 The lay of the land . 476
5.2.3 Displaying numeric values . 477
5.2.4 Displaying strings . 478
5.2.5 Debugging conditions . 480
5.2.6 Debugging from inside functions . 482
5.2.7 Debugging from inside `for` loops . 483
5.2.8 Tips . 487

5.3 Publishing scripts . 488
5.3.1 Script visibility and access . 488
5.3.2 Preparing a publication . 491
5.3.3 Publishing a script . 493
5.3.4 Updating a publication . 493

5.4 Limitations . 495
5.4.1 Introduction . 495
5.4.2 Time . 495
5.4.3 Chart visuals . 496
5.4.4 `request.*()` calls . 500
5.4.5 Script size and memory . 502
5.4.6 Other limitations . 504

6 FAQ 507
6.1 Get real OHLC price on a Heikin Ashi chart . 507
6.2 Get non-standard OHLC values on a standard chart . 508
6.3 Plot arrows on the chart . 508
6.4 Plot a dynamic horizontal line . 509
6.5 Plot a vertical line on condition . 509
6.6 Access the previous value . 510
6.7 Get a 5-days high . 510
6.8 Count bars in a dataset . 511
6.9 Enumerate bars in a day . 511
6.10 Find the highest and lowest values for the entire dataset . 511
6.11 Query the last non-na value . 512

7 Error messages 513
7.1 The if statement is too long . 513
7.2 Script requesting too many securities . 513
7.3 Script could not be translated from: null . 514
7.4 line 2: no viable alternative at character ‘$’ . 514
7.5 Mismatched input <…> expecting <???> . 514
7.6 Loop is too long (> 500 ms) . 515
7.7 Script has too many local variables . 516
7.8 Pine Script™ cannot determine the referencing length of a series. Try using max_bars_back in the

indicator or strategy function . 516

vi

8 Release notes 519
8.1 2023 . 519

8.1.1 December 2023 . 519
8.1.2 November 2023 . 520
8.1.3 October 2023 . 520
8.1.4 September 2023 . 520
8.1.5 August 2023 . 521
8.1.6 July 2023 . 521
8.1.7 June 2023 . 522
8.1.8 May 2023 . 522
8.1.9 April 2023 . 522
8.1.10 March 2023 . 522
8.1.11 February 2023 . 523
8.1.12 January 2023 . 523

8.2 2022 . 523
8.2.1 December 2022 . 523
8.2.2 November 2022 . 523
8.2.3 October 2022 . 524
8.2.4 September 2022 . 524
8.2.5 August 2022 . 524
8.2.6 July 2022 . 525
8.2.7 June 2022 . 525
8.2.8 May 2022 . 526
8.2.9 April 2022 . 527
8.2.10 March 2022 . 529
8.2.11 February 2022 . 530
8.2.12 January 2022 . 530

8.3 2021 . 530
8.3.1 December 2021 . 530
8.3.2 November 2021 . 532
8.3.3 October 2021 . 533
8.3.4 September 2021 . 535
8.3.5 July 2021 . 535
8.3.6 June 2021 . 535
8.3.7 May 2021 . 535
8.3.8 April 2021 . 536
8.3.9 March 2021 . 537
8.3.10 February 2021 . 537
8.3.11 January 2021 . 538

8.4 2020 . 538
8.4.1 December 2020 . 538
8.4.2 November 2020 . 539
8.4.3 October 2020 . 539
8.4.4 September 2020 . 539
8.4.5 August 2020 . 541
8.4.6 July 2020 . 541
8.4.7 June 2020 . 541
8.4.8 May 2020 . 544
8.4.9 April 2020 . 544
8.4.10 March 2020 . 544
8.4.11 February 2020 . 544
8.4.12 January 2020 . 545

8.5 2019 . 545
8.5.1 December 2019 . 545

vii

8.5.2 October 2019 . 545
8.5.3 September 2019 . 546
8.5.4 July-August 2019 . 546
8.5.5 June 2019 . 547

8.6 2018 . 547
8.6.1 October 2018 . 547
8.6.2 April 2018 . 547

8.7 2017 . 547
8.7.1 August 2017 . 547
8.7.2 June 2017 . 547
8.7.3 May 2017 . 548
8.7.4 April 2017 . 548
8.7.5 March 2017 . 548
8.7.6 February 2017 . 548

8.8 2016 . 549
8.8.1 December 2016 . 549
8.8.2 October 2016 . 549
8.8.3 September 2016 . 549
8.8.4 July 2016 . 549
8.8.5 March 2016 . 549
8.8.6 February 2016 . 549
8.8.7 January 2016 . 549

8.9 2015 . 550
8.9.1 October 2015 . 550
8.9.2 September 2015 . 550
8.9.3 July 2015 . 550
8.9.4 June 2015 . 550
8.9.5 April 2015 . 550
8.9.6 March 2015 . 550
8.9.7 February 2015 . 550

8.10 2014 . 551
8.10.1 August 2014 . 551
8.10.2 July 2014 . 551
8.10.3 June 2014 . 551
8.10.4 April 2014 . 551
8.10.5 February 2014 . 551

8.11 2013 . 552

9 Migration guides 553
9.1 To Pine Script™ version 5 . 553

9.1.1 Introduction . 554
9.1.2 v4 to v5 converter . 554
9.1.3 Renamed functions and variables . 555
9.1.4 Renamed function parameters . 555
9.1.5 Removed an `rsi()` overload . 556
9.1.6 Reserved keywords . 556
9.1.7 Removed `iff()` and `offset()` . 556
9.1.8 Split of `input()` into several functions . 557
9.1.9 Some function parameters now require built-in arguments 557
9.1.10 Deprecated the `transp` parameter . 558
9.1.11 Changed the default session days for `time()` and `time_close()` 559
9.1.12 `strategy.exit()` now must do something . 559
9.1.13 Common script conversion errors . 559
9.1.14 All variable, function, and parameter name changes . 561

viii

9.2 To Pine Script™ version 4 . 564
9.2.1 Converter . 565
9.2.2 Renaming of built-in constants, variables, and functions . 565
9.2.3 Explicit variable type declaration . 566

9.3 To Pine Script™ version 3 . 566
9.3.1 Default behaviour of security function has changed . 566
9.3.2 Self-referenced variables are removed . 567
9.3.3 Forward-referenced variables are removed . 568
9.3.4 Resolving a problem with a mutable variable in a security expression 568
9.3.5 Math operations with booleans are forbidden . 568

10 Where can I get more information? 571
10.1 External resources . 571
10.2 Download this manual . 571

ix

x

CHAPTER

ONE

WELCOME TO PINE SCRIPT™ V5

Pine Script™ is TradingView’s programming language. It
allows traders to create their own trading tools and run them on our servers. We designed Pine Script™ as a lightweight,
yet powerful, language for developing indicators and strategies that you can then backtest. Most of TradingView’s built-in
indicators are written in Pine Script™, and our thriving community of Pine Script™ programmers has published more
than 100,000 Community Scripts.
It’s our explicit goal to keep Pine Script™ accessible and easy to understand for the broadest possible audience. Pine
Script™ is cloud-based and therefore different from client-side programming languages. While we likely won’t develop
Pine Script™ into a full-fledged language, we do constantly improve it and are always happy to consider requests for new
features.
Because each script uses computational resources in the cloud, we must impose limits in order to share these resources
fairly among our users. We strive to set as few limits as possible, but will of course have to implement as many as needed
for the platform to run smoothly. Limitations apply to the amount of data requested from additional symbols, execution
time, memory usage and script size.

1

https://www.tradingview.com/
https://www.tradingview.com/scripts/
https://www.tradingview.com/

Pine Script™ v5 User Manual

2 Chapter 1. Welcome to Pine Script™ v5

CHAPTER

TWO

PINE SCRIPT™ PRIMER

2.1 First steps

• Introduction

• Using scripts

• Reading scripts

• Writing scripts

2.1.1 Introduction

Welcome to the Pine Script™ v5 User Manual, which will accompany you in your journey to learn to program your
own trading tools in Pine Script™. Welcome also to the very active community of Pine Script™ programmers on
TradingView.
In this page, we present a step-by-step approach that you can follow to gradually become more familiar with indicators
and strategies (also called scripts) written in the Pine Script™ programming language on TradingView. We will get you
started on your journey to:

1. Use some of the tens of thousands of existing scripts on the platform.
2. Read the Pine Script™ code of existing scripts.
3. Write Pine Script™ scripts.

If you are already familiar with the use of Pine scripts on TradingView and are now ready to learn how to write your own,
then jump to theWriting scripts section of this page.
If you are new to our platform, then please read on!

3

https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html
https://www.tradingview.com/pine-script-docs/en/v5/index.html
https://www.tradingview.com/

Pine Script™ v5 User Manual

2.1.2 Using scripts

If you are interested in using technical indicators or strategies on TradingView, you can first start exploring the thousands
of indicators already available on our platform. You can access existing indicators on the platform in two different ways:

• By using the chart’s “Indicators & Strategies” button, or
• By browsing TradingView’s Community Scripts, the largest repository of trading scripts in the world, with more
than 100,000 scripts, most of which are free and open-source, which means you can see their Pine Script™ code.

If you can find the tools you need already written for you, it can be a good way to get started and gradually become
proficient as a script user, until you are ready to start your programming journey in Pine Script™.

Loading scripts from the chart

To explore and load scripts from you chart, use the “Indicators & Strategies” button:

The dialog box presents different categories of scripts in its left pane:
• Favorites lists the scripts you have “favorited” by clicking on the star that appears to the left of its name when you
mouse over it.

• My scripts displays the scipts you have written and saved in the Pine Editor. They are saved in TradingView’s
cloud.

• Built-ins groups all TradingVIew built-ins organized in four categories: indicators, strategies, candlestick patterns
and volume profiles. Most are written in Pine Script™ and available for free.

• Community Scripts is where you can search from the 100,000+ published scripts written by TradingView users.
• Invite-only scripts contains the list of the invite-only scripts you have been granted access to by their authors.

Here, the section containing the TradingView built-ins is selected:

4 Chapter 2. Pine Script™ primer

https://www.tradingview.com/scripts/

Pine Script™ v5 User Manual

When you click on one of the indicators or strategies (the ones with the green and red arrows following their name), it
loads on your chart.

Browsing Community Scripts

From TradingView’s homepage, you can bring up the Community Scripts stream from the “Community” menu. Here,
we are pointing to the “Editors’ Picks” section, but there are many other categories you can choose from:

You can also search for scripts using the homepage’s “Search” field, and filter scripts using different criteria. The Help
Center has a page explaining the different types of scripts that are available.
The scripts stream shows script widgets, i.e., placeholders showing a miniature view of each publication’s chart and de-
scription, and its author. By clicking on it you will open the script’s page, where you can see the script on a chart, read
the author’s description, like the script, leave comments or read the script’s source code if it was published open-source.
Once you find an interesting script in the Community Scripts, follow the instructions in the Help Center to load it on your
chart.

2.1. First steps 5

https://www.tradingview.com/
https://www.tradingview.com/support/solutions/43000558522
https://www.tradingview.com/support/solutions/43000555216
https://www.tradingview.com/support/solutions/43000555216

Pine Script™ v5 User Manual

Changing script settings

Once a script is loaded on the chart, you can double-click on its name (#1) to bring up its “Settings/Inputs” tab (#2):

The “Inputs” tab allows you to change the settings which the script’s author has decided to make editable. You can
configure some of the script’s visuals using the “Style” tab of the same dialog box, and which timeframes the script should
appear on using the “Visibility” tab.
Other settings are available to all scripts from the buttons that appear to the right of its name when you mouse over it, and
from the “More” menu (the three dots):

6 Chapter 2. Pine Script™ primer

Pine Script™ v5 User Manual

2.1.3 Reading scripts

Reading code written by good programmers is the best way to develop your understanding of the language. This is as true
for Pine Script™ as it is for all other programming languages. Finding good open-source Pine Script™ code is relatively
easy. These are reliable sources of code written by good programmers on TradingView:

• The TradingView built-in indicators
• Scripts selected as Editors’ Picks
• Scripts by the authors the PineCoders account follows
• Many scripts by authors with high reputation and open-source publications.

Reading code from Community Scripts is easy; if you don’t see a grey or red “lock” icon in the upper-right corner of the
script’s widget, this indicates the script is open-source. By opening its script page, you will be able to see its source.
To see the code of TradingView built-ins, load the indicator on your chart, then hover over its name and select the “Source
code” curly braces icon (if you don’t see it, it’s because the indicator’s source is unavailable). When you click on the icon,
the Pine Editor will open and from there, you can see the script’s code. If you want to play with it, you will need to use
the Editor’s “More” menu button at the top-right of the Editor’s pane, and select “Make a copy…”. You will then be able
to modify and save the code. Because you will have created a different version of the script, you will need to use the
Editor’s “Add to Chart” button to add that new copy to the chart.
This shows the Pine Editor having just opened after we selected the “View source” button from the indicator on our chart.
We are about to make a copy of its source because it is read-only for now (indicated by the “lock” icon near its filename
in the Editor):

You can also open TradingView built-in indicators from the Pine Editor (accessible from the “Pine Editor” tab at the
bottom of the chart) by using the “Open/New default built-in script…” menu selection.

2.1. First steps 7

https://www.tradingview.com/scripts/editors-picks/
https://www.tradingview.com/u/PineCoders/#following-people
https://www.tradingview.com/scripts/

Pine Script™ v5 User Manual

2.1.4 Writing scripts

We have built Pine Script™ to empower both budding and seasoned traders to create their own trading tools. We have
designed it so it is relatively easy to learn for first-time programmers — although learning a first programming language,
like trading, is rarely very easy for anyone — yet powerful enough for knowledgeable programmers to build tools of
moderate complexity.
Pine Script™ allows you to write three types of scripts:

• Indicators like RSI, MACD, etc.
• Strategies which include logic to issue trading orders and can be backtested and forward-tested.
• Libraries which are used by more advanced programmers to package oft-used functions that can be reused by
other scripts.

The next step we recommend is to write your first indicator.

2.2 First indicator

• The Pine Editor

• First version

• Second version

• Next

2.2.1 The Pine Editor

The Pine Editor is where you will be working on your scripts. While you can use any text editor you want to write your
Pine scripts, using our Editor has many advantages:

• It highlights your code following Pine Script™ syntax.
• It pops up syntax reminders for built-in and library functions when you hover over them.
• It provides quick access to the Pine Script™ v5 Reference Manual popup when you ctrl + click / cmd +
click on Pine Script™ keywords.

• It provides an auto-complete feature that you can activate with ctrl + space / cmd + space.
• It makes the write/compile/run cycle fast because saving a new version of a script loaded on the chart also executes
it immediately.

• While not as feature-rich as the top editors out there, it provides key functionality such as search and replace,
multi-cursor and versioning.

8 Chapter 2. Pine Script™ primer

https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

To open the Editor, click on the “Pine Editor” tab at the bottom of your TradingView chart. This will open up the Editor’s
pane.

2.2.2 First version

We will now create our first working Pine script, an implementation of the MACD indicator in Pine Script™:

1 //@version=5
2 indicator("MACD #1")
3 fast = 12
4 slow = 26
5 fastMA = ta.ema(close, fast)
6 slowMA = ta.ema(close, slow)
7 macd = fastMA - slowMA
8 signal = ta.ema(macd, 9)
9 plot(macd, color = color.blue)
10 plot(signal, color = color.orange)

• Start by bringing up the “Open” dropdown menu at the top right of the Editor and choose “New blank indicator”.
• Then copy the example script above, taking care not to include the line numbers in your selection.
• Select all the code already in the editor and replace it with the example script.
• Click “Save” and choose a name for your script. Your script is now saved in TradingView’s cloud, but under your
account’s name. Nobody but you can use it.

• Click “Add to Chart” in the Editor’s menu bar. The MACD indicator appears in a separate Pane under your chart.
Your first Pine script is running on your chart, which should look like this:

Let’s look at our script’s code, line by line:

2.2. First indicator 9

https://www.tradingview.com/support/solutions/43000502344-macd-moving-average-convergence-divergence/

Pine Script™ v5 User Manual

Line 1: //@version=5
This is a compiler annotation telling the compiler the script will use version 5 of Pine Script™.

Line 2: indicator("MACD #1")
Defines the name of the script that will appear on the chart as “MACD”.

Line 3: fast = 12
Defines a fast integer variable which will be the length of the fast EMA.

Line 4: slow = 26
Defines a slow integer variable which will be the length of the slow EMA.

Line 5: fastMA = ta.ema(close, fast)
Defines the variable fastMA, containing the result of the EMA calculation (Exponential Moving Average) with a
length equal to fast (12), on the close series, i.e., the closing price of bars.

Line 6: slowMA = ta.ema(close, slow)
Defines the variable slowMA, containing the result of the EMA calculation with a length equal to slow (26), from
close.

Line 7: macd = fastMA - slowMA
Defines the variable macd as the difference between the two EMAs.

Line 8: signal = ta.ema(macd, 9)
Defines the variable signal as a smoothed value of macd using the EMA algorithm (Exponential Moving Av-
erage) with a length of 9.

Line 9: plot(macd, color = color.blue)
Calls the plot function to output the variable macd using a blue line.

Line 10: plot(signal, color = color.orange)
Calls the plot function to output the variable signal using an orange line.

2.2.3 Second version

The first version of our script calculated MACD “manually”, but because Pine Script™ is designed to write indicators and
strategies, built-in Pine Script™ functions exist for many common indicators, including one for… MACD: ta.macd().
This is the second version of our script:

1 //@version=5
2 indicator("MACD #2")
3 fastInput = input(12, "Fast length")
4 slowInput = input(26, "Slow length")
5 [macdLine, signalLine, histLine] = ta.macd(close, fastInput, slowInput, 9)
6 plot(macdLine, color = color.blue)
7 plot(signalLine, color = color.orange)

Note that we have:
• Added inputs so we can change the lengths for the MAs
• We now use the ta.macd() built-in to calculate our MACD, which saves us three line and makes our code easier to
read.

Let’s repeat the same process as before to copy that code in a new indicator:
• Start by bringing up the “Open” dropdown menu at the top right of the Editor and choose “New blank indicator”.
• Then copy the example script above, again taking care not to include the line numbers in your selection.
• Select all the code already in the editor and replace it with the second version of our script.

10 Chapter 2. Pine Script™ primer

https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}macd
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}macd

Pine Script™ v5 User Manual

• Click “Save” and choose a name for your script different than the previous one.
• Click “Add to Chart” in the Editor’s menu bar. The “MACD #2” indicator appears in a separate Pane under the
“MACD #1” indicator.

Your second Pine script is running on your chart. If you double-click on the indicator’s name on your chart, you will bring
up the script’s “Settings/Inputs” tab, where you can now change the slow and fast lengths:

Let’s look at the lines that have changed in the second version of our script:
Line 2: indicator("MACD #2")

We have changed #1 to #2 so the second version of our indicator displays a different name on the chart.
Line 3: fastInput = input(12, "Fast length")

Instead of assigning a constant value to a variable, we have used the input() function so we can change the value
in our script’s “Settings/Inputs” tab. 12 will be the default value and the field’s label will be "Fast length".
If the value is changed in the “Inputs” tab, the fastInput variable’s content will contain the new value and the
script will re-execute on the chart with that new value. Note that, as our Pine Script™ Style Guide recommends,
we add Input to the end of the variable’s name to remind us, later in the script, that its value comes from a user
input.

Line 4: slowInput = input(26, "Slow length")
We do the same for the slow length, taking care to use a different variable name, default value and text string for
the field’s label.

Line 5: [macdLine, signalLine, histLine] = ta.macd(close, fastInput, slowInput,
9)

This is where we call the ta.macd() built-in to perform all the first version’s calculations in one line only. The
function requires four parameters (the values after the function name, enclosed in parentheses). It returns three
values into the three variables instead of only one, like the functions we used until now, which is why we need
to enclose the list of three variables receiving the function’s result in square brackets, to the left of the = sign.
Note that two of the values we pass to the function are the “input” variables containing the fast and slow lengths:
fastInput and slowInput.

Line 6 and 7:

2.2. First indicator 11

https://www.tradingview.com/pine-script-reference/v5/#fun_input
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}macd

Pine Script™ v5 User Manual

The variable names we are plotting there have changed, but the lines are doing the same thing as in our first version.
Our second version performs the same calculations as our first, but we can change the two lengths used to calculate it.
Our code is also simpler and shorter by three lines. We have improved our script.

2.2.4 Next

We now recommend you go to our Next Steps page.

2.3 Next steps

• “indicators” vs “strategies”

• How scripts are executed

• Time series

• Publishing scripts

• Getting around the Pine Script™ documentation

• Where to go from here?

After your first steps and your first indicator, let us explore a bit more of the Pine Script™ landscape by sharing some
pointers to guide you in your journey to learn Pine Script™.

2.3.1 “indicators” vs “strategies”

Pine Script™ strategies are used to backtest on historical data and forward test on open markets. In addition to indicator
calculations, they contain strategy.*() calls to send trade orders to Pine Script™’s broker emulator, which can then
simulate their execution. Strategies display backtest results in the “Strategy Tester” tab at the bottom of the chart, next to
the “Pine Editor” tab.
Pine Script™ indicators also contain calculations, but cannot be used in backtesting. Because they do not require the
broker emulator, they use less resources and will run faster. It is thus advantageous to use indicators whenever you can.
Both indicators and strategies can run in either overlay mode (over the chart’s bars) or pane mode (in a separate section
below or above the chart). Both can also plot information in their respective space, and both can generate alert events.

12 Chapter 2. Pine Script™ primer

https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

2.3.2 How scripts are executed

A Pine script is not like programs in many programming languages that execute once and then stop. In the Pine Script™
runtime environment, a script runs in the equivalent of an invisible loop where it is executed once on each bar of whatever
chart you are on, from left to right. Chart bars that have already closed when the script executes on them are called
historical bars. When execution reaches the chart’s last bar and the market is open, it is on the realtime bar. The script
then executes once every time a price or volume change is detected, and one last time for that realtime bar when it closes.
That realtime bar then becomes an elapsed realtime bar. Note that when the script executes in realtime, it does not
recalculate on all the chart’s historical bars on every price/volume update. It has already calculated once on those bars, so
it does not need to recalculate them on every chart tick. See the Execution model page for more information.
When a script executes on a historical bar, the close built-in variable holds the value of that bar’s close. When a script
executes on the realtime bar, close returns the current price of the symbol until the bar closes.
Contrary to indicators, strategies normally execute only once on realtime bars, when they close. They can also be config-
ured to execute on each price/volume update if that is what you need. See the page on Strategies for more information,
and to understand how strategies calculate differently than indicators.

2.3.3 Time series

The main data structure used in Pine Script™ is called a time series. Time series contain one value for each bar the
script executes on, so they continuously expand as the script executes on more bars. Past values of the time series can be
referenced using the history-referencing operator: []. close[1], for example, refers to the value of close on the bar
preceding the one where the script is executing.
While this indexing mechanism may remind many programmers of arrays, a time series is different and thinking in terms
of arrays will be detrimental to understanding this key Pine Script™ concept. A good comprehension of both the execution
model and time series is essential in understanding how Pine scripts work. If you have never worked with data organized
in time series before, you will need practice to put them to work for you. Once you familiarize yourself with these key
concepts, you will discover that by combining the use of time series with our built-in functions specifically designed to
handle them efficiently, much can be accomplished in very few lines of code.

2.3.4 Publishing scripts

TradingView is home to a large community of Pine Script™ programmers and millions of traders from all around the
world. Once you become proficient enough in Pine Script™, you can choose to share your scripts with other traders.
Before doing so, please take the time to learn Pine Script™ well-enough to supply traders with an original and reliable
tool. All publicly published scripts are analyzed by our team of moderators and must comply with our Script Publishing
Rules, which require them to be original and well-documented.
If want to use Pine scripts for your own use, simply write them in the Pine Editor and add them to your chart from there;
you don’t have to publish them to use them. If you want to share your scripts with just a few friends, you can publish
them privately and send your friends the browser’s link to your private publication. See the page on Publishing for more
information.

2.3. Next steps 13

https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#op_{[}{]}
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/support/solutions/43000590599
https://www.tradingview.com/support/solutions/43000590599

Pine Script™ v5 User Manual

2.3.5 Getting around the Pine Script™ documentation

While reading code from published scripts is no doubt useful, spending time in our documentation will be necessary to
attain any degree of proficiency in Pine Script™. Our two main sources of documentation on Pine Script™ are:

• This Pine Script™ v5 User Manual
• Our Pine Script™ v5 Reference Manual

The Pine Script™ v5 User Manual is in HTML format and in English only.
The Pine Script™ v5 Reference Manual documents what each variable, function or keyword does. It is an essential tool
for all Pine Script™ programmers; your life will be miserable if you try to write scripts of any reasonable complexity
without consulting it. It exists in two formats: the HTML format we just linked to, and the popup version, which can be
accessed from the Pine Editor, by either ctrl + clicking on a keyword, or by using the Editor’s “More/Pine Script™
reference (pop-up)” menu. The Reference Manual is translated in other languages.
There are five different versions of Pine Script™. Ensure the documentation you use corresponds to the Pine Script™
version you are coding with.

2.3.6 Where to go from here?

This Pine Script™ v5 User Manual contains numerous examples of code used to illustrate the concepts we discuss. By
going through it, you will be able to both learn the foundations of Pine Script™ and study the example scripts. Reading
about key concepts and trying them out right away with real code is a productive way to learn any programming language.
As you hopefully have already done in the First indicator page, copy this documentation’s examples in the Editor and play
with them. Explore! You won’t break anything.
This is how the Pine Script™ v5 User Manual you are reading is organized:

• The Language section explains the main components of the Pine Script™ language and how scripts execute.
• The Concepts section is more task-oriented. It explains how to do things in Pine Script™.
• TheWriting section explores tools and tricks that will help you write and publish scripts.
• The FAQ section answers common questions from Pine Script™ programmers.
• The Error messages page documents causes and fixes for the most common runtime and compiler errors.
• The Release Notes page is where you can follow the frequent updates to Pine Script™.
• The Migration guides section explains how to port between different versions of Pine Script™.
• TheWhere can I get more information page lists other useful Pine Script™-related content, including where to ask
questions when you are stuck on code.

We wish you a successful journey with Pine Script™… and trading!

14 Chapter 2. Pine Script™ primer

https://www.tradingview.com/pine-script-docs/en/v5/index.html
https://www.tradingview.com/pine-script-reference/v5/
https://www.tradingview.com/pine-script-docs/en/v5/index.html
https://www.tradingview.com/pine-script-reference/v5/
https://www.tradingview.com/pine-script-docs/en/v5/index.html
https://www.tradingview.com/pine-script-docs/en/v5/index.html
https://www.tradingview.com/

CHAPTER

THREE

LANGUAGE

3.1 Execution model

• Calculation based on historical bars

• Calculation based on realtime bars

• Events triggering the execution of a script

• More information

• Historical values of functions

The execution model of the Pine Script™ runtime is intimately linked to Pine Script™’s time series and type system.
Understanding all three is key to making the most of the power of Pine Script™.
The execution model determines how your script is executed on charts, and thus how the code you write in scripts works.
Your code would do nothing were it not for Pine Script™’s runtime, which kicks in after your code has compiled and it
is executed on your chart because one of the events triggering the execution of a script has occurred.
When a Pine script is loaded on a chart it executes once on each historical bar using the available OHLCV (open, high,
low, close, volume) values for each bar. Once the script’s execution reaches the rightmost bar in the dataset, if trading is
currently active on the chart’s symbol, then Pine Script™ indicators will execute once every time an update occurs, i.e.,
price or volume changes. Pine Script™ strategies will by default only execute when the rightmost bar closes, but they can
also be configured to execute on every update, like indicators do.
All symbol/timeframe pairs have a dataset comprising a limited number of bars. When you scroll a chart to the left to
see the dataset’s earlier bars, the corresponding bars are loaded on the chart. The loading process stops when there are
no more bars for that particular symbol/timeframe pair or the maximum number of bars your account type permits has
been loaded. You can scroll the chart to the left until the very first bar of the dataset, which has an index value of 0 (see
bar_index).
When the script first runs on a chart, all bars in a dataset are historical bars, except the rightmost one if a trading session
is active. When trading is active on the rightmost bar, it is called the realtime bar. The realtime bar updates when a price

15

https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html
https://www.tradingview.com/pine-script-docs/en/v5/writing/Limitations.html#chart-bars
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index

Pine Script™ v5 User Manual

or volume change is detected. When the realtime bar closes, it becomes an elapsed realtime bar and a new realtime bar
opens.

3.1.1 Calculation based on historical bars

Let’s take a simple script and follow its execution on historical bars:

1 //@version=5
2 indicator("My Script", overlay = true)
3 src = close
4 a = ta.sma(src, 5)
5 b = ta.sma(src, 50)
6 c = ta.cross(a, b)
7 plot(a, color = color.blue)
8 plot(b, color = color.black)
9 plotshape(c, color = color.red)

On historical bars, a script executes at the equivalent of the bar’s close, when the OHLCV values are all known for that
bar. Prior to execution of the script on a bar, the built-in variables such as open, high, low, close, volume and
time are set to values corresponding to those from that bar. A script executes once per historical bar.
Our example script is first executed on the very first bar of the dataset at index 0. Each statement is executed using the
values for the current bar. Accordingly, on the first bar of the dataset, the following statement:

src = close

initializes the variable src with the close value for that first bar, and each of the next lines is executed in turn. Because
the script only executes once for each historical bar, the script will always calculate using the same close value for a
specific historical bar.
The execution of each line in the script produces calculations which in turn generate the indicator’s output values, which
can then be plotted on the chart. Our example uses the plot and plotshape calls at the end of the script to output
some values. In the case of a strategy, the outcome of the calculations can be used to plot values or dictate the orders to
be placed.
After execution and plotting on the first bar, the script is executed on the dataset’s second bar, which has an index of 1.
The process then repeats until all historical bars in the dataset are processed and the script reaches the rightmost bar on
the chart.

16 Chapter 3. Language

Pine Script™ v5 User Manual

3.1.2 Calculation based on realtime bars

The behavior of a Pine script on the realtime bar is very different than on historical bars. Recall that the realtime
bar is the rightmost bar on the chart when trading is active on the chart’s symbol. Also, recall that strategies can be-
have in two different ways in the realtime bar. By default, they only execute when the realtime bar closes, but the
calc_on_every_tick parameter of the strategy declaration statement can be set to true to modify the strat-
egy’s behavior so that it executes each time the realtime bar updates, as indicators do. The behavior described here for
indicators will thus only apply to strategies using calc_on_every_tick=true.
The most important difference between execution of scripts on historical and realtime bars is that while they execute
only once on historical bars, scripts execute every time an update occurs during a realtime bar. This entails that built-in
variables such as high, low and closewhich never change on a historical bar, can change at each of a script’s iteration
in the realtime bar. Changes in the built-in variables used in the script’s calculations will, in turn, induce changes in the
results of those calculations. This is required for the script to follow the realtime price action. As a result, the same script
may produce different results every time it executes during the realtime bar.
Note: In the realtime bar, the close variable always represents the current price. Similarly, the high and low built-in
variables represent the highest high and lowest low reached since the realtime bar’s beginning. Pine Script™’s built-in
variables will only represent the realtime bar’s final values on the bar’s last update.
Let’s follow our script example in the realtime bar.
When the script arrives on the realtime bar it executes a first time. It uses the current values of the built-in variables to
produce a set of results and plots them if required. Before the script executes another time when the next update happens,
its user-defined variables are reset to a known state corresponding to that of the last commit at the close of the previous
bar. If no commit was made on the variables because they are initialized every bar, then they are reinitialized. In both
cases their last calculated state is lost. The state of plotted labels and lines is also reset. This resetting of the script’s
user-defined variables and drawings prior to each new iteration of the script in the realtime bar is called rollback. Its
effect is to reset the script to the same known state it was in when the realtime bar opened, so calculations in the realtime
bar are always performed from a clean state.
The constant recalculation of a script’s values as price or volume changes in the realtime bar can lead to a situation where
variable c in our example becomes true because a cross has occurred, and so the red marker plotted by the script’s last
line would appear on the chart. If on the next price update the price has moved in such a way that the close value no

3.1. Execution model 17

Pine Script™ v5 User Manual

longer produces calculations making c true because there is no longer a cross, then the marker previously plotted will
disappear.
When the realtime bar closes, the script executes a last time. As usual, variables are rolled back prior to execution.
However, since this iteration is the last one on the realtime bar, variables are committed to their final values for the bar
when calculations are completed.
To summarize the realtime bar process:

• A script executes at the open of the realtime bar and then once per update.
• Variables are rolled back before every realtime update.
• Variables are committed once at the closing bar update.

3.1.3 Events triggering the execution of a script

A script is executed on the complete set of bars on the chart when one of the following events occurs:
• A new symbol or timeframe is loaded on a chart.
• A script is saved or added to the chart, from the Pine Script™ Editor or the chart’s “Indicators & strategies” dialog
box.

• A value is modified in the script’s “Settings/Inputs” dialog box.
• A value is modified in a strategy’s “Settings/Properties” dialog box.
• A browser refresh event is detected.

A script is executed on the realtime bar when trading is active and:
• One of the above conditions occurs, causing the script to execute on the open of the realtime bar, or
• The realtime bar updates because a price or volume change was detected.

Note that when a chart is left untouched when the market is active, a succession of realtime bars which have been opened
and then closed will trail the current realtime bar. While these elapsed realtime bars will have been confirmed because
their variables have all been committed, the script will not yet have executed on them in their historical state, since they
did not exist when the script was last run on the chart’s dataset.
When an event triggers the execution of the script on the chart and causes it to run on those bars which have now become
historical bars, the script’s calculation can sometimes vary from what they were when calculated on the last closing update
of the same bars when they were realtime bars. This can be caused by slight variations between the OHLCV values saved
at the close of realtime bars and those fetched from data feeds when the same bars have become historical bars. This
behavior is one of the possible causes of repainting.

3.1.4 More information

• The built-in barstate.* variables provide information on the type of bar or the event where the script is execut-
ing. The page where they are documented also contains a script that allows you to visualize the difference between
elapsed realtime and historical bars, for example.

• The Strategies page explains the details of strategy calculations, which are not identical to those of indicators.

18 Chapter 3. Language

Pine Script™ v5 User Manual

3.1.5 Historical values of functions

Every function call in Pine leaves a trail of historical values that a script can access on subsequent bars using the [] operator.
The historical series of functions depend on successive calls to record the output on every bar. When a script does not
call functions on each bar, it can produce an inconsistent history that may impact calculations and results, namely when
it depends on the continuity of their historical series to operate as expected. The compiler warns users in these cases to
make them aware that the values from a function, whether built-in or user-defined, might be misleading.
To demonstrate, let’s write a script that calculates the index of the current bar and outputs that value on every second
bar. In the following script, we’ve defined a calcBarIndex() function that adds 1 to the previous value of its internal
index variable on every bar. The script calls the function on each bar that the condition returns true on (every
other bar) to update the customIndex value. It plots this value alongside the built-in bar_index to validate the
output:

1 //@version=5
2 indicator("My script")
3

4 //@function Calculates the index of the current bar by adding 1 to its own value from␣
↪→the previous bar.

5 // The first bar will have an index of 0.
6 calcBarIndex() =>
7 int index = na
8 index := nz(index[1], replacement = -1) + 1
9

10 //@variable Returns `true` on every other bar.
11 condition = bar_index % 2 == 0
12

13 int customIndex = na
14

15 // Call `calcBarIndex()` when the `condition` is `true`. This prompts the compiler to␣
↪→raise a warning.

16 if condition
17 customIndex := calcBarIndex()
18

19 plot(bar_index, "Bar index", color = color.green)
20 plot(customIndex, "Custom index", color = color.red, style = plot.style_cross)

3.1. Execution model 19

https://www.tradingview.com/pine-script-reference/v5/#op_%5B%5D

Pine Script™ v5 User Manual

Note that:
• The nz() function replaces na values with a specified replacement value (0 by default). On the first bar of the
script, when the index series has no history, the na value is replaced with -1 before adding 1 to return an initial
value of 0.

Upon inspecting the chart, we see that the two plots differ wildly. The reason for this behavior is that the script called
calcBarIndex() within the scope of an if structure on every other bar, resulting in a historical output inconsis-
tent with the bar_index series. When calling the function once every two bars, internally referencing the previous
value of index gets the value from two bars ago, i.e., the last bar the function executed on. This behavior results in a
customIndex value of half that of the built-in bar_index.
To align the calcBarIndex() output with the bar_index, we can move the function call to the script’s global
scope. That way, the function will execute on every bar, allowing its entire history to be recorded and referenced rather
than only the results from every other bar. In the code below, we’ve defined a globalScopeBarIndex variable in the
global scope and assigned it to the return from calcBarIndex() rather than calling the function locally. The script
sets the customIndex to the value of globalScopeBarIndex on the occurrence of the condition:

1 //@version=5
2 indicator("My script")
3

4 //@function Calculates the index of the current bar by adding 1 to its own value from␣
↪→the previous bar.

5 // The first bar will have an index of 0.
6 calcBarIndex() =>
7 int index = na
8 index := nz(index[1], replacement = -1) + 1
9

10 //@variable Returns `true` on every second bar.
11 condition = bar_index % 2 == 0
12

13 globalScopeBarIndex = calcBarIndex()
14 int customIndex = na
15

16 // Assign `customIndex` to `globalScopeBarIndex` when the `condition` is `true`. This␣
↪→won't produce a warning.

17 if condition
(continues on next page)

20 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_nz
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_if

Pine Script™ v5 User Manual

(continued from previous page)
18 customIndex := globalScopeBarIndex
19

20 plot(bar_index, "Bar index", color = color.green)
21 plot(customIndex, "Custom index", color = color.red, style = plot.style_cross)

This behavior can also radically impact built-in functions that reference history internally. For example, the ta.sma()
function references its past values “under the hood”. If a script calls this function conditionally rather than on every bar,
the values within the calculation can change significantly. We can ensure calculation consistency by assigning ta.sma() to
a variable in the global scope and referencing that variable’s history as needed.
The following example calculates three SMA series: controlSMA, localSMA, and globalSMA. The script calcu-
lates controlSMA in the global scope and localSMA within the local scope of an if structure. Within the if structure,
it also updates the value of globalSMA using the controlSMA value. As we can see, the values from the glob-
alSMA and controlSMA series align, whereas the localSMA series diverges from the other two because it uses an
incomplete history, which affects its calculations:

1 //@version=5
2 indicator("My script")
3

4 //@variable Returns `true` on every second bar.
5 condition = bar_index % 2 == 0
6

7 controlSMA = ta.sma(close, 20)
8 float globalSMA = na
9 float localSMA = na
10

11 // Update `globalSMA` and `localSMA` when `condition` is `true`.
12 if condition
13 globalSMA := controlSMA // No warning.
14 localSMA := ta.sma(close, 20) // Raises warning. This function depends on its␣

↪→history to work as intended.
15

16 plot(controlSMA, "Control SMA", color = color.green)
17 plot(globalSMA, "Global SMA", color = color.blue, style = plot.style_cross)
18 plot(localSMA, "Local SMA", color = color.red, style = plot.style_cross)

3.1. Execution model 21

https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}sma
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}sma
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_if

Pine Script™ v5 User Manual

Why this behavior?

This behavior is required because forcing the execution of functions on each bar would lead to unexpected results in those
functions that produce side effects, i.e., the ones that do something aside from returning the value. For example, the
label.new() function creates a label on the chart, so forcing it to be called on every bar even when it is inside of an if
structure would create labels where they should not logically appear.

Exceptions

Not all built-in functions use their previous values in their calculations, meaning not all require execution on every bar.
For example, math.max() compares all arguments passed into it to return the highest value. Such functions that do not
interact with their history in any way do not require special treatment.
If the usage of a function within a conditional block does not cause a compiler warning, it’s safe to use without impacting
calculations. Otherwise, move the function call to the global scope to force consistent execution. When keeping a function
call within a conditional block despite the warning, ensure the output is correct at the very least to avoid unexpected results.

3.2 Time series

Much of the power of Pine Script™ stems from the fact that it is designed to process time series efficiently. Time series are
not a qualified type; they are the fundamental structure Pine Script™ uses to store the successive values of a variable over
time, where each value is tethered to a point in time. Since charts are composed of bars, each representing a particular
point in time, time series are the ideal data structure to work with values that may change with time.
The notion of time series is intimately linked to Pine Script™’s execution model and type system concepts. Understanding
all three is key to making the most of the power of Pine Script™.
Take the built-in open variable, which contains the “open” price of each bar in the dataset, the dataset being all the bars
on any given chart. If your script is running on a 5min chart, then each value in the open time series is the “open” price
of the consecutive 5min chart bars. When your script refers to open, it is referring to the “open” price of the bar the
script is executing on. To refer to past values in a time series, we use the [] history-referencing operator. When a script
is executing on a given bar, open[1] refers to the value of the open time series on the previous bar.
While time series may remind programmers of arrays, they are totally different. Pine Script™ does use an array data
structure, but it is a completely different concept than a time series.
Time series in Pine Script™, combined with its special type of runtime engine and built-in functions, are what makes
it easy to compute the cumulative total of close values without using a for loop, with only ta.cum(close). This is
possible because although ta.cum(close) appears rather static in a script, it is in fact executed on each bar, so its
value becomes increasingly larger as the close value of each new bar is added to it. When the script reaches the rightmost
bar of the chart, ta.cum(close) returns the sum of the close value from all bars on the chart.
Similarly, the mean of the difference between the last 14 high and low values can be expressed as ta.sma(high
- low, 14), or the distance in bars since the last time the chart made five consecutive higher highs as
barssince(rising(high, 5)).

22 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#fun_math\{dot\}max
https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#op_{[}{]}
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low

Pine Script™ v5 User Manual

Even the result of function calls on successive bars leaves a trace of values in a time series that can be referenced using
the [] history-referencing operator. This can be useful, for example, when testing the close of the current bar for a
breach of the highest high in the last 10 bars, but excluding the current bar, which we could write as breach =
close > highest(close, 10)[1]. The same statement could also be written as breach = close >
highest(close[1], 10).
The same looping logic on all bars is applied to function calls such as plot(open) which will repeat on each bar,
successively plotting on the chart the value of open for each bar.
Do not confuse “time series” with the “series” qualifier. The time series concept explains how consecutive values of
variables are stored in Pine Script™; the “series” qualifier denotes variables whose values can change bar to bar. Consider,
for example, the timeframe.period built-in variable which has the “simple” qualifier and “string” type, meaning it is of the
“simple string” qualified type. The “simple” qualifier entails that the variable’s value is established on bar zero (the first
bar where the script executes) and will not change during the script’s execution on any of the chart’s bars. The variable’s
value is the chart’s timeframe in string format, so "D" for a 1D chart, for example. Even though its value cannot change
during the script, it would be syntactically correct in Pine Script™ (though not very useful) to refer to its value 10 bars
ago using timeframe.period[10]. This is possible because the successive values of timeframe.period for each
bar are stored in a time series, even though all the values in that particular time series are the same. Note, however, that
when the [] operator is used to access past values of a variable, it yields a “series” qualified value, even when the variable
without an offset uses a different qualifier, such as “simple” in the case of timeframe.period.
When you grasp how time series can be efficiently handled using Pine Script™’s syntax and its execution model, you can
define complex calculations using little code.

3.3 Script structure

• Version

• Declaration statement

• Code

• Comments

• Line wrapping

• Compiler annotations

A Pine script follows this general structure:

<version>
<declaration_statement>
<code>

3.3. Script structure 23

https://www.tradingview.com/pine-script-reference/v5/#op_{[}{]}
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}period
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}period
https://www.tradingview.com/pine-script-reference/v5/#op_{[}{]}
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}period
https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

3.3.1 Version

A compiler annotation in the following form tells the compiler which of the versions of Pine Script™ the script is written
in:

1 //@version=5

• The version number can be 1 to 5.
• The compiler annotation is not mandatory. When omitted, version 1 is assumed. It is strongly recommended to
always use the latest version of the language.

• While it is synctactically correct to place the version compiler annotation anywhere in the script, it is much more
useful to readers when it appears at the top of the script.

Notable changes to the current version of Pine Script™ are documented in the Release notes.

3.3.2 Declaration statement

All Pine scripts must contain one declaration statement, which is a call to one of these functions:
• indicator()
• strategy()
• library()

The declaration statement:
• Identifies the type of the script, which in turn dictates which content is allowed in it, and how it can be used and
executed.

• Sets key properties of the script such as its name, where it will appear when it is added to a chart, the precision
and format of the values it displays, and certain values that govern its runtime behavior, such as the maximum
number of drawing objects it will display on the chart. With strategies, the properties include parameters that
control backtesting, such as initial capital, commission, slippage, etc.

Each type of script has distinct requirements:
• Indicators must contain at least one function call which produces output on the chart (e.g., plot(), plotshape(),
barcolor(), line.new(), etc.).

• Strategies must contain at least one strategy.*() call, e.g., strategy.entry().
• Libraries must contain at least one exported function or user-defined type.

3.3.3 Code

Lines in a script that are not comments or compiler annotations are statements, which implement the script’s algorithm. A
statement can be one of these:

• variable declaration
• variable reassignement
• function declaration
• built-in function call, user-defined function call or a library function call

• if, for, while, switch or type structure.
Statements can be arranged in multiple ways:

24 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_library
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_barcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_line\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-reference/v5/#op_while
https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-reference/v5/#op_type

Pine Script™ v5 User Manual

• Some statements can be expressed in one line, like most variable declarations, lines containing only a function call
or single-line function declarations. Lines can also be wrapped (continued on multiple lines). Multiple one-line
statements can be concatenated on a single line by using the comma as a separator.

• Others statements such as structures or multi-line function declarations always require multiple lines because they
require a local block. A local block must be indented by a tab or four spaces. Each local block defines a distinct
local scope.

• Statements in the global scope of the script (i.e., which are not part of local blocks) cannot begin with white space
(a space or a tab). Their first character must also be the line’s first character. Lines beginning in a line’s first position
become by definition part of the script’s global scope.

A simple valid Pine Script™ v5 indicator can be generated in the Pine Script™ Editor by using the “Open” button and
choosing “New blank indicator”:

1 //@version=5
2 indicator("My Script")
3 plot(close)

This indicator includes three local blocks, one in the f() function declaration, and two in the variable declaration using
an if structure:

1 //@version=5
2

3 indicator("", "", true) // Declaration statement (global scope)
4

5 barIsUp() => // Function declaration (global scope)
6 close > open // Local block (local scope)
7

8 plotColor = if barIsUp() // Variable declaration (global scope)
9 color.green // Local block (local scope)
10 else
11 color.red // Local block (local scope)
12

13 bgcolor(color.new(plotColor, 70)) // Call to a built-in function (global scope)

You can bring up a simple Pine Script™ v5 strategy by selecting “New blank strategy” instead:

1 //@version=5
2 strategy("My Strategy", overlay=true, margin_long=100, margin_short=100)
3

4 longCondition = ta.crossover(ta.sma(close, 14), ta.sma(close, 28))
5 if (longCondition)
6 strategy.entry("My Long Entry Id", strategy.long)
7

8 shortCondition = ta.crossunder(ta.sma(close, 14), ta.sma(close, 28))
9 if (shortCondition)
10 strategy.entry("My Short Entry Id", strategy.short)

3.3. Script structure 25

https://www.tradingview.com/pine-script-reference/v5/#op_if

Pine Script™ v5 User Manual

3.3.4 Comments

Double slashes (//) define comments in Pine Script™. Comments can begin anywhere on the line. They can also follow
Pine Script™ code on the same line:

1 //@version=5
2 indicator("")
3 // This line is a comment
4 a = close // This is also a comment
5 plot(a)

The Pine Editor has a keyboard shortcut to comment/uncomment lines: ctrl + /. You can use it on multiple lines by
highlighting them first.

3.3.5 Line wrapping

Long lines can be split on multiple lines, or “wrapped”. Wrapped lines must be indented with any number of spaces,
provided it’s not a multiple of four (those boundaries are used to indent local blocks):

a = open + high + low + close

may be wrapped as:

a = open +
high +

low +
close

A long plot() call may be wrapped as:

plot(ta.correlation(src, ovr, length),
color = color.new(color.purple, 40),
style = plot.style_area,
trackprice = true)

Statements inside user-defined function declarations can also be wrapped. However, since a local block must syntactically
begin with an indentation (4 spaces or 1 tab), when splitting it onto the following line, the continuation of the statement
must start with more than one indentation (not equal to a multiple of four spaces). For example:

updown(s) =>
isEqual = s == s[1]
isGrowing = s > s[1]
ud = isEqual ?

0 :
isGrowing ?

(nz(ud[1]) <= 0 ?
1 :

nz(ud[1])+1) :
(nz(ud[1]) >= 0 ?

-1 :
nz(ud[1])-1)

You can use comments in wrapped lines:

26 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_plot

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("")
3 c = open > close ? color.red :
4 high > high[1] ? color.lime : // A comment
5 low < low[1] ? color.blue : color.black
6 bgcolor(c)

3.3.6 Compiler annotations

Compiler annotations are comments that issue special instructions for a script:
• //@version= specifies the PineScript™ version that the compiler will use. The number in this annotation should
not be confused with the script’s revision number, which updates on every saved change to the code.

• //@description sets a custom description for scripts that use the library() declaration statement.
• //@function, //@param and //@returns add custom descriptions for a user-defined function, its param-
eters, and its result when placed above the function declaration.

• //@type and //@field add custom descriptions for a user-defined type (UDT) and its fields when placed above
the type declaration.

• //@variable adds a custom description for a variable when placed above its declaration.
• //@strategy_alert_message provides a default message for strategy scripts to pre-fill the “Message” field
in the alert creation dialogue.

• //#region and //#endregion create collapsible code regions in the Pine Editor. Clicking the dropdown
arrow next to //#region collapses the lines of code between the two annotations.

This script draws a rectangle using three interactively selected points on the chart. It illustrates how compiler annotations
can be used:

1 //@version=5
2 indicator("Triangle", "", true)
3

4 int TIME_DEFAULT = 0
5 float PRICE_DEFAULT = 0.0
6

(continues on next page)

3.3. Script structure 27

https://www.tradingview.com/pine-script-reference/v5/#fun_library

Pine Script™ v5 User Manual

(continued from previous page)
7 x1Input = input.time(TIME_DEFAULT, "Point 1", inline = "1", confirm = true)
8 y1Input = input.price(PRICE_DEFAULT, "", inline = "1", tooltip = "Pick point 1

↪→", confirm = true)
9 x2Input = input.time(TIME_DEFAULT, "Point 2", inline = "2", confirm = true)
10 y2Input = input.price(PRICE_DEFAULT, "", inline = "2", tooltip = "Pick point 2

↪→", confirm = true)
11 x3Input = input.time(TIME_DEFAULT, "Point 3", inline = "3", confirm = true)
12 y3Input = input.price(PRICE_DEFAULT, "", inline = "3", tooltip = "Pick point 3

↪→", confirm = true)
13

14 // @type Used to represent the coordinates and color to draw a triangle.
15 // @field time1 Time of first point.
16 // @field time2 Time of second point.
17 // @field time3 Time of third point.
18 // @field price1 Price of first point.
19 // @field price2 Price of second point.
20 // @field price3 Price of third point.
21 // @field lineColor Color to be used to draw the triangle lines.
22 type Triangle
23 int time1
24 int time2
25 int time3
26 float price1
27 float price2
28 float price3
29 color lineColor
30

31 //@function Draws a triangle using the coordinates of the `t` object.
32 //@param t (Triangle) Object representing the triangle to be drawn.
33 //@returns The ID of the last line drawn.
34 drawTriangle(Triangle t) =>
35 line.new(t.time1, t.price1, t.time2, t.price2, xloc = xloc.bar_time, color = t.

↪→lineColor)
36 line.new(t.time2, t.price2, t.time3, t.price3, xloc = xloc.bar_time, color = t.

↪→lineColor)
37 line.new(t.time1, t.price1, t.time3, t.price3, xloc = xloc.bar_time, color = t.

↪→lineColor)
38

39 // Draw the triangle only once on the last historical bar.
40 if barstate.islastconfirmedhistory
41 //@variable Used to hold the Triangle object to be drawn.
42 Triangle triangle = Triangle.new()
43

44 triangle.time1 := x1Input
45 triangle.time2 := x2Input
46 triangle.time3 := x3Input
47 triangle.price1 := y1Input
48 triangle.price2 := y2Input
49 triangle.price3 := y3Input
50 triangle.lineColor := color.purple
51

52 drawTriangle(triangle)

28 Chapter 3. Language

https://www.tradingview.com/

Pine Script™ v5 User Manual

3.4 Identifiers

Identifiers are names used for user-defined variables and functions:
• They must begin with an uppercase (A-Z) or lowercase (a-z) letter, or an underscore (_).
• The next characters can be letters, underscores or digits (0-9).
• They are case-sensitive.

Here are some examples:

myVar
_myVar
my123Var
functionName
MAX_LEN
max_len
maxLen
3barsDown // NOT VALID!

The Pine Script™ Style Guide recommends using uppercase SNAKE_CASE for constants, and camelCase for other
identifiers:

GREEN_COLOR = #4CAF50
MAX_LOOKBACK = 100
int fastLength = 7
// Returns 1 if the argument is `true`, 0 if it is `false` or `na`.
zeroOne(boolValue) => boolValue ? 1 : 0

3.4. Identifiers 29

https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html
https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

3.5 Operators

• Introduction

• Arithmetic operators

• Comparison operators

• Logical operators

• `?:` ternary operator

• `[]` history-referencing operator

• Operator precedence

• `=` assignement operator

• `:=` reassignement operator

3.5.1 Introduction

Some operators are used to build expressions returning a result:
• Arithmetic operators
• Comparison operators
• Logical operators
• The ?: ternary operator
• The [] history-referencing operator

Other operators are used to assign values to variables:
• = is used to assign a value to a variable, but only when you declare the variable (the first time you use it)
• := is used to assign a value to a previously declared variable. The following operators can also be used in such
a way: +=, -=, *=, /=, %=

As is explained in the Type system page, qualifiers and types play a critical role in determining the type of results that
expressions yield. This, in turn, has an impact on how and with what functions you will be allowed to use those results.
Expressions always return a value with the strongest qualifier used in the expression, e.g., if you multiply an “input int”
with a “series int”, the expression will produce a “series int” result, which you will not be able to use as the argument to
length in ta.ema().
This script will produce a compilation error:

1 //@version=5
2 indicator("")
3 lenInput = input.int(14, "Length")
4 factor = year > 2020 ? 3 : 1
5 adjustedLength = lenInput * factor
6 ma = ta.ema(close, adjustedLength) // Compilation error!
7 plot(ma)

The compiler will complain: Cannot call ‘ta.ema’ with argument ‘length’=’adjustedLength’. An argument of ‘series int’
type was used but a ‘simple int’ is expected;. This is happening because lenInput is an “input int” but factor is a
“series int” (it can only be determined by looking at the value of year on each bar). The adjustedLength variable is

30 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#op_\{question\}\{colon\}
https://www.tradingview.com/pine-script-reference/v5/#op_{[}{]}
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}ema
https://www.tradingview.com/pine-script-reference/v5/#var_year

Pine Script™ v5 User Manual

thus assigned a “series int” value. Our problem is that the Reference Manual entry for ta.ema() tells us that its length
parameter requires a “simple” value, which is a weaker qualifier than “series”, so a “series int” value is not allowed.
The solution to our conundrum requires:

• Using another moving average function that supports a “series int” length, such as ta.sma(), or
• Not using a calculation producing a “series int” value for our length.

3.5.2 Arithmetic operators

There are five arithmetic operators in Pine Script™:

+ Addition and string concatenation
- Subtraction
* Multiplication
/ Division
% Modulo (remainder after division)

The arithmetic operators above are all binary (means they need two operands—or values — to work on, like in 1 + 2).
The + and - also serve as unary operators (means they work on one operand, like -1 or +1).
If both operands are numbers but at least one of these is of float type, the result will also be a float. If both operands are
of int type, the result will also be an int. If at least one operand is na, the result is also na.
The + operator also serves as the concatenation operator for strings. "EUR"+"USD" yields the "EURUSD" string.
The % operator calculates the modulo by rounding down the quotient to the lowest possible value. Here is an easy example
that helps illustrate how the modulo is calculated behind the scenes:

3.5.3 Comparison operators

There are six comparison operators in Pine Script™:

< Less Than
<= Less Than or Equal To
!= Not Equal
== Equal
> Greater Than
>= Greater Than or Equal To

Comparison operations are binary. If both operands have a numerical value, the result will be of type bool, i.e., true,
false or na.
Examples:

1 > 2 // false
1 != 1 // false
close >= open // Depends on values of `close` and `open`

3.5. Operators 31

https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}ema
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}sma
https://www.tradingview.com/pine-script-reference/v5/#op_float
https://www.tradingview.com/pine-script-reference/v5/#op_float
https://www.tradingview.com/pine-script-reference/v5/#op_int
https://www.tradingview.com/pine-script-reference/v5/#op_int
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na

Pine Script™ v5 User Manual

3.5.4 Logical operators

There are three logical operators in Pine Script™:

not Negation
and Logical Conjunction
or Logical Disjunction

The operator not is unary. When applied to a true, operand the result will be false, and vice versa.
and operator truth table:

a b a and b
true true true
true false false
false true false
false false false

or operator truth table:

a b a or b
true true true
true false true
false true true
false false false

3.5.5 `?:` ternary operator

The ?: ternary operator is used to create expressions of the form:

condition ? valueWhenConditionIsTrue : valueWhenConditionIsFalse

The ternary operator returns a result that depends on the value of condition. If it is true, then valueWhenCon-
ditionIsTrue is returned. If condition is false or na, then valueWhenConditionIsFalse is returned.
A combination of ternary expressions can be used to achieve the same effect as a switch structure, e.g.:

timeframe.isintraday ? color.red : timeframe.isdaily ? color.green : timeframe.
↪→ismonthly ? color.blue : na

The example is calculated from left to right:
• If timeframe.isintraday istrue, then color.red is returned. If it is false, then timeframe.isdaily is evaluated.
• If timeframe.isdaily is true, then color.green is returned. If it is false, then timeframe.ismonthly is
evaluated.

• If timeframe.ismonthly is true, then color.blue is returned, otherwise na is returned.
Note that the return values on each side of the : are expressions — not local blocks, so they will not affect the limit of
500 local blocks per scope.

32 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#op_\{question\}\{colon\}
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}isintraday
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}isdaily
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}isdaily
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}ismonthly
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}ismonthly
https://www.tradingview.com/pine-script-reference/v5/#var_na

Pine Script™ v5 User Manual

3.5.6 `[]` history-referencing operator

It is possible to refer to past values of time series using the [] history-referencing operator. Past values are values a variable
had on bars preceding the bar where the script is currently executing — the current bar. See the Execution model page
for more information about the way scripts are executed on bars.
The [] operator is used after a variable, expression or function call. The value used inside the square brackets of the
operator is the offset in the past we want to refer to. To refer to the value of the volume built-in variable two bars away
from the current bar, one would use volume[2].
Because series grow dynamically, as the script moves on sucessive bars, the offset used with the operator will refer to
different bars. Let’s see how the value returned by the same offset is dynamic, and why series are very different from
arrays. In Pine Script™, the close variable, or close[0]which is equivalent, holds the value of the current bar’s “close”.
If your code is now executing on the third bar of the dataset (the set of all bars on your chart), close will contain the
price at the close of that bar, close[1] will contain the price at the close of the preceding bar (the dataset’s second
bar), and close[2], the first bar. close[3] will return na because no bar exists in that position, and thus its value is
not available.
When the same code is executed on the next bar, the fourth in the dataset, close will now contain the closing price of
that bar, and the same close[1] used in your code will now refer to the “close” of the third bar in the dataset. The
close of the first bar in the dataset will now be close[3], and this time close[4] will return na.
In the Pine Script™ runtime environment, as your code is executed once for each historical bar in the dataset, starting
from the left of the chart, Pine Script™ is adding a new element in the series at index 0 and pushing the pre-existing
elements in the series one index further away. Arrays, in comparison, can have constant or variable sizes, and their content
or indexing structure is not modified by the runtime environment. Pine Script™ series are thus very different from arrays
and only share familiarity with them through their indexing syntax.
When the market for the chart’s symbol is open and the script is executing on the chart’s last bar, the realtime bar, close
returns the value of the current price. It will only contain the actual closing price of the realtime bar the last time the
script is executed on that bar, when it closes.
Pine Script™ has a variable that contains the number of the bar the script is executing on: bar_index. On the first bar,
bar_index is equal to 0 and it increases by 1 on each successive bar the script executes on. On the last bar, bar_index is
equal to the number of bars in the dataset minus one.
There is another important consideration to keep in mind when using the [] operator in Pine Script™. We have seen
cases when a history reference may return the na value. na represents a value which is not a number and using it in any
expression will produce a result that is also na (similar to NaN). Such cases often happen during the script’s calculations
in the early bars of the dataset, but can also occur in later bars under certain conditions. If your code does not explicitly
provide for handling these special cases, they can introduce invalid results in your script’s calculations which can ripple
through all the way to the realtime bar. The na and nz functions are designed to allow for handling such cases.
These are all valid uses of the [] operator:

high[10]
ta.sma(close, 10)[1]
ta.highest(high, 10)[20]
close > nz(close[1], open)

Note that the [] operator can only be used once on the same value. This is not allowed:

close[1][2] // Error: incorrect use of [] operator

3.5. Operators 33

https://www.tradingview.com/pine-script-reference/v5/#op_{[}{]}
https://www.tradingview.com/pine-script-reference/v5/#op_{[}{]}
https://www.tradingview.com/pine-script-reference/v5/#var_volume
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://en.wikipedia.org/wiki/NaN
https://www.tradingview.com/pine-script-reference/v5/#fun_na
https://www.tradingview.com/pine-script-reference/v5/#fun_nz
https://www.tradingview.com/pine-script-reference/v5/#op_{[}{]}
https://www.tradingview.com/pine-script-reference/v5/#op_{[}{]}

Pine Script™ v5 User Manual

3.5.7 Operator precedence

The order of calculations is determined by the operators’ precedence. Operators with greater precedence are calculated
first. Below is a list of operators sorted by decreasing precedence:

Precedence Operator
9 []
8 unary +, unary -, not
7 *, /, %
6 +, -
5 >, <, >=, <=
4 ==, !=
3 and
2 or
1 ?:

If in one expression there are several operators with the same precedence, then they are calculated left to right.
If the expression must be calculated in a different order than precedence would dictate, then parts of the expression can
be grouped together with parentheses.

3.5.8 `=` assignement operator

The = operator is used to assign a variable when it is initialized — or declared —, i.e., the first time you use it. It says
this is a new variable that I will be using, and I want it to start on each bar with this value.
These are all valid variable declarations:

i = 1
MS_IN_ONE_MINUTE = 1000 * 60
showPlotInput = input.bool(true, "Show plots")
pHi = pivothigh(5, 5)
plotColor = color.green

See the Variable declarations page for more information on how to declare variables.

3.5.9 `:=` reassignement operator

The := is used to reassign a value to an existing variable. It says use this variable that was declared earlier in my script,
and give it a new value.
Variables which have been first declared, then reassigned using :=, are called mutable variables. All the following ex-
amples are valid variable reassignments. You will find more information on how var works in the section on the `var`
declaration mode:

1 //@version=5
2 indicator("", "", true)
3 // Declare `pHi` and initilize it on the first bar only.
4 var float pHi = na
5 // Reassign a value to `pHi`
6 pHi := nz(ta.pivothigh(5, 5), pHi)
7 plot(pHi)

Note that:

34 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#op_var

Pine Script™ v5 User Manual

• We declare pHi with this code: var float pHi = na. The var keyword tells Pine Script™ that we only want
that variable initialized with na on the dataset’s first bar. The float keyword tells the compiler we are declaring
a variable of type “float”. This is necessary because, contrary to most cases, the compiler cannot automatically
determine the type of the value on the right side of the = sign.

• While the variable declaration will only be executed on the first bar because it uses var, the pHi := nz(ta.
pivothigh(5, 5), pHi) line will be executed on all the chart’s bars. On each bar, it evaluates if the
pivothigh() call returns na because that is what the function does when it hasn’t found a new pivot. The nz()
function is the one doing the “checking for na” part. When its first argument (ta.pivothigh(5, 5)) is na, it
returns the second argument (pHi) instead of the first. When pivothigh() returns the price point of a newly found
pivot, that value is assigned to pHi. When it returns na because no new pivot was found, we assign the previous
value of pHi to itself, in effect preserving its previous value.

The output of our script looks like this:

Note that:
• The line preserves its previous value until a new pivot is found.
• Pivots are detected five bars after the pivot actually occurs because our ta.pivothigh(5, 5) call says that
we require five lower highs on both sides of a high point for it to be detected as a pivot.

See the Variable reassignment section for more information on how to reassign values to variables.

3.5. Operators 35

https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}pivothigh
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_nz
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}pivothigh
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

3.6 Variable declarations

• Introduction

• Variable reassignment

• Declaration modes

3.6.1 Introduction

Variables are identifiers that hold values. They must be declared in your code before you use them. The syntax of variable
declarations is:

[<declaration_mode>] [<type>] <identifier> = <expression> | <structure>

or

<tuple_declaration> = <function_call> | <structure>

where:
• | means “or”, and parts enclosed in square brackets ([]) can appear zero or one time.
• <declaration_mode> is the variable’s declaration mode. It can be var or varip, or nothing.
• <type> is optional, as in almost all Pine Script™ variable declarations (see types).
• <identifier> is the variable’s name.
• <expression> can be a literal, a variable, an expression or a function call.
• <structure> can be an if, for, while or switch structure.
• <tuple_declaration> is a comma-separated list of variable names enclosed in square brackets ([]), e.g., [ma,
upperBand, lowerBand].

These are all valid variable declarations. The last one requires four lines:

BULL_COLOR = color.lime
i = 1
len = input(20, "Length")
float f = 10.5
closeRoundedToTick = math.round_to_mintick(close)
st = ta.supertrend(4, 14)
var barRange = float(na)
var firstBarOpen = open
varip float lastClose = na
[macdLine, signalLine, histLine] = ta.macd(close, 12, 26, 9)
plotColor = if close > open

color.green
else

color.red

Note: The above statements all contain the = assignment operator because they are variable declarations. When
you see similar lines using the := reassignment operator, the code is reassigning a value to a variable that was already

36 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-reference/v5/#op_while
https://www.tradingview.com/pine-script-reference/v5/#op_switch

Pine Script™ v5 User Manual

declared. Those are variable reassignments. Be sure you understand the distinction as this is a common stumbling
block for newcomers to Pine Script™. See the next Variable reassignment section for details.

The formal syntax of a variable declaration is:

<variable_declaration>
[<declaration_mode>] [<type>] <identifier> = <expression> | <structure>
|
<tuple_declaration> = <function_call> | <structure>

<declaration_mode>
var | varip

<type>
int | float | bool | color | string | line | linefill | label | box | table |␣

↪→array<type> | matrix<type> | UDF

Initialization with `na`

In most cases, an explicit type declaration is redundant because type is automatically inferred from the value on the right
of the = at compile time, so the decision to use them is often a matter of preference. For example:

baseLine0 = na // compile time error!
float baseLine1 = na // OK
baseLine2 = float(na) // OK

In the first line of the example, the compiler cannot determine the type of the baseLine0 variable because na is a
generic value of no particular type. The declaration of the baseLine1 variable is correct because its float type is
declared explicitly. The declaration of the baseLine2 variable is also correct because its type can be derived from the
expression float(na), which is an explicit cast of the na value to the float type. The declarations of baseLine1 and
baseLine2 are equivalent.

Tuple declarations

Function calls or structures are allowed to return multiple values. When we call them and want to store the values they
return, a tuple declarationmust be used, which is a comma-separated set of one or more values enclosed in brackets. This
allows us to declare multiple variables simultaneously. As an example, the ta.bb() built-in function for Bollinger bands
returns three values:

[bbMiddle, bbUpper, bbLower] = ta.bb(close, 5, 4)

3.6.2 Variable reassignment

A variable reassignment is done using the := reassignment operator. It can only be done after a variable has been first
declared and given an initial value. Reassigning a new value to a variable is often necessary in calculations, and it is always
necessary when a variable from the global scope must be assigned a new value from within a structure’s local block, e.g.:

1 //@version=5
2 indicator("", "", true)
3 sensitivityInput = input.int(2, "Sensitivity", minval = 1, tooltip = "Higher values␣

↪→make color changes less sensitive.")
4 ma = ta.sma(close, 20)

(continues on next page)

3.6. Variable declarations 37

https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_float
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_float
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}bb

Pine Script™ v5 User Manual

(continued from previous page)
5 maUp = ta.rising(ma, sensitivityInput)
6 maDn = ta.falling(ma, sensitivityInput)
7

8 // On first bar only, initialize color to gray
9 var maColor = color.gray
10 if maUp
11 // MA has risen for two bars in a row; make it lime.
12 maColor := color.lime
13 else if maDn
14 // MA has fallen for two bars in a row; make it fuchsia.
15 maColor := color.fuchsia
16

17 plot(ma, "MA", maColor, 2)

Note that:
• We initialize maColor on the first bar only, so it preserves its value across bars.
• On every bar, the if statement checks if the MA has been rising or falling for the user-specified number of bars
(the default is 2). When that happens, the value of maColor must be reassigned a new value from within the if
local blocks. To do this, we use the := reassignment operator.

• If we did not use the := reassignment operator, the effect would be to initialize a new maColor local variable
which would have the same name as that of the global scope, but actually be a very confusing independent entity
that would persist only for the length of the local block, and then disappear without a trace.

All user-defined variables in Pine Script™ aremutable, which means their value can be changed using the := reassignment
operator. Assigning a new value to a variable may change its type qualifier (see the page on Pine Script™’s type system
for more information). A variable can be assigned a new value as many times as needed during the script’s execution on
one bar, so a script can contain any number of reassignments of one variable. A variable’s declaration mode determines
how new values assigned to a variable will be saved.

3.6.3 Declaration modes

Understanding the impact that declaration modes have on the behavior of variables requires prior knowledge of Pine
Script™’s execution model.
When you declare a variable, if a declaration mode is specified, it must come first. Three modes can be used:

• “On each bar”, when none is specified
• var
• varip

On each bar

When no explicit declaration mode is specified, i.e. no var or varip keyword is used, the variable is declared and initialized
on each bar, e.g., the following declarations from our first set of examples in this page’s introduction:

BULL_COLOR = color.lime
i = 1
len = input(20, "Length")
float f = 10.5
closeRoundedToTick = math.round_to_mintick(close)
st = ta.supertrend(4, 14)

(continues on next page)

38 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#op_varip

Pine Script™ v5 User Manual

(continued from previous page)
[macdLine, signalLine, histLine] = ta.macd(close, 12, 26, 9)
plotColor = if close > open

color.green
else

color.red

`var`

When the var keyword is used, the variable is only initialized once, on the first bar if the declaration is in the global scope,
or the first time the local block is executed if the declaration is inside a local block. After that, it will preserve its last
value on successive bars, until we reassign a new value to it. This behavior is very useful in many cases where a variable’s
value must persist through the iterations of a script across successive bars. For example, suppose we’d like to count the
number of green bars on the chart:

1 //@version=5
2 indicator("Green Bars Count")
3 var count = 0
4 isGreen = close >= open
5 if isGreen
6 count := count + 1
7 plot(count)

Without the var modifier, variable count would be reset to zero (thus losing its value) every time a new bar update
triggered a script recalculation.
Declaring variables on the first bar only is often useful to manage drawings more efficiently. Suppoose we want to extend
the last bar’s close line to the right of the right chart. We could write:

1 //@version=5
2 indicator("Inefficient version", "", true)
3 closeLine = line.new(bar_index - 1, close, bar_index, close, extend = extend.right,␣

↪→width = 3)
4 line.delete(closeLine[1])

3.6. Variable declarations 39

https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#var_close

Pine Script™ v5 User Manual

but this is inefficient because we are creating and deleting the line on each historical bar and on each update in the realtime
bar. It is more efficient to use:

1 //@version=5
2 indicator("Efficient version", "", true)
3 var closeLine = line.new(bar_index - 1, close, bar_index, close, extend = extend.

↪→right, width = 3)
4 if barstate.islast
5 line.set_xy1(closeLine, bar_index - 1, close)
6 line.set_xy2(closeLine, bar_index, close)

Note that:
• We initialize closeLine on the first bar only, using the var declaration mode
• We restrict the execution of the rest of our code to the chart’s last bar by enclosing our code that updates the line
in an if barstate.islast structure.

There is a very slight penalty performance for using the var declaration mode. For that reason, when declaring constants,
it is preferable not to use var if performance is a concern, unless the initialization involves calculations that take longer
than the maintenance penalty, e.g., functions with complex code or string manipulations.

`varip`

Understanding the behavior of variables using the varip declaration mode requires prior knowledge of Pine Script™’s
execution model and bar states.
The varip keyword can be used to declare variables that escape the rollback process, which is explained in the page on
Pine Script™’s execution model.
Whereas scripts only execute once at the close of historical bars, when a script is running in realtime, it executes every
time the chart’s feed detects a price or volume update. At every realtime update, Pine Script™’s runtime normally resets
the values of a script’s variables to their last committed value, i.e., the value they held when the previous bar closed. This
is generally handy, as each realtime script execution starts from a known state, which simplifies script logic.
Sometimes, however, script logic requires code to be able to save variable values between different executions in the
realtime bar. Declaring variables with varip makes that possible. The “ip” in varip stands for intrabar persist.
Let’s look at the following code, which does not use varip:

1 //@version=5
2 indicator("")
3 int updateNo = na
4 if barstate.isnew
5 updateNo := 1
6 else
7 updateNo := updateNo + 1
8

9 plot(updateNo, style = plot.style_circles)

On historical bars, barstate.isnew is always true, so the plot shows a value of “1” because the else part of the if structure
is never executed. On realtime bars, barstate.isnew is only true when the script first executes on the bar’s “open”. The
plot will then briefly display “1” until subsequent executions occur. On the next executions during the realtime bar, the
second branch of the if statement is executed because barstate.isnew is no longer true. Since updateNo is initialized to
na at each execution, the updateNo + 1 expression yields na, so nothing is plotted on further realtime executions of
the script.
If we now use varip to declare the updateNo variable, the script behaves very differently:

40 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}islast
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}isnew
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}isnew
https://www.tradingview.com/pine-script-reference/v5/#const_true
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}isnew
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_varip

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("")
3 varip int updateNo = na
4 if barstate.isnew
5 updateNo := 1
6 else
7 updateNo := updateNo + 1
8

9 plot(updateNo, style = plot.style_circles)

The difference now is that updateNo tracks the number of realtime updates that occur on each realtime bar. This can
happen because the varip declaration allows the value of updateNo to be preserved between realtime updates; it is no
longer rolled back at each realtime execution of the script. The test on barstate.isnew allows us to reset the update count
when a new realtime bar comes in.
Because varip only affects the behavior of your code in the realtime bar, it follows that backtest results on strategies
designed using logic based on varip variables will not be able to reproduce that behavior on historical bars, which will
invalidate test results on them. This also entails that plots on historical bars will not be able to reproduce the script’s
behavior in realtime.

3.7 Conditional structures

• Introduction

• `if` structure

• `switch` structure

• Matching local block type requirement

3.7.1 Introduction

The conditional structures in Pine Script™ are if and switch. They can be used:
• For their side effects, i.e., when they don’t return a value but do things, like reassign values to variables or call
functions.

• To return a value or a tuple which can then be assigned to one (or more, in the case of tuples) variable.
Conditional structures, like the for and while structures, can be embedded; you can use an if or switch inside another
structure.
Some Pine Script™ built-in functions cannot be called from within the local blocks of conditional structures. They are:
alertcondition(), barcolor(), fill(), hline(), indicator(), library(), plot(), plotbar(), plotcandle(), plotchar(), plotshape(),

3.7. Conditional structures 41

https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}isnew
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-reference/v5/#op_while
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_barcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_library
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_plotbar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotcandle
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape

Pine Script™ v5 User Manual

strategy(). This does not entail their functionality cannot be controlled by conditions evaluated by your script — only that
it cannot be done by including them in conditional structures. Note that while input*.() function calls are allowed in
local blocks, their functionality is the same as if they were in the script’s global scope.
The local blocks in conditional structures must be indented by four spaces or a tab.

3.7.2 `if` structure

`if` used for its side effects

An if structure used for its side effects has the following syntax:

if <expression>
<local_block>

{else if <expression>
<local_block>}

[else
<local_block>]

where:
• Parts enclosed in square brackets ([]) can appear zero or one time, and those enclosed in curly braces ({}) can
appear zero or more times.

• <expression> must be of “bool” type or be auto-castable to that type, which is only possible for “int” or “float”
values (see the Type system page).

• <local_block> consists of zero or more statements followed by a return value, which can be a tuple of values. It
must be indented by four spaces or a tab.

• There can be zero or more else if clauses.
• There can be zero or one else clause.

When the <expression> following the if evaluates to true, the first local block is executed, the if structure’s execution
ends, and the value(s) evaluated at the end of the local block are returned.
When the <expression> following the if evaluates to false, the successive else if clauses are evaluated, if there are
any. When the <expression> of one evaluates to true, its local block is executed, the if structure’s execution ends, and the
value(s) evaluated at the end of the local block are returned.
When no <expression> has evaluated to true and an else clause exists, its local block is executed, the if structure’s
execution ends, and the value(s) evaluated at the end of the local block are returned.
When no <expression> has evaluated to true and no else clause exists, na is returned.
Using if structures for their side effects can be useful to manage the order flow in strategies, for example. While the same
functionality can often be achieved using the when parameter in strategy.*() calls, code using if structures is easier
to read:

if (ta.crossover(source, lower))
strategy.entry("BBandLE", strategy.long, stop=lower,

oca_name="BollingerBands",
oca_type=strategy.oca.cancel, comment="BBandLE")

else
strategy.cancel(id="BBandLE")

Restricting the execution of your code to specific bars ican be done using if structures, as we do here to restrict updates
to our label to the chart’s last bar:

42 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#const_true
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#const_false
https://www.tradingview.com/pine-script-reference/v5/#const_true
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#const_true
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#const_true
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_if

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("", "", true)
3 var ourLabel = label.new(bar_index, na, na, color = color(na), textcolor = color.

↪→orange)
4 if barstate.islast
5 label.set_xy(ourLabel, bar_index + 2, hl2[1])
6 label.set_text(ourLabel, str.tostring(bar_index + 1, "# bars in chart"))

Note that:
• We initialize the ourLabel variable on the script’s first bar only, as we use the var declaration mode. The value
used to initialize the variable is provided by the label.new() function call, which returns a label ID pointing to the
label it creates. We use that call to set the label’s properties because once set, they will persist until we change
them.

• What happens next is that on each successive bar the Pine Script™ runtime will skip the initialization of ourLa-
bel, and the if structure’s condition (barstate.islast) is evaluated. It returns false on all bars until the last one,
so the script does nothing on most historical bars after bar zero.

• On the last bar, barstate.islast becomes true and the structure’s local block executes, modifying on each chart update
the properties of our label, which displays the number of bars in the dataset.

• We want to display the label’s text without a background, so we make the label’s background na in the label.new()
function call, and we use hl2[1] for the label’s y position because we don’t want it to move all the time. By
using the average of the previous bar’s high and low values, the label doesn’t move until the moment when the next
realtime bar opens.

• We use bar_index + 2 in our label.set_xy() call to offset the label to the right by two bars.

`if` used to return a value

An if structure used to return one or more values has the following syntax:

[<declaration_mode>] [<type>] <identifier> = if <expression>
<local_block>

{else if <expression>
<local_block>}

[else
<local_block>]

where:
• Parts enclosed in square brackets ([]) can appear zero or one time, and those enclosed in curly braces ({}) can
appear zero or more times.

• <declaration_mode> is the variable’s declaration mode

• <type> is optional, as in almost all Pine Script™ variable declarations (see types)
• <identifier> is the variable’s name

• <expression> can be a literal, a variable, an expression or a function call.
• <local_block> consists of zero or more statements followed by a return value, which can be a tuple of values. It
must be indented by four spaces or a tab.

• The value assigned to the variable is the return value of the <local_block>, or na if no local block is executed.
This is an example:

3.7. Conditional structures 43

https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}islast
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}islast
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}set_xy
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#var_na

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("", "", true)
3 string barState = if barstate.islastconfirmedhistory
4 "islastconfirmedhistory"
5 else if barstate.isnew
6 "isnew"
7 else if barstate.isrealtime
8 "isrealtime"
9 else
10 "other"
11

12 f_print(_text) =>
13 var table _t = table.new(position.middle_right, 1, 1)
14 table.cell(_t, 0, 0, _text, bgcolor = color.yellow)
15 f_print(barState)

It is possible to omit the else block. In this case, if the condition is false, an empty value (na, false, or "") will be
assigned to the var_declarationX variable.
This is an example showing how na is returned when no local block is executed. If close > open is false in here,
na is returned:

x = if close > open
close

Scripts can contain if structures with nested if and other conditional structures. For example:

if condition1
if condition2

if condition3
expression

However, nesting these structures is not recommended from a performance perspective. When possible, it is typically
more optimal to compose a single if statement with multiple logical operators rather than several nested if blocks:

if condition1 and condition2 and condition3
expression

3.7.3 `switch` structure

The switch structure exists in two forms. One switches on the different values of a key expression:

[[<declaration_mode>] [<type>] <identifier> =]switch <expression>
{<expression> => <local_block>}
=> <local_block>

The other form does not use an expression as a key; it switches on the evaluation of different expressions:

[[<declaration_mode>] [<type>] <identifier> =]switch
{<expression> => <local_block>}
=> <local_block>

where:
• Parts enclosed in square brackets ([]) can appear zero or one time, and those enclosed in curly braces ({}) can
appear zero or more times.

44 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_switch

Pine Script™ v5 User Manual

• <declaration_mode> is the variable’s declaration mode

• <type> is optional, as in almost all Pine Script™ variable declarations (see types)
• <identifier> is the variable’s name

• <expression> can be a literal, a variable, an expression or a function call.
• <local_block> consists of zero or more statements followed by a return value, which can be a tuple of values. It
must be indented by four spaces or a tab.

• The value assigned to the variable is the return value of the <local_block>, or na if no local block is executed.
• The => <local_block> at the end allows you to specify a return value which acts as a default to be used when
no other case in the structure is executed.

Only one local block of a switch structure is executed. It is thus a structured switch that doesn’t fall through cases.
Consequently, break statements are unnecessary.
Both forms are allowed as the value used to initialize a variable.
As with the if structure, if no local block is exectuted, na is returned.

`switch` with an expression

Let’s look at an example of a switch using an expression:

1 //@version=5
2 indicator("Switch using an expression", "", true)
3

4 string maType = input.string("EMA", "MA type", options = ["EMA", "SMA", "RMA", "WMA"])
5 int maLength = input.int(10, "MA length", minval = 2)
6

7 float ma = switch maType
8 "EMA" => ta.ema(close, maLength)
9 "SMA" => ta.sma(close, maLength)
10 "RMA" => ta.rma(close, maLength)
11 "WMA" => ta.wma(close, maLength)
12 =>
13 runtime.error("No matching MA type found.")
14 float(na)
15

16 plot(ma)

Note that:
• The expression we are switching on is the variable maType, which is of “input int” type (see here for an explanation
of what the “input” qualifier is). Since it cannot change during the execution of the script, this guarantees that
whichever MA type the user selects will be executing on each bar, which is a requirement for functions like ta.ema()
which require a “simple int” argument for their length parameter.

• If no matching value is found for maType, the switch executes the last local block introduced by =>, which acts as
a catch-all. We generate a runtime error in that block. We also end it with float(na) so the local block returns
a value whose type is compatible with that of the other local blocks in the structure, to avoid a compilation error.

3.7. Conditional structures 45

https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}ema
https://www.tradingview.com/pine-script-reference/v5/#op_switch

Pine Script™ v5 User Manual

`switch` without an expression

This is an example of a switch structure wich does not use an exppression:

1 //@version=5
2 strategy("Switch without an expression", "", true)
3

4 bool longCondition = ta.crossover(ta.sma(close, 14), ta.sma(close, 28))
5 bool shortCondition = ta.crossunder(ta.sma(close, 14), ta.sma(close, 28))
6

7 switch
8 longCondition => strategy.entry("Long ID", strategy.long)
9 shortCondition => strategy.entry("Short ID", strategy.short)

Note that:
• We are using the switch to select the appropriate strategy order to emit, depending on whether the longCondi-
tion or shortCondition “bool” variables are true.

• The building conditions of longCondition and shortCondition are exclusive. While they can both be
false simultaneously, they cannot be true at the same time. The fact that only one local block of the switch
structure is ever executed is thus not an issue for us.

• We evaluate the calls to ta.crossover() and ta.crossunder() prior to entry in the switch structure. Not doing so, as
in the following example, would prevent the functions to be executed on each bar, which would result in a compiler
warning and erratic behavior:

1 //@version=5
2 strategy("Switch without an expression", "", true)
3

4 switch
5 // Compiler warning! Will not calculate correctly!
6 ta.crossover(ta.sma(close, 14), ta.sma(close, 28)) => strategy.entry("Long ID",␣

↪→strategy.long)
7 ta.crossunder(ta.sma(close, 14), ta.sma(close, 28)) => strategy.entry("Short ID",␣

↪→strategy.short)

3.7.4 Matching local block type requirement

When multiple local blocks are used in structures, the type of the return value of all its local blocks must match. This
applies only if the structure is used to assign a value to a variable in a declaration, because a variable can only have one
type, and if the statement returns two incompatible types in its branches, the variable type cannot be properly determined.
If the structure is not assigned anywhere, its branches can return different values.
This code compiles fine because close and open are both of the float type:

x = if close > open
close

else
open

This code does not compile because the first local block returns a float value, while the second one returns a string,
and the result of the if-statement is assigned to the x variable:

// Compilation error!
x = if close > open

(continues on next page)

46 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}crossover
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}crossunder
https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_open

Pine Script™ v5 User Manual

(continued from previous page)
close

else
"open"

3.8 Loops

• Introduction

• `for`

• `while`

3.8.1 Introduction

When loops are not needed

Pine Script™’s runtime and its built-in functions make loops unnecessary in many situations. Budding Pine Script™
programmers not yet familiar with the Pine Script™ runtime and built-ins who want to calculate the average of the last
10 close values will often write code such as:

1 //@version=5
2 indicator("Inefficient MA", "", true)
3 MA_LENGTH = 10
4 sumOfCloses = 0.0
5 for offset = 0 to MA_LENGTH - 1
6 sumOfCloses := sumOfCloses + close[offset]
7 inefficientMA = sumOfCloses / MA_LENGTH
8 plot(inefficientMA)

A for loop is unnecessary and inefficient to accomplish tasks like this in Pine. This is how it should be done. This code is
shorter and will run much faster because it does not use a loop and uses the ta.sma() built-in function to accomplish the
task:

1 //@version=5
2 indicator("Efficient MA", "", true)
3 thePineMA = ta.sma(close, 10)
4 plot(thePineMA)

Counting the occurrences of a condition in the last bars is also a task which beginning Pine Script™ programmers often
think must be done with a loop. To count the number of up bars in the last 10 bars, they will use:

3.8. Loops 47

https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}sma

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Inefficient sum")
3 MA_LENGTH = 10
4 upBars = 0.0
5 for offset = 0 to MA_LENGTH - 1
6 if close[offset] > open[offset]
7 upBars := upBars + 1
8 plot(upBars)

The efficient way to write this in Pine (for the programmer because it saves time, to achieve the fastest-loading charts,
and to share our common resources most equitably), is to use the math.sum() built-in function to accomplish the task:

1 //@version=5
2 indicator("Efficient sum")
3 upBars = math.sum(close > open ? 1 : 0, 10)
4 plot(upBars)

What’s happening in there is:
• We use the ?: ternary operator to build an expression that yields 1 on up bars and 0 on other bars.
• We use the math.sum() built-in function to keep a running sum of that value for the last 10 bars.

When loops are necessary

Loops exist for good reason because even in Pine Script™, they are necessary in some cases. These cases typically
include:

• The manipulation of collections (arrays, matrices, and maps).
• Looking back in history to analyze bars using a reference value that can only be known on the current bar, e.g., to
find how many past highs are higher than the high of the current bar. Since the current bar’s high is only known on
the bar the script is running on, a loop is necessary to go back in time and analyze past bars.

• Performing calculations on past bars that cannot be accomplished using built-in functions.

3.8.2 `for`

The for structure allows the repetitive execution of statements using a counter. Its syntax is:

[[<declaration_mode>] [<type>] <identifier> =]for <identifier> = <expression> to
↪→<expression>[by <expression>]

<local_block_loop>

where:
• Parts enclosed in square brackets ([]) can appear zero or one time, and those enclosed in curly braces ({}) can
appear zero or more times.

• <declaration_mode> is the variable’s declaration mode

• <type> is optional, as in almost all Pine Script™ variable declarations (see types)
• <identifier> is a variable’s name

• <expression> can be a literal, a variable, an expression or a function call.

48 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_math\{dot\}sum
https://www.tradingview.com/pine-script-reference/v5/#op_\{question\}\{colon\}
https://www.tradingview.com/pine-script-reference/v5/#fun_math\{dot\}sum
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#op_for

Pine Script™ v5 User Manual

• <local_block_loop> consists of zero or more statements followed by a return value, which can be a tuple of values.
It must be indented by four spaces or a tab. It can contain the break statement to exit the loop, or the continue
statement to exit the current iteration and continue on with the next.

• The value assigned to the variable is the return value of the <local_block_loop>, i.e., the last value calculated on
the loop’s last iteration, or na if the loop is not executed.

• The identifier in for <identifier> is the loop’s counter initial value.
• The expression in = <expression> is the start value of the counter.
• The expression in to <expression> is the end value of the counter. It is only evaluated upon entry in the
loop.

• The expression in by <expression> is optional. It is the step by which the loop counter is increased or
decreased on each iteration of the loop. Its default value is 1 when start value < end value. It is -1
when start value > end value. The step (+1 or -1) used as the default is determined by the start and
end values.

This example uses a for statement to look back a user-defined amount of bars to determine how many bars have a high
that is higher or lower than the high of the last bar on the chart. A for loop is necessary here, since the script only has
access to the reference value on the chart’s last bar. Pine Script™’s runtime cannot, here, be used to calculate on the fly,
as the script is executing bar to bar:

1 //@version=5
2 indicator("`for` loop")
3 lookbackInput = input.int(50, "Lookback in bars", minval = 1, maxval = 4999)
4 higherBars = 0
5 lowerBars = 0
6 if barstate.islast
7 var label lbl = label.new(na, na, "", style = label.style_label_left)
8 for i = 1 to lookbackInput
9 if high[i] > high
10 higherBars += 1
11 else if high[i] < high
12 lowerBars += 1
13 label.set_xy(lbl, bar_index, high)
14 label.set_text(lbl, str.tostring(higherBars, "# higher bars\n") + str.

↪→tostring(lowerBars, "# lower bars"))

This example uses a loop in its checkLinesForBreaches() function to go through an array of pivot lines and
delete them when price crosses them. A loop is necessary here because all the lines in each of the hiPivotLines and
loPivotLines arrays must be checked on each bar, and there is no built-in that can do this for us:

1 //@version=5
2 MAX_LINES_COUNT = 100
3 indicator("Pivot line breaches", "", true, max_lines_count = MAX_LINES_COUNT)
4

5 color hiPivotColorInput = input(color.new(color.lime, 0), "High pivots")
6 color loPivotColorInput = input(color.new(color.fuchsia, 0), "Low pivots")
7 int pivotLegsInput = input.int(5, "Pivot legs")
8 int qtyOfPivotsInput = input.int(50, "Quantity of last pivots to remember",␣

↪→minval = 0, maxval = MAX_LINES_COUNT / 2)
9 int maxLineLengthInput = input.int(400, "Maximum line length in bars", minval = 2)
10

11 // ————— Queues a new element in an array and de-queues its first element.
12 qDq(array, qtyOfElements, arrayElement) =>
13 array.push(array, arrayElement)
14 if array.size(array) > qtyOfElements

(continues on next page)

3.8. Loops 49

https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#op_for

Pine Script™ v5 User Manual

(continued from previous page)
15 // Only deqeue if array has reached capacity.
16 array.shift(array)
17

18 // —————— Loop through an array of lines, extending those that price has not crossed␣
↪→and deleting those crossed.

19 checkLinesForBreaches(arrayOfLines) =>
20 int qtyOfLines = array.size(arrayOfLines)
21 // Don't loop in case there are no lines to check because "to" value will be `na`␣

↪→then`.
22 for lineNo = 0 to (qtyOfLines > 0 ? qtyOfLines - 1 : na)
23 // Need to check that array size still warrants a loop because we may have␣

↪→deleted array elements in the loop.
24 if lineNo < array.size(arrayOfLines)
25 line currentLine = array.get(arrayOfLines, lineNo)
26 float lineLevel = line.get_price(currentLine, bar_index)
27 bool lineWasCrossed = math.sign(close[1] - lineLevel) != math.sign(close␣

↪→- lineLevel)
28 bool lineIsTooLong = bar_index - line.get_x1(currentLine) >␣

↪→maxLineLengthInput
29 if lineWasCrossed or lineIsTooLong
30 // Line stays on the chart but will no longer be extend on further␣

↪→bars.
31 array.remove(arrayOfLines, lineNo)
32 // Force type of both local blocks to same type.
33 int(na)
34 else
35 line.set_x2(currentLine, bar_index)
36 int(na)
37

38 // Arrays of lines containing non-crossed pivot lines.
39 var array<line> hiPivotLines = array.new_line(qtyOfPivotsInput)
40 var array<line> loPivotLines = array.new_line(qtyOfPivotsInput)
41

42 // Detect new pivots.
43 float hiPivot = ta.pivothigh(pivotLegsInput, pivotLegsInput)
44 float loPivot = ta.pivotlow(pivotLegsInput, pivotLegsInput)
45

46 // Create new lines on new pivots.
47 if not na(hiPivot)
48 line newLine = line.new(bar_index[pivotLegsInput], hiPivot, bar_index, hiPivot,␣

↪→color = hiPivotColorInput)
49 line.delete(qDq(hiPivotLines, qtyOfPivotsInput, newLine))
50 else if not na(loPivot)
51 line newLine = line.new(bar_index[pivotLegsInput], loPivot, bar_index, loPivot,␣

↪→color = loPivotColorInput)
52 line.delete(qDq(loPivotLines, qtyOfPivotsInput, newLine))
53

54 // Extend lines if they haven't been crossed by price.
55 checkLinesForBreaches(hiPivotLines)
56 checkLinesForBreaches(loPivotLines)

50 Chapter 3. Language

Pine Script™ v5 User Manual

3.8.3 `while`

The while structure allows the repetitive execution of statements until a condition is false. Its syntax is:

[[<declaration_mode>] [<type>] <identifier> =]while <expression>
<local_block_loop>

where:
• Parts enclosed in square brackets ([]) can appear zero or one time.
• <declaration_mode> is the variable’s declaration mode

• <type> is optional, as in almost all Pine Script™ variable declarations (see types)
• <identifier> is a variable’s name

• <expression> can be a literal, a variable, an expression or a function call. It is evaluated at each iteration of the loop.
When it evaluates to true, the loop executes. When it evaluates to false the loop stops. Note that evaluation of
the expression is done before each iteration only. Changes to the expression’s value inside the loop will only have
an impact on the next iteration.

• <local_block_loop> consists of zero or more statements followed by a return value, which can be a tuple of values.
It must be indented by four spaces or a tab. It can contain the break statement to exit the loop, or the continue
statement to exit the current iteration and continue on with the next.

• The value assigned to the <identifier> variable is the return value of the <local_block_loop>, i.e., the last value
calculated on the loop’s last iteration, or na if the loop is not executed.

This is the first code example of the for section written using a while structure instead of a for one:

1 //@version=5
2 indicator("`for` loop")
3 lookbackInput = input.int(50, "Lookback in bars", minval = 1, maxval = 4999)
4 higherBars = 0
5 lowerBars = 0
6 if barstate.islast
7 var label lbl = label.new(na, na, "", style = label.style_label_left)
8 // Initialize the loop counter to its start value.
9 i = 1
10 // Loop until the `i` counter's value is <= the `lookbackInput` value.
11 while i <= lookbackInput
12 if high[i] > high
13 higherBars += 1
14 else if high[i] < high
15 lowerBars += 1
16 // Counter must be managed "manually".
17 i += 1
18 label.set_xy(lbl, bar_index, high)
19 label.set_text(lbl, str.tostring(higherBars, "# higher bars\n") + str.

↪→tostring(lowerBars, "# lower bars"))

Note that:
• The i counter must be incremented by one explicitly inside the while’s local block.
• We use the += operator to add one to the counter. lowerBars += 1 is equivalent to lowerBars :=
lowerBars + 1.

Let’s calculate the factorial function using a while structure:

3.8. Loops 51

https://www.tradingview.com/pine-script-reference/v5/#op_while
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_while
https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-reference/v5/#op_while
https://www.tradingview.com/pine-script-reference/v5/#op_\{plus\}=
https://www.tradingview.com/pine-script-reference/v5/#op_while

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("")
3 int n = input.int(10, "Factorial of", minval=0)
4

5 factorial(int val = na) =>
6 int counter = val
7 int fact = 1
8 result = while counter > 0
9 fact := fact * counter
10 counter := counter - 1
11 fact
12

13 // Only evaluate the function on the first bar.
14 var answer = factorial(n)
15 plot(answer)

Note that:
• We use input.int() for our input because we need to specify a minval value to protect our code. While input()
also supports the input of “int” type values, it does not support the minval parameter.

• We have packaged our script’s functionality in a factorial() function which accepts as an argument the value
whose factorial it must calculate. We have used int val = na to declare our function’s parameter, which says
that if the function is called without an argument, as in factorial(), then the val parameter will initialize to
na, which will prevent the execution of the while loop because its counter > 0 expression will return na. The
while structure will thus initialize the result variable to na. In turn, because the initialization of result is the
return value of the our function’s local block, the function will return na.

• Note the last line of the while’s local block: fact. It is the local block’s return value, so the value it had on the
while structure’s last iteration.

• Our initialization of result is not required; we do it for readability. We could just as well have used:

while counter > 0
fact := fact * counter
counter := counter - 1
fact

52 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}int
https://www.tradingview.com/pine-script-reference/v5/#fun_input
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_while
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_while
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_while
https://www.tradingview.com/pine-script-reference/v5/#op_while
https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

3.9 Type system

• Introduction

• Qualifiers

• Types

• `na` value

• Type templates

• Type casting

• Tuples

3.9.1 Introduction

The Pine Script™ type system determines the compatibility of a script’s values with various functions and operations.
While it’s possible to write simple scripts without knowing anything about the type system, a reasonable understanding
of it is necessary to achieve any degree of proficiency with the language, and an in-depth knowledge of its subtleties will
allow you to harness its full potential.
Pine Script™ uses types to classify all values, and it uses qualifiers to determine whether values are constant, established
on the first script iteration, or dynamic throughout a script’s execution. This system applies to all Pine values, including
those from literals, variables, expressions, function returns, and function arguments.
The type system closely intertwines with Pine’s execution model and time series concepts. Understanding all three is
essential for making the most of the power of Pine Script™.

Note: For the sake of brevity, we often use “type” to refer to a “qualified type”.

3.9.2 Qualifiers

Pine Script™ qualifiers identify when a value is accessible in the script’s execution:
• Values qualified as const are established at compile time (i.e., when saving the script in the Pine Editor or adding
it to the chart).

• Values qualified as input are available at input time (i.e., when changing values in the script’s “Settings/Inputs” tab).
• Values qualified as simple are established at bar zero (the first bar of the script’s execution).
• Values qualified as series can change throughout the script’s execution.

Pine Script™ bases the dominance of type qualifiers on the following hierarchy: const < input < simple < series, where
“const” is the weakest qualifier and “series” is the strongest. The qualifier hierarchy translates into this rule: whenever a
variable, function, or operation is compatible with a specific qualified type, values with weaker qualifiers are also allowed.
Scripts always qualify their expressions’ returned values based on the dominant qualifier in their calculations. For example,
evaluating an expression that involves “const” and “series” values will return a value qualified as “series”. Furthermore,
scripts cannot change a value’s qualifier to one that’s lower on the hierarchy. If a value acquires a stronger qualifier (e.g.,
a value initially inferred as “simple” becomes “series” later in the script’s execution), that state is irreversible.

3.9. Type system 53

Pine Script™ v5 User Manual

Note that only values qualified as “series” can change throughout the execution of a script, which include those from
various built-ins, such as close and volume, as well as the results of any operations that involve “series” values. Values
qualified as “const”, “input”, or “simple” are consistent throughout a script’s execution.

const

Values qualified as “const” are established at compile time, before the script starts its execution. Compilation initially
occurs when saving a script in the Pine Editor, which does not require it to run on a chart. Values with the “const”
qualifier never change between script iterations, not even on the initial bar of its execution.
Scripts can qualify values as “const” by using a literal value or calculating values from expressions that only use literal
values or other variables qualified as “const”.
These are examples of literal values:

• literal int: 1, -1, 42
• literal float: 1., 1.0, 3.14, 6.02E-23, 3e8
• literal bool: true, false
• literal color: #FF55C6, #FF55C6ff
• literal string: "A text literal", "Embedded single quotes 'text'", 'Embedded double
quotes "text"'

Users can explicitly define variables and parameters that only accept “const” values by including the const keyword in
their declaration.
Our Style guide recommends using uppercase SNAKE_CASE to name “const” variables for readability. While it is not a
requirement, one can also use the var keyword when declaring “const” variables so the script only initializes them on the
first bar of the dataset. See this section of our User Manual for more information.
Below is an example that uses “const” values within indicator() and plot() functions, which both require a value of the
“const string” qualified type as their title argument:

1 //@version=5
2

3 // The following global variables are all of the "const string" qualified type:
4

5 //@variable The title of the indicator.
6 INDICATOR_TITLE = "const demo"
7 //@variable The title of the first plot.
8 var PLOT1_TITLE = "High"
9 //@variable The title of the second plot.
10 const string PLOT2_TITLE = "Low"
11 //@variable The title of the third plot.
12 PLOT3_TITLE = "Midpoint between " + PLOT1_TITLE + " and " + PLOT2_TITLE
13

14 indicator(INDICATOR_TITLE, overlay = true)
15

16 plot(high, PLOT1_TITLE)
17 plot(low, PLOT2_TITLE)
18 plot(hl2, PLOT3_TITLE)

The following example will raise a compilation error since it uses syminfo.ticker, which returns a “simple” value because
it depends on chart information that’s only accessible once the script starts its execution:

54 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_volume
https://www.tradingview.com/pine-script-reference/v5/#kw_var
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo.ticker

Pine Script™ v5 User Manual

1 //@version=5
2

3 //@variable The title in the `indicator()` call.
4 var NAME = "My indicator for " + syminfo.ticker
5

6 indicator(NAME, "", true) // Causes an error because `NAME` is qualified as a "simple␣
↪→string".

7 plot(close)

input

Values qualified as “input” are established after initialization via the input.*() functions. These functions produce
values that users can modify within the “Inputs” tab of the script’s settings. When one changes any of the values in this
tab, the script re-executes from the beginning of the chart’s history to ensure its input values are consistent throughout its
execution.

Note: The input.source() function is an exception in the input.*() namespace, as it returns “series” qualified values
rather than “input” since built-in variables such as open, close, etc., as well as the values from another script’s plots, are
qualified as “series”.

The following script plots the value of a sourceInput from the symbolInput and timeframeInput context.
The request.security() call is valid in this script since its symbol and timeframe parameters allow “simple string”
arguments, meaning they can also accept “input string” values because the “input” qualifier is lower on the hierarchy:

1 //@version=5
2 indicator("input demo", overlay = true)
3

4 //@variable The symbol to request data from. Qualified as "input string".
5 symbolInput = input.symbol("AAPL", "Symbol")
6 //@variable The timeframe of the data request. Qualified as "input string".
7 timeframeInput = input.timeframe("D", "Timeframe")
8 //@variable The source of the calculation. Qualified as "series float".
9 sourceInput = input.source(close, "Source")
10

11 //@variable The `sourceInput` value from the requested context. Qualified as "series␣
↪→float".

12 requestedSource = request.security(symbolInput, timeframeInput, sourceInput)
13

14 plot(requestedSource)

simple

Values qualified as “simple” are available only once the script begins execution on the first chart bar of its history, and
they remain consistent during the script’s execution.
Users can explicitly define variables and parameters that accept “simple” values by including the simple keyword in
their declaration.
Many built-in variables return “simple” qualified values because they depend on information that a script can only obtain
once it starts its execution. Additionally, many built-in functions require “simple” arguments that do not change over time.
Wherever a script allows “simple” values, it can also accept values qualified as “input” or “const”.

3.9. Type system 55

https://www.tradingview.com/pine-script-reference/v5/#fun_input.source
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security

Pine Script™ v5 User Manual

This script highlights the background to warn users that they’re using a non-standard chart type. It uses the value of
chart.is_standard to calculate the isNonStandard variable, then uses that variable’s value to calculate a warning-
Color that also references a “simple” value. The color parameter of bgcolor() allows a “series color” argument,
meaning it can also accept a “simple color” value since “simple” is lower on the hierarchy:

1 //@version=5
2 indicator("simple demo", overlay = true)
3

4 //@variable Is `true` when the current chart is non-standard. Qualified as "simple␣
↪→bool".

5 isNonStandard = not chart.is_standard
6 //@variable Is orange when the the current chart is non-standard. Qualified as

↪→"simple color".
7 simple color warningColor = isNonStandard ? color.new(color.orange, 70) : na
8

9 // Colors the chart's background to warn that it's a non-standard chart type.
10 bgcolor(warningColor, title = "Non-standard chart color")

series

Values qualified as “series” provide the most flexibility in scripts since they can change on any bar, even multiple times
on the same bar.
Users can explicitly define variables and parameters that accept “series” values by including the series keyword in their
declaration.
Built-in variables such as open, high, low, close, volume, time, and bar_index, and the result from any expression using
such built-ins, are qualified as “series”. The result of any function or operation that returns a dynamic value will always be
a “series”, as will the results from using the history-referencing operator [] to access historical values. Wherever a script
allows “series” values, it will also accept values with any other qualifier, as “series” is the highest qualifier on the hierarchy.
This script displays the highest and lowest value of a sourceInput over lengthInput bars. The values assigned to
the highest and lowest variables are of the “series float” qualified type, as they can change throughout the script’s
execution:

1 //@version=5
2 indicator("series demo", overlay = true)
3

4 //@variable The source value to calculate on. Qualified as "series float".
5 series float sourceInput = input.source(close, "Source")
6 //@variable The number of bars in the calculation. Qualified as "input int".
7 lengthInput = input.int(20, "Length")
8

9 //@variable The highest `sourceInput` value over `lengthInput` bars. Qualified as
↪→"series float".

10 series float highest = ta.highest(sourceInput, lengthInput)
11 //@variable The lowest `sourceInput` value over `lengthInput` bars. Qualified as

↪→"series float".
12 lowest = ta.lowest(sourceInput, lengthInput)
13

14 plot(highest, "Highest source", color.green)
15 plot(lowest, "Lowest source", color.red)

56 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#var_chart.is_standard
https://www.tradingview.com/pine-script-reference/v5/#fun_bgcolor
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_volume
https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#op_{[}{]}
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.highest
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.lowest

Pine Script™ v5 User Manual

3.9.3 Types

Pine Script™ types classify values and determine the functions and operations they’re compatible with. They include:
• The fundamental types: int, float, bool, color, and string

• The special types: plot, hline, line, linefill, box, polyline, label, table, chart.point, array, matrix, and map

• User-defined types (UDTs)

• void

Fundamental types refer to the underlying nature of a value, e.g., a value of 1 is of the “int” type, 1.0 is of the “float” type,
“AAPL” is of the “string” type, etc. Special types and user-defined types utilize IDs that refer to objects of a specific
class. For example, a value of the “label” type contains an ID that acts as a pointer referring to a “label” object. The “void”
type refers to the output from a function or method that does not return a usable value.
Pine Script™ can automatically convert values from some types into others. The auto-casting rules are: int → float →
bool. See the Type casting section of this page for more information.
In most cases, Pine Script™ can automatically determine a value’s type. However, we can also use type keywords to
explicitly specify types for readability and for code that requires explicit definitions (e.g., declaring a variable assigned to
na). For example:

1 //@version=5
2 indicator("Types demo", overlay = true)
3

4 //@variable A value of the "const string" type for the `ma` plot's title.
5 string MA_TITLE = "MA"
6

7 //@variable A value of the "input int" type. Controls the length of the average.
8 int lengthInput = input.int(100, "Length", minval = 2)
9

10 //@variable A "series float" value representing the last `close` that crossed over␣
↪→the `ma`.

11 var float crossValue = na
12

13 //@variable A "series float" value representing the moving average of `close`.
14 float ma = ta.sma(close, lengthInput)
15 //@variable A "series bool" value that's `true` when the `close` crosses over the␣

↪→`ma`.
16 bool crossUp = ta.crossover(close, ma)
17 //@variable A "series color" value based on whether `close` is above or below its␣

↪→`ma`.
18 color maColor = close > ma ? color.lime : color.fuchsia
19

20 // Update the `crossValue`.
21 if crossUp
22 crossValue := close
23

24 plot(ma, MA_TITLE, maColor)
25 plot(crossValue, "Cross value", style = plot.style_circles)
26 plotchar(crossUp, "Cross Up", "▲", location.belowbar, size = size.small)

3.9. Type system 57

https://www.tradingview.com/pine-script-reference/v5/#var_na

Pine Script™ v5 User Manual

int

Values of the “int” type represent integers, i.e., whole numbers without any fractional quantities.
Integer literals are numeric values written in decimal notation. For example:

1
-1
750

Built-in variables such as bar_index, time, timenow, dayofmonth, and strategy.wintrades all return values of the “int”
type.

float

Values of the “float” type represent floating-point numbers, i.e., numbers that can contain whole and fractional quantities.
Floating-point literals are numeric values written with a . delimiter. They may also contain the symbol e or E (which
means “10 raised to the power of X”, where X is the number after the e or E symbol). For example:

3.14159 // Rounded value of Pi (π)
- 3.0
6.02e23 // 6.02 * 10^23 (a very large value)
1.6e-19 // 1.6 * 10^-19 (a very small value)

The internal precision of “float” values in Pine Script™ is 1e-16.
Built-in variables such as close, hlcc4, volume, ta.vwap, and strategy.position_size all return values of the “float” type.

bool

Values of the “bool” type represent the truth value of a comparison or condition, which scripts can use in conditional
structures and other expressions.
There are only two literals that represent boolean values:

true // true value
false // false value

When an expression of the “bool” type returns na, scripts treat its value as false when evaluating conditional statements
and operators.
Built-in variables such as barstate.isfirst, chart.is_heikinashi, session.ismarket, and timeframe.isdaily all return values of
the “bool” type.

color

Color literals have the following format: #RRGGBB or #RRGGBBAA. The letter pairs represent hexadecimal values be-
tween 00 and FF (0 to 255 in decimal) where:

• RR, GG and BB pairs respectively represent the values for the color’s red, green and blue components.
• AA is an optional value for the color’s opacity (or alpha component) where 00 is invisible and FF opaque. When
the literal does not include an AA pair, the script treats it as fully opaque (the same as using FF).

• The hexadecimal letters in the literals can be uppercase or lowercase.

58 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/pine-script-reference/v5/#var_timenow
https://www.tradingview.com/pine-script-reference/v5/#var_dayofmonth
https://www.tradingview.com/pine-script-reference/v5/#var_strategy.wintrades
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_hlcc4
https://www.tradingview.com/pine-script-reference/v5/#var_volume
https://www.tradingview.com/pine-script-reference/v5/#var_ta.vwap
https://www.tradingview.com/pine-script-reference/v5/#var_strategy.position_size
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_barstate.isfirst
https://www.tradingview.com/pine-script-reference/v5/#var_chart.is_heikinashi
https://www.tradingview.com/pine-script-reference/v5/#var_session.ismarket
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe.isdaily

Pine Script™ v5 User Manual

These are examples of “color” literals:

#000000 // black color
#FF0000 // red color
#00FF00 // green color
#0000FF // blue color
#FFFFFF // white color
#808080 // gray color
#3ff7a0 // some custom color
#FF000080 // 50% transparent red color
#FF0000ff // same as #FF0000, fully opaque red color
#FF000000 // completely transparent red color

Pine Script™ also has built-in color constants, including color.green, color.red, color.orange, color.blue (the default color
in plot*() functions and many of the default color-related properties in drawing types), etc.
When using built-in color constants, it is possible to add transparency information to them via the color.new() function.
Note that when specifying red, green or blue components in color.*() functions, we use “int” or “float” arguments
with values between 0 and 255. When specifying transparency, we use a value between 0 and 100, where 0 means fully
opaque and 100 means completely transparent. For example:

1 //@version=5
2 indicator("Shading the chart's background", overlay = true)
3

4 //@variable A "const color" value representing the base for each day's color.
5 color BASE_COLOR = color.rgb(0, 99, 165)
6

7 //@variable A "series int" value that modifies the transparency of the `BASE_COLOR`␣
↪→in `color.new()`.

8 int transparency = 50 + int(40 * dayofweek / 7)
9

10 // Color the background using the modified `BASE_COLOR`.
11 bgcolor(color.new(BASE_COLOR, transparency))

See the User Manual’s page on colors for more information on using colors in scripts.

string

Values of the “string” type represent sequences of letters, numbers, symbols, spaces, and other characters.
String literals in Pine are characters enclosed in single or double quotation marks. For example:

"This is a string literal using double quotes."
'This is a string literal using single quotes.'

Single and double quotation marks are functionally equivalent in Pine Script™. A “string” enclosed within double quo-
tation marks can contain any number of single quotation marks and vice versa:

"It's an example"
'The "Star" indicator'

Scripts can escape the enclosing delimiter in a “string” using the backslash character (\). For example:

'It\'s an example'
"The \"Star\" indicator"

3.9. Type system 59

https://www.tradingview.com/pine-script-reference/v5/#var_color\{dot\}green
https://www.tradingview.com/pine-script-reference/v5/#var_color\{dot\}red
https://www.tradingview.com/pine-script-reference/v5/#var_color\{dot\}orange
https://www.tradingview.com/pine-script-reference/v5/#var_color\{dot\}blue
https://www.tradingview.com/pine-script-reference/v5/#fun_color.new

Pine Script™ v5 User Manual

We can create “string” values containing the new line escape character (\n) for displaying multi-line text with plot*()
and log.*() functions and objects of drawing types. For example:

"This\nString\nHas\nOne\nWord\nPer\nLine"

We can use the + operator to concatenate “string” values:

"This is a " + "concatenated string."

The built-ins in the str.*() namespace create “string” values using specialized operations. For instance, this script
creates a formatted string to represent “float” price values and displays the result using a label:

1 //@version=5
2 indicator("Formatted string demo", overlay = true)
3

4 //@variable A "series string" value representing the bar's OHLC data.
5 string ohlcString = str.format("Open: {0}\nHigh: {1}\nLow: {2}\nClose: {3}", open,␣

↪→high, low, close)
6

7 // Draw a label containing the `ohlcString`.
8 label.new(bar_index, high, ohlcString, textcolor = color.white)

See our User Manual’s page on Text and shapes for more information about displaying “string” values from a script.
Built-in variables such as syminfo.tickerid, syminfo.currency, and timeframe.period return values of the “string” type.

plot and hline

Pine Script™’s plot() and hline() functions return IDs that respectively reference instances of the “plot” and “hline” types.
These types display calculated values and horizontal levels on the chart, and one can assign their IDs to variables for use
with the built-in fill() function.
For example, this script plots two EMAs on the chart and fills the space between them using the fill() function:

1 //@version=5
2 indicator("plot fill demo", overlay = true)
3

4 //@variable A "series float" value representing a 10-bar EMA of `close`.
5 float emaFast = ta.ema(close, 10)
6 //@variable A "series float" value representing a 20-bar EMA of `close`.
7 float emaSlow = ta.ema(close, 20)
8

9 //@variable The plot of the `emaFast` value.
10 emaFastPlot = plot(emaFast, "Fast EMA", color.orange, 3)
11 //@variable The plot of the `emaSlow` value.
12 emaSlowPlot = plot(emaSlow, "Slow EMA", color.gray, 3)
13

14 // Fill the space between the `emaFastPlot` and `emaSlowPlot`.
15 fill(emaFastPlot, emaSlowPlot, color.new(color.purple, 50), "EMA Fill")

It’s important to note that unlike other special types, there is no plot or hline keyword in Pine to explicitly declare a
variable’s type as “plot” or “hline”.
Users can control where their scripts’ plots display via the variables in the display.* namespace. Additionally, one
script can use the values from another script’s plots as external inputs via the input.source() function (see our UserManual’s
section on source inputs).

60 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#op_+
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo.tickerid
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo.currency
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe.period
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_input.source

Pine Script™ v5 User Manual

Drawing types

Pine Script™ drawing types allow scripts to create custom drawings on charts. They include the following: line, linefill,
box, polyline, label, and table.
Each type also has a namespace containing all the built-ins that create and manage drawing instances. For example,
the following *.new() constructors create new objects of these types in a script: line.new(), linefill.new(), box.new(),
polyline.new(), label.new(), and table.new().
Each of these functions returns an IDwhich is a reference that uniquely identifies a drawing object. IDs are always qualified
as “series”, meaning their qualified types are “series line”, “series label”, etc. Drawing IDs act like pointers, as each ID
references a specific instance of a drawing in all the functions from that drawing’s namespace. For instance, the ID of a
line returned by a line.new() call is used later to refer to that specific object once it’s time to delete it with line.delete().

Chart points

Chart points are special types that represent coordinates on the chart. Scripts use the information from chart.point objects
to determine the chart locations of lines, boxes, polylines, and labels.
Objects of this type contain three fields: time, index, and price. Whether a drawing instance uses the time or
price field from a chart.point as an x-coordinate depends on the drawing’s xloc property.
We can use any of the following functions to create chart points in a script:

• chart.point.new() - Creates a new chart.point with a specified time, index, and price.
• chart.point.now() - Creates a new chart.point with a specified price y-coordinate. The time and index fields
contain the time and bar_index of the bar the function executes on.

• chart.point_from_index() - Creates a new chart.point with an index x-coordinate and price y-coordinate. The
time field of the resulting instance is na, meaning it will not work with drawing objects that use an xloc value
of xloc.bar_time.

• chart.point.from_time() - Creates a new chart.point with a time x-coordinate and price y-coordinate. The
index field of the resulting instance is na, meaning it will not work with drawing objects that use an xloc value
of xloc.bar_index.

• chart.point.copy() - Creates a new chart.point containing the same time, index, and price information as the
id in the function call.

This example draws lines connecting the previous bar’s high to the current bar’s low on each chart bar. It also displays
labels at both points of each line. The line and labels get their information from the firstPoint and secondPoint
variables, which reference chart points created using chart.point_from_index() and chart.point.now():

1 //@version=5
2 indicator("Chart points demo", overlay = true)
3

4 //@variable A new `chart.point` at the previous `bar_index` and `high`.
5 firstPoint = chart.point.from_index(bar_index - 1, high[1])
6 //@variable A new `chart.point` at the current bar's `low`.
7 secondPoint = chart.point.now(low)
8

9 // Draw a new line connecting coordinates from the `firstPoint` and `secondPoint`.
10 // This line uses the `index` fields from the points as x-coordinates.
11 line.new(firstPoint, secondPoint, color = color.purple, width = 3)
12 // Draw a label at the `firstPoint`. Uses the point's `index` field as its x-

↪→coordinate.
13 label.new(
14 firstPoint, str.tostring(firstPoint.price), color = color.green,

(continues on next page)

3.9. Type system 61

https://www.tradingview.com/pine-script-reference/v5/#type_line
https://www.tradingview.com/pine-script-reference/v5/#type_linefill
https://www.tradingview.com/pine-script-reference/v5/#type_box
https://www.tradingview.com/pine-script-reference/v5/#type_polyline
https://www.tradingview.com/pine-script-reference/v5/#type_label
https://www.tradingview.com/pine-script-reference/v5/#type_table
https://www.tradingview.com/pine-script-reference/v5/#fun_line.new
https://www.tradingview.com/pine-script-reference/v5/#fun_linefill.new
https://www.tradingview.com/pine-script-reference/v5/#fun_box.new
https://www.tradingview.com/pine-script-reference/v5/#fun_polyline.new
https://www.tradingview.com/pine-script-reference/v5/#fun_label.new
https://www.tradingview.com/pine-script-reference/v5/#fun_table.new
https://www.tradingview.com/pine-script-reference/v5/#fun_line.new
https://www.tradingview.com/pine-script-reference/v5/#fun_line.delete
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#fun_chart.point.new
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#fun_chart.point.now
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_chart.point.from_index
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_xloc.bar_time
https://www.tradingview.com/pine-script-reference/v5/#fun_chart.point.from_time
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_xloc.bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_chart.point.copy
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#fun_chart.point.from_index
https://www.tradingview.com/pine-script-reference/v5/#fun_chart.point.now

Pine Script™ v5 User Manual

(continued from previous page)
15 style = label.style_label_down, textcolor = color.white
16)
17 // Draw a label at the `secondPoint`. Uses the point's `index` field as its x-

↪→coordinate.
18 label.new(
19 secondPoint, str.tostring(secondPoint.price), color = color.red,
20 style = label.style_label_up, textcolor = color.white
21)

Collections

Collections in Pine Script™ (arrays,matrices, andmaps) utilize reference IDs, much like other special types (e.g., labels).
The type of the ID defines the type of elements the collection will contain. In Pine, we specify array, matrix, and map
types by appending a type template to the array, matrix, or map keywords:

• array<int> defines an array containing “int” elements.
• array<label> defines an array containing “label” IDs.
• array<UDT> defines an array containing IDs referencing objects of a user-defined type (UDT).
• matrix<float> defines a matrix containing “float” elements.
• matrix<UDT> defines a matrix containing IDs referencing objects of a user-defined type (UDT).
• map<string, float> defines a map containing “string” keys and “float” values.
• map<int, UDT> defines a map containing “int” keys and IDs of user-defined type (UDT) instances as values.

For example, one can declare an “int” array with a single element value of 10 in any of the following, equivalent ways:

a1 = array.new<int>(1, 10)
array<int> a2 = array.new<int>(1, 10)
a3 = array.from(10)
array<int> a4 = array.from(10)

Note that:
• The int[] syntax can also specify an array of “int” elements, but its use is discouraged. No equivalent exists
to specify the types of matrices or maps in that way.

• Type-specific built-ins exist for arrays, such as array.new_int(), but the more generic array.new<type> form
is preferred, which would be array.new<int>() to create an array of “int” elements.

User-defined types

The type keyword allows the creation of user-defined types (UDTs) from which scripts can create objects. UDTs are
composite types; they contain an arbitrary number of fields that can be of any type, including other user-defined types.
The syntax to define a user-defined type is:

[export] type <UDT_identifier>
<field_type> <field_name> [= <value>]
...

where:
• export is the keyword that a library script uses to export the user-defined type. To learn more about exporting
UDTs, see our User Manual’s Libraries page.

62 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#type_matrix
https://www.tradingview.com/pine-script-reference/v5/#type_map
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}new_int
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#op_type
https://www.tradingview.com/pine-script-reference/v5/#fun_library

Pine Script™ v5 User Manual

• <UDT_identifier> is the name of the user-defined type.
• <field_type> is the type of the field.
• <field_name> is the name of the field.
• <value> is an optional default value for the field, which the script will assign to it when creating new objects of
that UDT. If one does not provide a value, the field’s default is na. The same rules as those governing the default
values of parameters in function signatures apply to the default values of fields. For example, a UDT’s default values
cannot use results from the history-referencing operator [] or expressions.

This example declares a pivotPoint UDT with an “int” pivotTime field and a “float” priceLevel field that will
respectively hold time and price information about a calculated pivot:

//@type A user-defined type containing pivot information.
//@field pivotTime Contains time information about the pivot.
//@field priceLevel Contains price information about the pivot.
type pivotPoint

int pivotTime
float priceLevel

User-defined types support type recursion, i.e., the fields of a UDT can reference objects of the same UDT. Here, we’ve
added a nextPivot field to our previous pivotPoint type that references another pivotPoint instance:

//@type A user-defined type containing pivot information.
//@field pivotTime Contains time information about the pivot.
//@field priceLevel Contains price information about the pivot.
//@field nextPivot A `pivotPoint` instance containing additional pivot information.
type pivotPoint

int pivotTime
float priceLevel
pivotPoint nextPivot

Scripts can use two built-in methods to create and copy UDTs: new() and copy(). See our User Manual’s page on
Objects to learn more about working with UDTs.

void

There is a “void” type in Pine Script™. Functions having only side-effects and returning no usable result return the “void”
type. An example of such a function is alert(); it does something (triggers an alert event), but it returns no usable value.
Scripts cannot use “void” results in expressions or assign them to variables. No void keyword exists in Pine Script™
since one cannot declare a variable of the “void” type.

3.9.4 `na` value

There is a special value in Pine Script™ called na, which is an acronym for not available. We use na to represent an
undefined value from a variable or expression. It is similar to null in Java and None in Python.
Scripts can automatically cast na values to almost any type. However, in some cases, the compiler cannot infer the type
associated with an na value because more than one type-casting rule may apply. For example:

// Compilation error!
myVar = na

3.9. Type system 63

https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_{[}{]}
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na

Pine Script™ v5 User Manual

The above line of code causes a compilation error because the compiler cannot determine the nature of the myVar
variable, i.e., whether the variable will reference numeric values for plotting, string values for setting text in a label, or
other values for some other purpose later in the script’s execution.
To resolve such errors, we must explicitly declare the type associated with the variable. Suppose the myVar variable will
reference “float” values in subsequent script iterations. We can resolve the error by declaring the variable with the float
keyword:

float myVar = na

or by explicitly casting the na value to the “float” type via the float() function:

myVar = float(na)

To test if the value from a variable or expression is na, we call the na() function, which returns true if the value is
undefined. For example:

//@variable Is 0 if the `myVar` is `na`, `close` otherwise.
float myClose = na(myVar) ? 0 : close

Do not use the == comparison operator to test for na values, as scripts cannot determine the equality of an undefined
value:

//@variable Returns the `close` value. The script cannot compare the equality of `na`␣
↪→values, as they're undefined.
float myClose = myVar == na ? 0 : close

Best coding practices often involve handling na values to prevent undefined values in calculations.
For example, this line of code checks if the close value on the current bar is greater than the previous bar’s value:

//@variable Is `true` when the `close` exceeds the last bar's `close`, `false`␣
↪→otherwise.
bool risingClose = close > close[1]

On the first chart bar, the value of risingClose is na since there is no past close value to reference.
We can ensure the expression also returns an actionable value on the first bar by replacing the undefined past value with
a value from the current bar. This line of code uses the nz() function to replace the past bar’s close with the current bar’s
open when the value is na:

//@variable Is `true` when the `close` exceeds the last bar's `close` (or the current␣
↪→`open` if the value is `na`).
bool risingClose = close > nz(close[1], open)

Protecting scripts against na instances helps to prevent undefined values from propagating in a calculation’s results. For
example, this script declares an allTimeHigh variable on the first bar. It then uses the math.max() between the
allTimeHigh and the bar’s high to update the allTimeHigh throughout its execution:

1 //@version=5
2 indicator("na protection demo", overlay = true)
3

4 //@variable The result of calculating the all-time high price with an initial value␣
↪→of `na`.

5 var float allTimeHigh = na
6

7 // Reassign the value of the `allTimeHigh`.
8 // Returns `na` on all bars because `math.max()` can't compare the `high` to an␣

(continues on next page)

64 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#type_float
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_float
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#fun_nz
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_math.max
https://www.tradingview.com/pine-script-reference/v5/#var_high

Pine Script™ v5 User Manual

(continued from previous page)
↪→undefined value.

9 allTimeHigh := math.max(allTimeHigh, high)
10

11 plot(allTimeHigh) // Plots `na` on all bars.

This script plots a value of na on all bars, as we have not included any na protection in the code. To fix the behavior
and plot the intended result (i.e., the all-time high of the chart’s prices), we can use nz() to replace na values in the
allTimeHigh series:

1 //@version=5
2 indicator("na protection demo", overlay = true)
3

4 //@variable The result of calculating the all-time high price with an initial value␣
↪→of `na`.

5 var float allTimeHigh = na
6

7 // Reassign the value of the `allTimeHigh`.
8 // We've used `nz()` to prevent the initial `na` value from persisting throughout the␣

↪→calculation.
9 allTimeHigh := math.max(nz(allTimeHigh), high)
10

11 plot(allTimeHigh)

3.9.5 Type templates

Type templates specify the data types that collections (arrays, matrices, and maps) can contain.
Templates for arrays andmatrices consist of a single type identifier surrounded by angle brackets, e.g., <int>, <label>,
and <PivotPoint> (where PivotPoint is a user-defined type (UDT)).
Templates for maps consist of two type identifiers enclosed in angle brackets, where the first specifies the type of keys in
each key-value pair, and the second specifies the value type. For example, <string, float> is a type template for
a map that holds string keys and float values.
Users can construct type templates from:

• Fundamental types: int, float, bool, color, and string

• The following special types: line, linefill, box, polyline, label, table, and chart.point

• User-defined types (UDTs)

Note that:
• Maps can use any of these types as values, but they can only accept fundamental types as keys.

Scripts use type templates to declare variables that point to collections, and when creating new collection instances. For
example:

1 //@version=5
2 indicator("Type templates demo")
3

4 //@variable A variable initially assigned to `na` that accepts arrays of "int" values.
5 array<int> intArray = na
6 //@variable An empty matrix that holds "float" values.
7 floatMatrix = matrix.new<float>()
8 //@variable An empty map that holds "string" keys and "color" values.
9 stringColorMap = map.new<string, color>()

3.9. Type system 65

https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_nz
https://www.tradingview.com/pine-script-reference/v5/#var_na

Pine Script™ v5 User Manual

3.9.6 Type casting

Pine Script™ includes an automatic type-casting mechanism that casts (converts) “int” values to “float”when necessary.
Variables or expressions requiring “float” values can also use “int” values because any integer can be represented as a
floating point number with its fractional part equal to 0.
For the sake of backward compatibility, Pine Script™ also automatically casts “int” and “float” values to “bool” when
necessary. When passing numeric values to the parameters of functions and operations that expect “bool” types, Pine
auto-casts them to “bool”. However, we do not recommend relying on this behavior. Most scripts that automatically cast
numeric values to the “bool” type will produce a compiler warning. One can avoid the compiler warning and promote
code readability by using the bool() function, which explicitly casts a numeric value to the “bool” type.
When casting an “int” or “float” to “bool”, a value of 0 converts to false and any other numeric value always converts
to true.
This code below demonstrates deprecated auto-casting behavior in Pine. It creates a randomValue variable with a
“series float” value on every bar, which it passes to the condition parameter in an if structure and the series
parameter in a plotchar() function call. Since both parameters accept “bool” values, the script automatically casts the
randomValue to “bool” when evaluating them:

1 //@version=5
2 indicator("Auto-casting demo", overlay = true)
3

4 //@variable A random rounded value between -1 and 1.
5 float randomValue = math.round(math.random(-1, 1))
6 //@variable The color of the chart background.
7 color bgColor = na
8

9 // This raises a compiler warning since `randomValue` is a "float", but `if` expects␣
↪→a "bool".

10 if randomValue
11 bgColor := color.new(color.blue, 60)
12 // This does not raise a warning, as the `bool()` function explicitly casts the␣

↪→`randomValue` to "bool".
13 if bool(randomValue)
14 bgColor := color.new(color.blue, 60)
15

16 // Display unicode characters on the chart based on the `randomValue`.
17 // Whenever `math.random()` returns 0, no character will appear on the chart because␣

↪→0 converts to `false`.
18 plotchar(randomValue)
19 // We recommend explicitly casting the number with the `bool()` function to make the␣

↪→type transformation more obvious.
20 plotchar(bool(randomValue))
21

22 // Highlight the background with the `bgColor`.
23 bgcolor(bgColor)

It’s sometimes necessary to cast one type to another when auto-casting rules do not suffice. For such cases, the following
type-casting functions are available: int(), float(), bool(), color(), string(), line(), linefill(), label(), box(), and table().
The example below shows a code that tries to use a “const float” value as the length argument in the ta.sma() function
call. The script will fail to compile, as it cannot automatically convert the “float” value to the required “int” type:

1 //@version=5
2 indicator("Explicit casting demo", overlay = true)
3

4 //@variable The length of the SMA calculation. Qualified as "const float".

(continues on next page)

66 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_bool
https://www.tradingview.com/pine-script-reference/v5/#kw_if
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_int
https://www.tradingview.com/pine-script-reference/v5/#fun_float
https://www.tradingview.com/pine-script-reference/v5/#fun_bool
https://www.tradingview.com/pine-script-reference/v5/#fun_color
https://www.tradingview.com/pine-script-reference/v5/#fun_string
https://www.tradingview.com/pine-script-reference/v5/#fun_line
https://www.tradingview.com/pine-script-reference/v5/#fun_linefill
https://www.tradingview.com/pine-script-reference/v5/#fun_label
https://www.tradingview.com/pine-script-reference/v5/#fun_box
https://www.tradingview.com/pine-script-reference/v5/#fun_table
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.sma

Pine Script™ v5 User Manual

(continued from previous page)
5 float LENGTH = 10.0
6

7 float sma = ta.sma(close, LENGTH) // Compilation error. The `length` parameter␣
↪→requires an "int" value.

8

9 plot(sma)

The code raises the following error: “Cannot call ‘ta.sma’ with argument ‘length’=’LENGTH’. An argument of ‘const float’
type was used but a ‘series int’ is expected.”

The compiler is telling us that the code is using a “float” value where an “int” is required. There is no auto-casting rule
to cast a “float” to an “int”, so we must do the job ourselves. In this version of the code, we’ve used the int() function to
explicitly convert our “float” LENGTH value to the “int” type within the ta.sma() call:

1 //@version=5
2 indicator("explicit casting demo")
3

4 //@variable The length of the SMA calculation. Qualified as "const float".
5 float LENGTH = 10.0
6

7 float sma = ta.sma(close, int(LENGTH)) // Compiles successfully since we've converted␣
↪→the `LENGTH` to "int".

8

9 plot(sma)

Explicit type casting is also handy when declaring variables assigned to na, as explained in the previous section.
For example, once could explicitly declare a variable with a value of na as a “label” type in either of the following,
equivalent ways:

// Explicitly specify that the variable references "label" objects:
label myLabel = na

// Explicitly cast the `na` value to the "label" type:
myLabel = label(na)

3.9.7 Tuples

A tuple is a comma-separated set of expressions enclosed in brackets. When a function, method, or other local block
returns more than one value, scripts return those values in the form of a tuple.
For example, the following user-defined function returns the sum and product of two “float” values:

//@function Calculates the sum and product of two values.
calcSumAndProduct(float a, float b) =>

//@variable The sum of `a` and `b`.
float sum = a + b
//@variable The product of `a` and `b`.
float product = a * b
// Return a tuple containing the `sum` and `product`.
[sum, product]

When we call this function later in the script, we use a tuple declaration to declare multiple variables corresponding to the
values returned by the function call:

3.9. Type system 67

https://www.tradingview.com/pine-script-reference/v5/#fun_int
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.sma
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na

Pine Script™ v5 User Manual

// Declare a tuple containing the sum and product of the `high` and `low`,␣
↪→respectively.
[hlSum, hlProduct] = calcSumAndProduct(high, low)

Keep in mind that unlike declaring single variables, we cannot explicitly define the types the tuple’s variables (hlSum
and hlProduct in this case), will contain. The compiler automatically infers the types associated with the variables in
a tuple.
In the above example, the resulting tuple contains values of the same type (“float”). However, it’s important to note that
tuples can contain values of multiple types. For example, the chartInfo() function below returns a tuple containing
“int”, “float”, “bool”, “color”, and “string” values:

//@function Returns information about the current chart.
chartInfo() =>

//@variable The first visible bar's UNIX time value.
int firstVisibleTime = chart.left_visible_bar_time
//@variable The `close` value at the `firstVisibleTime`.
float firstVisibleClose = ta.valuewhen(ta.cross(time, firstVisibleTime), close, 0)
//@variable Is `true` when using a standard chart type, `false` otherwise.
bool isStandard = chart.is_standard
//@variable The foreground color of the chart.
color fgColor = chart.fg_color
//@variable The ticker ID of the current chart.
string symbol = syminfo.tickerid
// Return a tuple containing the values.
[firstVisibleTime, firstVisibleClose, isStandard, fgColor, symbol]

Tuples are especially handy for requesting multiple values in one request.security() call.
For instance, this roundedOHLC() function returns a tuple containing OHLC values rounded to the nearest prices
that are divisible by the symbol’s minimum tick value. We call this function as the expression argument in re-
quest.security() to request a tuple containing daily OHLC values:

//@function Returns a tuple of OHLC values, rounded to the nearest tick.
roundedOHLC() =>

[math.round_to_mintick(open), math.round_to_mintick(high), math.round_to_
↪→mintick(low), math.round_to_mintick(close)]

[op, hi, lo, cl] = request.security(syminfo.tickerid, "D", roundedOHLC())

We can also achieve the same result by directly passing a tuple of rounded values as the expression in the re-
quest.security() call:

[op, hi, lo, cl] = request.security(
syminfo.tickerid, "D",
[math.round_to_mintick(open), math.round_to_mintick(high), math.round_to_

↪→mintick(low), math.round_to_mintick(close)]
)

Local blocks of conditional structures, including if and switch statements, can return tuples. For example:

[v1, v2] = if close > open
[high, close]

else
[close, low]

and:

68 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo.mintick
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#kw_if
https://www.tradingview.com/pine-script-reference/v5/#kw_switch

Pine Script™ v5 User Manual

[v1, v2] = switch
close > open => [high, close]
=> [close, low]

However, ternaries cannot contain tuples, as the return values in a ternary statement are not considered local blocks:

// Not allowed.
[v1, v2] = close > open ? [high, close] : [close, low]

Note that all items within a tuple returned from a function are qualified as “simple” or “series”, depending on its contents.
If a tuple contains a “series” value, all other elements within the tuple will also adopt the “series” qualifier. For example:

1 //@version=5
2 indicator("Qualified types in tuples demo")
3

4 makeTicker(simple string prefix, simple string ticker) =>
5 tId = prefix + ":" + ticker // simple string
6 source = close // series float
7 [tId, source]
8

9 // Both variables are series now.
10 [tId, source] = makeTicker("BATS", "AAPL")
11

12 // Error cannot call 'request.security' with 'series string' tId.
13 r = request.security(tId, "", source)
14

15 plot(r)

3.10 Built-ins

• Introduction

• Built-in variables

• Built-in functions

3.10. Built-ins 69

https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

3.10.1 Introduction

Pine Script™ has hundreds of built-in variables and functions. They provide your scripts with valuable information and
make calculations for you, dispensing you from coding them. The better you know the built-ins, the more you will be able
to do with your Pine scripts.
In this page we present an overview of some of Pine Script™’s built-in variables and functions. They will be covered in
more detail in the pages of this manual covering specific themes.
All built-in variables and functions are defined in the Pine Script™v5ReferenceManual. It is called a “ReferenceManual”
because it is the definitive reference on the Pine Script™ language. It is an essential tool that will accompany you anytime
you code in Pine, whether you are a beginner or an expert. If you are learning your first programming language, make
the Reference Manual your friend. Ignoring it will make your programming experience with Pine Script™ difficult and
frustrating — as it would with any other programming language.
Variables and functions in the same family share the same namespace, which is a prefix to the function’s name. The
ta.sma() function, for example, is in the ta namespace, which stands for “technical analysis”. A namespace can contain
both variables and functions.
Some variables have function versions as well, e.g.:

• The ta.tr variable returns the “True Range” of the current bar. The ta.tr(true) function call also returns the “True
Range”, but when the previous close value which is normally needed to calculate it is na, it calculates using high
- low instead.

• The time variable gives the time at the open of the current bar. The time(timeframe) function returns the time of the
bar’s open from the timeframe specified, even if the chart’s timeframe is different. The time(timeframe, session)
function returns the time of the bar’s open from the timeframe specified, but only if it is within the session
time. The time(timeframe, session, timezone) function returns the time of the bar’s open from the timeframe
specified, but only if it is within the session time in the specified timezone.

3.10.2 Built-in variables

Built-in variables exist for different purposes. These are a few examples:
• Price- and volume-related variables: open, high, low, close, hl2, hlc3, ohlc4, and volume.
• Symbol-related information in the syminfo namespace: syminfo.basecurrency, syminfo.currency,
syminfo.description, syminfo.mintick, syminfo.pointvalue, syminfo.prefix, syminfo.root, syminfo.session,
syminfo.ticker, syminfo.tickerid, syminfo.timezone, and syminfo.type.

• Timeframe (a.k.a. “interval” or “resolution”, e.g., 15sec, 30min, 60min, 1D, 3M) variables in the time-
frame namespace: timeframe.isseconds, timeframe.isminutes, timeframe.isintraday, timeframe.isdaily, time-
frame.isweekly, timeframe.ismonthly, timeframe.isdwm, timeframe.multiplier, and timeframe.period.

• Bar states in the barstate namespace (see the Bar states page): barstate.isconfirmed, barstate.isfirst,
barstate.ishistory, barstate.islast, barstate.islastconfirmedhistory, barstate.isnew, and barstate.isrealtime.

• Strategy-related information in the strategy namespace: strategy.equity, strategy.initial_capital, strat-
egy.grossloss, strategy.grossprofit, strategy.wintrades, strategy.losstrades, strategy.position_size, strat-
egy.position_avg_price, strategy.wintrades, etc.

70 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/
https://www.tradingview.com/pine-script-reference/v5/
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}sma
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}tr
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}tr
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_hl2
https://www.tradingview.com/pine-script-reference/v5/#var_hlc3
https://www.tradingview.com/pine-script-reference/v5/#var_ohlc4
https://www.tradingview.com/pine-script-reference/v5/#var_volume
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}basecurrency
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}currency
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}description
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}mintick
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}pointvalue
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}prefix
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}root
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}session
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}ticker
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}tickerid
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}timezone
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}type
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}isseconds
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}isminutes
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}isintraday
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}isdaily
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}isweekly
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}isweekly
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}ismonthly
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}isdwm
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}multiplier
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}period
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}isconfirmed
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}isfirst
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}ishistory
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}islast
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}islastconfirmedhistory
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}isnew
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}isrealtime
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}equity
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}initial_capital
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}grossloss
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}grossloss
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}grossprofit
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}wintrades
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}losstrades
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}position_size
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}position_avg_price
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}position_avg_price
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}wintrades

Pine Script™ v5 User Manual

3.10.3 Built-in functions

Many functions are used for the result(s) they return. These are a few examples:
• Math-related functions in the math namespace: math.abs(), math.log(), math.max(), math.random(),
math.round_to_mintick(), etc.

• Technical indicators in the ta namespace: ta.sma(), ta.ema(), ta.macd(), ta.rsi(), ta.supertrend(), etc.
• Support functions often used to calculate technical indicators in the ta namespace: ta.barssince(), ta.crossover(),
ta.highest(), etc.

• Functions to request data from other symbols or timeframes in the request namespace: request.dividends(),
request.earnings(), request.financial(), request.quandl(), request.security(), request.splits().

• Functions to manipulate strings in the str namespace: str.format(), str.length(), str.tonumber(), str.tostring(), etc.
• Functions used to define the input values that script users can modify in the script’s “Settings/Inputs” tab, in the
input namespace: input(), input.color(), input.int(), input.session(), input.symbol(), etc.

• Functions used to manipulate colors in the color namespace: color.from_gradient(), color.new(), color.rgb(), etc.
Some functions do not return a result but are used for their side effects, which means they do something, even if they don’t
return a result:

• Functions used as a declaration statement defining one of three types of Pine scripts, and its properties. Each script
must begin with a call to one of these functions: indicator(), strategy() or library().

• Plotting or coloring functions: bgcolor(), plotbar(), plotcandle(), plotchar(), plotshape(), fill().
• Strategy functions placing orders, in the strategy namespace: strategy.cancel(), strategy.close(), strat-
egy.entry(), strategy.exit(), strategy.order(), etc.

• Strategy functions returning information on indivdual past trades, in the strategy namespace: strat-
egy.closedtrades.entry_bar_index(), strategy.closedtrades.entry_price(), strategy.closedtrades.entry_time(), strat-
egy.closedtrades.exit_bar_index(), strategy.closedtrades.max_drawdown(), strategy.closedtrades.max_runup(),
strategy.closedtrades.profit(), etc.

• Functions to generate alert events: alert() and alertcondition().
Other functions return a result, but we don’t always use it, e.g.: hline(), plot(), array.pop(), label.new(), etc.
All built-in functions are defined in the Pine Script™ v5 Reference Manual. You can click on any of the function names
listed here to go to its entry in the Reference Manual, which documents the function’s signature, i.e., the list of parameters
it accepts and the qualified type of the value(s) it returns (a function can return more than one result). The Reference
Manual entry will also list, for each parameter:

• Its name.
• The qualified type of the value it requires (we use argument to name the values passed to a function when calling
it).

• If the parameter is required or not.
All built-in functions have one or more parameters defined in their signature. Not all parameters are required for every
function.
Let’s look at the ta.vwma() function, which returns the volume-weighted moving average of a source value. This is its
entry in the Reference Manual:

3.10. Built-ins 71

https://www.tradingview.com/pine-script-reference/v5/#fun_math\{dot\}abs
https://www.tradingview.com/pine-script-reference/v5/#fun_math\{dot\}log
https://www.tradingview.com/pine-script-reference/v5/#fun_math\{dot\}max
https://www.tradingview.com/pine-script-reference/v5/#fun_math\{dot\}random
https://www.tradingview.com/pine-script-reference/v5/#fun_math\{dot\}round_to_mintick
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}sma
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}ema
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}macd
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}rsi
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}supertrend
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}barssince
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}crossover
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}highest
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}dividends
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}earnings
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}financial
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}quandl
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}splits
https://www.tradingview.com/pine-script-reference/v5/#fun_str\{dot\}format
https://www.tradingview.com/pine-script-reference/v5/#fun_str\{dot\}length
https://www.tradingview.com/pine-script-reference/v5/#fun_str\{dot\}tonumber
https://www.tradingview.com/pine-script-reference/v5/#fun_str\{dot\}tostring
https://www.tradingview.com/pine-script-reference/v5/#fun_input
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}color
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}int
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}session
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}symbol
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}from_gradient
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}rgb
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_library
https://www.tradingview.com/pine-script-reference/v5/#fun_bgcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_plotbar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotcandle
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}cancel
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}close
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}order
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}closedtrades\{dot\}entry_bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}closedtrades\{dot\}entry_bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}closedtrades\{dot\}entry_price
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}closedtrades\{dot\}entry_time
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}closedtrades\{dot\}exit_bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}closedtrades\{dot\}exit_bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}closedtrades\{dot\}max_drawdown
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}closedtrades\{dot\}max_runup
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}closedtrades\{dot\}profit
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}pop
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}vwma

Pine Script™ v5 User Manual

The entry gives us the information we need to use it:
• What the function does.
• Its signature (or definition):

ta.vwma(source, length) → series float

• The parameters it includes: source and length
• The qualified type of the result it returns: “series float”.
• An example showing it in use: plot(ta.vwma(close, 15)).
• An example showing what it does, but in long form, so you can better understand its calculations. Note that this is
meant to explain — not as usable code, because it is more complicated and takes longer to execute. There are only
disadvantages to using the long form.

• The “RETURNS” section explains exacty what value the function returns.
• The “ARGUMENTS” section lists each parameter and gives the critical information concerning what qualified type
is required for arguments used when calling the function.

• The “SEE ALSO” section refers you to related Reference Manual entries.
This is a call to the function in a line of code that declares amyVwma variable and assigns the result ofta.vwma(close,
20) to it:

myVwma = ta.vwma(close, 20)

Note that:
• We use the built-in variable close as the argument for the source parameter.
• We use 20 as the argument for the length parameter.

72 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#var_close

Pine Script™ v5 User Manual

• If placed in the global scope (i.e., starting in a line’s first position), it will be executed by the Pine Script™ runtime
on each bar of the chart.

We can also use the parameter names when calling the function. Parameter names are called keyword arguments when
used in a function call:

myVwma = ta.vwma(source = close, length = 20)

You can change the position of arguments when using keyword arguments, but only if you use them for all your arguments.
When calling functions with many parameters such as indicator(), you can also forego keyword arguments for the first
arguments, as long as you don’t skip any. If you skip some, you must then use keyword arguments so the Pine Script™
compiler can figure out which parameter they correspond to, e.g.:

indicator("Example", "Ex", true, max_bars_back = 100)

Mixing things up this way is not allowed:

indicator(precision = 3, "Example") // Compilation error!

When calling built-ins, it is critical to ensure that the arguments you use are of the required qualified type, which
will vary for each parameter.
To learn how to do this, one needs to understand Pine Script™’s type system. The Reference Manual entry for each
built-in function includes an “ARGUMENTS” section which lists the qualified type required for the argument supplied
to each of the function’s parameters.

3.11 User-defined functions

• Introduction

• Single-line functions

• Multi-line functions

• Scopes in the script

• Functions that return multiple results

• Limitations

3.11. User-defined functions 73

https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

3.11.1 Introduction

User-defined functions are functions that you write, as opposed to the built-in functions in Pine Script™. They are
useful to define calculations that you must do repetitevely, or that you want to isolate from your script’s main section
of calculations. Think of user-defined functions as a way to extend the capabilities of Pine Script™, when no built-in
function will do what you need.
You can write your functions in two ways:

• In a single line, when they are simple, or
• On multiple lines

Functions can be located in two places:
• If a function is only used in one script, you can include it in the script where it is used. See our Style guide for
recommendations on where to place functions in your script.

• You can create a Pine Script™ library to include your functions, which makes them reusable in other scripts
without having to copy their code. Distinct requirements exist for library functions. They are explained in the page
on libraries.

Whether they use one line or multiple lines, user-defined functions have the following characteristics:
• They cannot be embedded. All functions are defined in the script’s global scope.
• They do not support recursion. It is not allowed for a function to call itself from within its own code.
• The type of the value returned by a function is determined automatically and depends on the type of arguments
used in each particular function call.

• A function’s returned value is that of the last value in the function’s body.
• Each instance of a function call in a script maintains its own, independent history.

3.11.2 Single-line functions

Simple functions can often be written in one line. This is the formal definition of single-line functions:

<function_declaration>
<identifier>(<parameter_list>) => <return_value>

<parameter_list>
{<parameter_definition>{, <parameter_definition>}}

<parameter_definition>
[<identifier> = <default_value>]

<return_value>
<statement> | <expression> | <tuple>

Here is an example:

f(x, y) => x + y

After the function f() has been declared, it’s possible to call it using different types of arguments:

a = f(open, close)
b = f(2, 2)
c = f(open, 2)

74 Chapter 3. Language

Pine Script™ v5 User Manual

In the example above, the type of variable a is series because the arguments are both series. The type of variable b is
integer because arguments are both literal integers. The type of variable c is series because the addition of a series and
literal integer produces a series result.

3.11.3 Multi-line functions

Pine Script™ also supports multi-line functions with the following syntax:

<identifier>(<parameter_list>) =>
<local_block>

<identifier>(<list of parameters>) =>
<variable declaration>
...
<variable declaration or expression>

where:

<parameter_list>
{<parameter_definition>{, <parameter_definition>}}

<parameter_definition>
[<identifier> = <default_value>]

The body of a multi-line function consists of several statements. Each statement is placed on a separate line and must be
preceded by 1 indentation (4 spaces or 1 tab). The indentation before the statement indicates that it is a part of the body
of the function and not part of the script’s global scope. After the function’s code, the first statement without an indent
indicates the body of the function has ended.
Either an expression or a declared variable should be the last statement of the function’s body. The result of this expression
(or variable) will be the result of the function’s call. For example:

geom_average(x, y) =>
a = x*x
b = y*y
math.sqrt(a + b)

The function geom_average has two arguments and creates two variables in the body: a and b. The last statement
calls the function math.sqrt (an extraction of the square root). The geom_average call will return the value of the
last expression: (math.sqrt(a + b)).

3.11.4 Scopes in the script

Variables declared outside the body of a function or of other local blocks belong to the global scope. User-declared and
built-in functions, as well as built-in variables also belong to the global scope.
Each function has its own local scope. All the variables declared within the function, as well as the function’s arguments,
belong to the scope of that function, meaning that it is impossible to reference them from outside — e.g., from the global
scope or the local scope of another function.
On the other hand, since it is possible to refer to any variable or function declared in the global scope from the scope of a
function (except for self-referencing recursive calls), one can say that the local scope is embedded into the global scope.
In Pine Script™, nested functions are not allowed, i.e., one cannot declare a function inside another one. All user functions
are declared in the global scope. Local scopes cannot intersect with each other.

3.11. User-defined functions 75

Pine Script™ v5 User Manual

3.11.5 Functions that return multiple results

In most cases a function returns only one result, but it is possible to return a list of results (a tuple-like result):

fun(x, y) =>
a = x+y
b = x-y
[a, b]

Special syntax is required for calling such functions:

[res0, res1] = fun(open, close)
plot(res0)
plot(res1)

3.11.6 Limitations

User-defined functions can use any of the Pine Script™ built-ins, except: barcolor(), fill(), hline(), indicator(), library(),
plot(), plotbar(), plotcandle(), plotchar(), plotshape() and strategy().

3.12 Objects

• Introduction

• Creating objects

• Changing field values

• Collecting objects

• Copying objects

• Shadowing

Note: This page contains advanced material. If you are a beginning Pine Script™ programmer, we recommend you
become familiar with other, more accessible Pine Script™ features before you venture here.

76 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_barcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_library
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_plotbar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotcandle
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

3.12.1 Introduction

Pine Script™ objects are instances of user-defined types (UDTs). They are the equivalent of variables containing parts
called fields, each able to hold independent values that can be of various types.
Experienced programmers can think of UDTs as methodless classes. They allow users to create custom types that organize
different values under one logical entity.

3.12.2 Creating objects

Before an object can be created, its type must be defined. The User-defined types section of the Type system page explains
how to do so.
Let’s define a pivotPoint type to hold pivot information:

type pivotPoint
int x
float y
string xloc = xloc.bar_time

Note that:
• We use the type keyword to declare the creation of a UDT.
• We name our new UDT pivotPoint.
• After the first line, we create a local block containing the type and name of each field.
• The x field will hold the x-coordinate of the pivot. It is declared as an “int” because it will hold either a timestamp
or a bar index of “int” type.

• y is a “float” because it will hold the pivot’s price.
• xloc is a field that will specify the units of x: xloc.bar_index or xloc.bar_time. We set its default value to
xloc.bar_time by using the = operator. When an object is created from that UDT, its xloc field will thus be set to
that value.

Now that our pivotPointUDT is defined, we can proceed to create objects from it. We create objects using the UDT’s
new() built-in method. To create a new foundPoint object from our pivotPoint UDT, we use:

foundPoint = pivotPoint.new()

We can also specify field values for the created object using the following:

foundPoint = pivotPoint.new(time, high)

Or the equivalent:

foundPoint = pivotPoint.new(x = time, y = high)

At this point, the foundPoint object’s x field will contain the value of the time built-in when it is created, ywill contain
the value of high and the xloc field will contain its default value of xloc.bar_time because no value was defined for it
when creating the object.
Object placeholders can also be created by declaring na object names using the following:

pivotPoint foundPoint = na

This example displays a label where high pivots are detected. The pivots are detected legsInput bars after they occur,
so we must plot the label in the past for it to appear on the pivot:

3.12. Objects 77

https://www.tradingview.com/pine-script-reference/v5/#op_type
https://www.tradingview.com/pine-script-reference/v5/#var_xloc\{dot\}bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_xloc\{dot\}bar_time
https://www.tradingview.com/pine-script-reference/v5/#var_xloc\{dot\}bar_time
https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_xloc\{dot\}bar_time
https://www.tradingview.com/pine-script-reference/v5/#var_na

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Pivot labels", overlay = true)
3 int legsInput = input(10)
4

5 // Define the `pivotPoint` UDT.
6 type pivotPoint
7 int x
8 float y
9 string xloc = xloc.bar_time
10

11 // Detect high pivots.
12 pivotHighPrice = ta.pivothigh(legsInput, legsInput)
13 if not na(pivotHighPrice)
14 // A new high pivot was found; display a label where it occurred `legsInput` bars␣

↪→back.
15 foundPoint = pivotPoint.new(time[legsInput], pivotHighPrice)
16 label.new(
17 foundPoint.x,
18 foundPoint.y,
19 str.tostring(foundPoint.y, format.mintick),
20 foundPoint.xloc,
21 textcolor = color.white)

Take note of this line from the above example:

foundPoint = pivotPoint.new(time[legsInput], pivotHighPrice)

This could also be written using the following:

pivotPoint foundPoint = na
foundPoint := pivotPoint.new(time[legsInput], pivotHighPrice)

When an object is created using var or varip, those keywords apply to all of the object’s fields:

1 //@version=5
2 indicator("")
3 type barInfo
4 int i = bar_index
5 int t = time
6 float c = close
7

8 // Created on bar zero.
9 var firstBar = barInfo.new()
10 // Created on every bar.
11 currentBar = barInfo.new()
12

13 plot(firstBar.i)
14 plot(currentBar.i)

78 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#op_varip

Pine Script™ v5 User Manual

3.12.3 Changing field values

The value of an object’s fields can be changed using the := reassignment operator.
This line of our previous example:

foundPoint = pivotPoint.new(time[legsInput], pivotHighPrice)

Could be written using the following:

foundPoint = pivotPoint.new()
foundPoint.x := time[legsInput]
foundPoint.y := pivotHighPrice

3.12.4 Collecting objects

Pine Script™ collections (arrays, matrices, and maps) can contain objects, allowing users to add virtual dimensions to
their data structures. To declare a collection of objects, pass a UDT name into its type template.
This example declares an empty array that will hold objects of a pivotPoint user-defined type:

pivotHighArray = array.new<pivotPoint>()

To explicitly declare the type of a variable as an array, matrix, or map of a user-defined type, use the collection’s type
keyword followed by its type template. For example:

var array<pivotPoint> pivotHighArray = na
pivotHighArray := array.new<pivotPoint>()

Let’s use what we have learned to create a script that detects high pivot points. The script first collects historical pivot
information in an array. It then loops through the array on the last historical bar, creating a label for each pivot and
connecting the pivots with lines:

1 //@version=5
2 indicator("Pivot Points High", overlay = true)

(continues on next page)

3.12. Objects 79

https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#type_matrix
https://www.tradingview.com/pine-script-reference/v5/#type_map
https://www.tradingview.com/pine-script-reference/v5/#type_array

Pine Script™ v5 User Manual

(continued from previous page)
3

4 int legsInput = input(10)
5

6 // Define the `pivotPoint` UDT containing the time and price of pivots.
7 type pivotPoint
8 int openTime
9 float level
10

11 // Create an empty `pivotPoint` array.
12 var pivotHighArray = array.new<pivotPoint>()
13

14 // Detect new pivots (`na` is returned when no pivot is found).
15 pivotHighPrice = ta.pivothigh(legsInput, legsInput)
16

17 // Add a new `pivotPoint` object to the end of the array for each detected pivot.
18 if not na(pivotHighPrice)
19 // A new pivot is found; create a new object of `pivotPoint` type, setting its␣

↪→`openTime` and `level` fields.
20 newPivot = pivotPoint.new(time[legsInput], pivotHighPrice)
21 // Add the new pivot object to the array.
22 array.push(pivotHighArray, newPivot)
23

24 // On the last historical bar, draw pivot labels and connecting lines.
25 if barstate.islastconfirmedhistory
26 var pivotPoint previousPoint = na
27 for eachPivot in pivotHighArray
28 // Display a label at the pivot point.
29 label.new(eachPivot.openTime, eachPivot.level, str.tostring(eachPivot.level,␣

↪→format.mintick), xloc.bar_time, textcolor = color.white)
30 // Create a line between pivots.
31 if not na(previousPoint)
32 // Only create a line starting at the loop's second iteration because␣

↪→lines connect two pivots.
33 line.new(previousPoint.openTime, previousPoint.level, eachPivot.openTime,␣

↪→eachPivot.level, xloc = xloc.bar_time)
34 // Save the pivot for use in the next iteration.
35 previousPoint := eachPivot

3.12.5 Copying objects

In Pine, objects are assigned by reference. When an existing object is assigned to a new variable, both point to the same
object.
In the example below, we create a pivot1 object and set its x field to 1000. Then, we declare a pivot2 variable
containing the reference to the pivot1 object, so both point to the same instance. Changing pivot2.x will thus also
change pivot1.x, as both refer to the x field of the same object:

1 //@version=5
2 indicator("")
3 type pivotPoint
4 int x
5 float y
6 pivot1 = pivotPoint.new()
7 pivot1.x := 1000
8 pivot2 = pivot1

(continues on next page)

80 Chapter 3. Language

Pine Script™ v5 User Manual

(continued from previous page)
9 pivot2.x := 2000
10 // Both plot the value 2000.
11 plot(pivot1.x)
12 plot(pivot2.x)

To create a copy of an object that is independent of the original, we can use the built-in copy() method in this case.
In this example, we declare the pivot2 variable referring to a copied instance of the pivot1 object. Now, changing
pivot2.x will not change pivot1.x, as it refers to the x field of a separate object:

1 //@version=5
2 indicator("")
3 type pivotPoint
4 int x
5 float y
6 pivot1 = pivotPoint.new()
7 pivot1.x := 1000
8 pivot2 = pivotPoint.copy(pivot1)
9 pivot2.x := 2000
10 // Plots 1000 and 2000.
11 plot(pivot1.x)
12 plot(pivot2.x)

It’s important to note that the built-in copy() method produces a shallow copy of an object. If an object has fields with
special types (array, matrix, map, line, linefill, box, polyline, label, table, or chart.point), those fields in a shallow copy of
the object will point to the same instances as the original.
In the following example, we have defined an InfoLabel type with a label as one of its fields. The script instantiates
a shallow copy of the parent object, then calls a user-defined set() method to update the info and lbl fields
of each object. Since the lbl field of both objects points to the same label instance, changes to this field in either object
affect the other:

1 //@version=5
2 indicator("Shallow Copy")
3

4 type InfoLabel
5 string info
6 label lbl
7

8 method set(InfoLabel this, int x = na, int y = na, string info = na) =>
9 if not na(x)
10 this.lbl.set_x(x)
11 if not na(y)
12 this.lbl.set_y(y)
13 if not na(info)
14 this.info := info
15 this.lbl.set_text(this.info)
16

17 var parent = InfoLabel.new("", label.new(0, 0))
18 var shallow = parent.copy()
19

20 parent.set(bar_index, 0, "Parent")
21 shallow.set(bar_index, 1, "Shallow Copy")

To produce a deep copy of an object with all of its special type fields pointing to independent instances, we must explicitly
copy those fields as well.
In this example, we have defined a deepCopy() method that instantiates a new InfoLabel object with its lbl field

3.12. Objects 81

https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#type_matrix
https://www.tradingview.com/pine-script-reference/v5/#type_map
https://www.tradingview.com/pine-script-reference/v5/#type_line
https://www.tradingview.com/pine-script-reference/v5/#type_linefill
https://www.tradingview.com/pine-script-reference/v5/#type_box
https://www.tradingview.com/pine-script-reference/v5/#type_polyline
https://www.tradingview.com/pine-script-reference/v5/#type_label
https://www.tradingview.com/pine-script-reference/v5/#type_table
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point

Pine Script™ v5 User Manual

pointing to a copy of the original’s field. Changes to the deep copy’s lbl field will not affect the parent object, as it
points to a separate instance:

1 //@version=5
2 indicator("Deep Copy")
3

4 type InfoLabel
5 string info
6 label lbl
7

8 method set(InfoLabel this, int x = na, int y = na, string info = na) =>
9 if not na(x)
10 this.lbl.set_x(x)
11 if not na(y)
12 this.lbl.set_y(y)
13 if not na(info)
14 this.info := info
15 this.lbl.set_text(this.info)
16

17 method deepCopy(InfoLabel this) =>
18 InfoLabel.new(this.info, this.lbl.copy())
19

20 var parent = InfoLabel.new("", label.new(0, 0))
21 var deep = parent.deepCopy()
22

23 parent.set(bar_index, 0, "Parent")
24 deep.set(bar_index, 1, "Deep Copy")

3.12.6 Shadowing

To avoid potential conflicts in the eventuality where namespaces added to Pine Script™ in the future would collide with
UDTs or object names in existing scripts; as a rule, UDTs and object names shadow the language’s namespaces. For
example, a UDT or object can use the name of built-in types, such as line or table.
Only the language’s five primitive types cannot be used to name UDTs or objects: int, float, string, bool, and color.

82 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#op_line
https://www.tradingview.com/pine-script-reference/v5/#op_table
https://www.tradingview.com/pine-script-reference/v5/#op_int
https://www.tradingview.com/pine-script-reference/v5/#op_float
https://www.tradingview.com/pine-script-reference/v5/#op_string
https://www.tradingview.com/pine-script-reference/v5/#op_bool
https://www.tradingview.com/pine-script-reference/v5/#op_color
https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

3.13 Methods

• Introduction

• Built-in methods

• User-defined methods

• Method overloading

• Advanced example

Note: This page contains advanced material. If you are a beginning Pine Script™ programmer, we recommend you
become familiar with other, more accessible Pine Script™ features before you venture here.

3.13.1 Introduction

Pine Script™ methods are specialized functions associated with specific instances of built-in or user-defined types. They
are essentially the same as regular functions in most regards but offer a shorter, more convenient syntax. Users can access
methods using dot notation on variables directly, just like accessing the fields of a Pine Script™ object.

3.13.2 Built-in methods

Pine Script™ includes built-in methods for all special types, including array, matrix, map, line, linefill, box, polyline,
label, and table. These methods provide users with a more concise way to call specialized routines for these types within
their scripts.
When using these special types, the expressions:

<namespace>.<functionName>([paramName =] <objectName>, …)

and:

<objectName>.<functionName>(…)

are equivalent. For example, rather than using:

array.get(id, index)

to get the value from an array id at the specified index, we can simply use:

id.get(index)

to achieve the same effect. This notation eliminates the need for users to reference the function’s namespace, as get() is a
method of id in this context.
Written below is a practical example to demonstrate the usage of built-in methods in place of functions.
The following script computes Bollinger Bands over a specified number of prices sampled once every n bars. It calls
array.push() and array.shift() to queue sourceInput values through the sourceArray, then array.avg() and ar-
ray.stdev() to compute the sampleMean and sampleDev. The script then uses these values to calculate the high-
Band and lowBand, which it plots on the chart along with the sampleMean:

3.13. Methods 83

https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#type_matrix
https://www.tradingview.com/pine-script-reference/v5/#type_map
https://www.tradingview.com/pine-script-reference/v5/#type_line
https://www.tradingview.com/pine-script-reference/v5/#type_linefill
https://www.tradingview.com/pine-script-reference/v5/#type_box
https://www.tradingview.com/pine-script-reference/v5/#type_polyline
https://www.tradingview.com/pine-script-reference/v5/#type_label
https://www.tradingview.com/pine-script-reference/v5/#type_table
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}get
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}push
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}shift
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}avg
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}stdev
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}stdev

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Custom Sample BB", overlay = true)
3

4 float sourceInput = input.source(close, "Source")
5 int samplesInput = input.int(20, "Samples")
6 int n = input.int(10, "Bars")
7 float multiplier = input.float(2.0, "StdDev")
8

9 var array<float> sourceArray = array.new<float>(samplesInput)
10 var float sampleMean = na
11 var float sampleDev = na
12

13 // Identify if `n` bars have passed.
14 if bar_index % n == 0
15 // Update the queue.
16 array.push(sourceArray, sourceInput)
17 array.shift(sourceArray)
18 // Update the mean and standard deviaiton values.
19 sampleMean := array.avg(sourceArray)
20 sampleDev := array.stdev(sourceArray) * multiplier
21

22 // Calculate bands.
23 float highBand = sampleMean + sampleDev
24 float lowBand = sampleMean - sampleDev
25

26 plot(sampleMean, "Basis", color.orange)
27 plot(highBand, "Upper", color.lime)
28 plot(lowBand, "Lower", color.red)

Let’s rewrite this code to utilize methods rather than built-in functions. In this version, we have replaced all built-in array.*
functions in the script with equivalent methods:

1 //@version=5
2 indicator("Custom Sample BB", overlay = true)
3

4 float sourceInput = input.source(close, "Source")
5 int samplesInput = input.int(20, "Samples")

(continues on next page)

84 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#op_array

Pine Script™ v5 User Manual

(continued from previous page)
6 int n = input.int(10, "Bars")
7 float multiplier = input.float(2.0, "StdDev")
8

9 var array<float> sourceArray = array.new<float>(samplesInput)
10 var float sampleMean = na
11 var float sampleDev = na
12

13 // Identify if `n` bars have passed.
14 if bar_index % n == 0
15 // Update the queue.
16 sourceArray.push(sourceInput)
17 sourceArray.shift()
18 // Update the mean and standard deviaiton values.
19 sampleMean := sourceArray.avg()
20 sampleDev := sourceArray.stdev() * multiplier
21

22 // Calculate band values.
23 float highBand = sampleMean + sampleDev
24 float lowBand = sampleMean - sampleDev
25

26 plot(sampleMean, "Basis", color.orange)
27 plot(highBand, "Upper", color.lime)
28 plot(lowBand, "Lower", color.red)

Note that:
• We call the array methods using sourceArray.* rather than referencing the array namespace.
• We do not include sourceArray as a parameter when we call the methods since they already reference
the object.

3.13.3 User-defined methods

Pine Script™ allows users to define custom methods for use with objects of any built-in or user-defined type. Defining a
method is essentially the same as defining a function, but with two key differences:

• The method keyword must be included before the function name.
• The type of the first parameter in the signature must be explicitly declared, as it represents the type of object that
the method will be associated with.

[export] method <functionName>(<paramType> <paramName> [= <defaultValue>], …) =>
<functionBlock>

Let’s apply user-defined methods to our previous Bollinger Bands example to encapsulate operations from the global
scope, which will simplify the code and promote reusability. See this portion from the example:

1 // Identify if `n` bars have passed.
2 if bar_index % n == 0
3 // Update the queue.
4 sourceArray.push(sourceInput)
5 sourceArray.shift()
6 // Update the mean and standard deviaiton values.
7 sampleMean := sourceArray.avg()
8 sampleDev := sourceArray.stdev() * multiplier
9

(continues on next page)

3.13. Methods 85

https://www.tradingview.com/pine-script-reference/v5/#op_array
https://www.tradingview.com/pine-script-reference/v5/#op_method

Pine Script™ v5 User Manual

(continued from previous page)
10 // Calculate band values.
11 float highBand = sampleMean + sampleDev
12 float lowBand = sampleMean - sampleDev

We will start by defining a simple method to queue values through an array in a single call.
This maintainQueue()method invokes the push() and shift() methods on a srcArraywhen takeSample is true
and returns the object:

1 // @function Maintains a queue of the size of `srcArray`.
2 // It appends a `value` to the array and removes its oldest element␣

↪→at position zero.
3 // @param srcArray (array<float>) The array where the queue is maintained.
4 // @param value (float) The new value to be added to the queue.
5 // The queue's oldest value is also removed, so its size is␣

↪→constant.
6 // @param takeSample (bool) A new `value` is only pushed into the queue if this is␣

↪→true.
7 // @returns (array<float>) `srcArray` object.
8 method maintainQueue(array<float> srcArray, float value, bool takeSample = true) =>
9 if takeSample
10 srcArray.push(value)
11 srcArray.shift()
12 srcArray

Note that:
• Just as with user-defined functions, we use the @function compiler annotation to document method de-
scriptions.

Now we can replace sourceArray.push() and sourceArray.shift() with sourceArray.
maintainQueue() in our example:

1 // Identify if `n` bars have passed.
2 if bar_index % n == 0
3 // Update the queue.
4 sourceArray.maintainQueue(sourceInput)
5 // Update the mean and standard deviaiton values.
6 sampleMean := sourceArray.avg()
7 sampleDev := sourceArray.stdev() * multiplier
8

9 // Calculate band values.
10 float highBand = sampleMean + sampleDev
11 float lowBand = sampleMean - sampleDev

From here, we will further simplify our code by defining a method that handles all Bollinger Band calculations within its
scope.
This calcBB()method invokes the avg() and stdev() methods on a srcArray to update mean and dev values when
calculate is true. The method uses these values to return a tuple containing the basis, upper band, and lower band
values respectively:

1 // @function Computes Bollinger Band values from an array of data.
2 // @param srcArray (array<float>) The array where the queue is maintained.
3 // @param multiplier (float) Standard deviaiton multiplier.
4 // @param calcuate (bool) The method will only calculate new values when this is␣

↪→true.

(continues on next page)

86 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}push
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}shift
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}avg
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}stdev

Pine Script™ v5 User Manual

(continued from previous page)
5 // @returns A tuple containing the basis, upper band, and lower band␣

↪→respectively.
6 method calcBB(array<float> srcArray, float mult, bool calculate = true) =>
7 var float mean = na
8 var float dev = na
9 if calculate
10 // Compute the mean and standard deviation of the array.
11 mean := srcArray.avg()
12 dev := srcArray.stdev() * mult
13 [mean, mean + dev, mean - dev]

With this method, we can now remove Bollinger Band calculations from the global scope and improve code readability:

// Identify if `n` bars have passed.
bool newSample = bar_index % n == 0

// Update the queue and compute new BB values on each new sample.
[sampleMean, highBand, lowBand] = sourceArray.maintainQueue(sourceInput, newSample).
↪→calcBB(multiplier, newSample)

Note that:
• Rather than using an if block in the global scope, we have defined a newSample variable that is only true
once every n bars. The maintainQueue() and calcBB() methods use this value for their respective
takeSample and calculate parameters.

• Since the maintainQueue() method returns the object that it references, we’re able to call calcBB()
from the same line of code, as both methods apply to array<float> instances.

Here is how the full script example looks now that we’ve applied our user-defined methods:

1 //@version=5
2 indicator("Custom Sample BB", overlay = true)
3

4 float sourceInput = input.source(close, "Source")
5 int samplesInput = input.int(20, "Samples")
6 int n = input.int(10, "Bars")
7 float multiplier = input.float(2.0, "StdDev")
8

9 var array<float> sourceArray = array.new<float>(samplesInput)
10

11 // @function Maintains a queue of the size of `srcArray`.
12 // It appends a `value` to the array and removes its oldest element␣

↪→at position zero.
13 // @param srcArray (array<float>) The array where the queue is maintained.
14 // @param value (float) The new value to be added to the queue.
15 // The queue's oldest value is also removed, so its size is␣

↪→constant.
16 // @param takeSample (bool) A new `value` is only pushed into the queue if this is␣

↪→true.
17 // @returns (array<float>) `srcArray` object.
18 method maintainQueue(array<float> srcArray, float value, bool takeSample = true) =>
19 if takeSample
20 srcArray.push(value)
21 srcArray.shift()
22 srcArray
23

(continues on next page)

3.13. Methods 87

Pine Script™ v5 User Manual

(continued from previous page)
24 // @function Computes Bollinger Band values from an array of data.
25 // @param srcArray (array<float>) The array where the queue is maintained.
26 // @param multiplier (float) Standard deviaiton multiplier.
27 // @param calcuate (bool) The method will only calculate new values when this is␣

↪→true.
28 // @returns A tuple containing the basis, upper band, and lower band␣

↪→respectively.
29 method calcBB(array<float> srcArray, float mult, bool calculate = true) =>
30 var float mean = na
31 var float dev = na
32 if calculate
33 // Compute the mean and standard deviation of the array.
34 mean := srcArray.avg()
35 dev := srcArray.stdev() * mult
36 [mean, mean + dev, mean - dev]
37

38 // Identify if `n` bars have passed.
39 bool newSample = bar_index % n == 0
40

41 // Update the queue and compute new BB values on each new sample.
42 [sampleMean, highBand, lowBand] = sourceArray.maintainQueue(sourceInput, newSample).

↪→calcBB(multiplier, newSample)
43

44 plot(sampleMean, "Basis", color.orange)
45 plot(highBand, "Upper", color.lime)
46 plot(lowBand, "Lower", color.red)

3.13.4 Method overloading

User-defined methods can override and overload existing built-in and user-defined methods with the same identifier. This
capability allows users to define multiple routines associated with different parameter signatures under the same method
name.
As a simple example, suppose we want to define a method to identify a variable’s type. Since we must explicitly specify
the type of object associated with a user-defined method, we will need to define overloads for each type that we want it
to recognize.
Below, we have defined a getType()method that returns a string representation of a variable’s type with overloads for
the five primitive types:

1 // @function Identifies an object's type.
2 // @param this Object to inspect.
3 // @returns (string) A string representation of the type.
4 method getType(int this) =>
5 na(this) ? "int(na)" : "int"
6

7 method getType(float this) =>
8 na(this) ? "float(na)" : "float"
9

10 method getType(bool this) =>
11 na(this) ? "bool(na)" : "bool"
12

13 method getType(color this) =>
14 na(this) ? "color(na)" : "color"
15

(continues on next page)

88 Chapter 3. Language

Pine Script™ v5 User Manual

(continued from previous page)
16 method getType(string this) =>
17 na(this) ? "string(na)" : "string"

Now we can use these overloads to inspect some variables. This script uses str.format() to format the results from calling
the getType() method on five different variables into a single results string, then displays the string in the lbl
label using the built-in set_text() method:

1 //@version=5
2 indicator("Type Inspection")
3

4 // @function Identifies an object's type.
5 // @param this Object to inspect.
6 // @returns (string) A string representation of the type.
7 method getType(int this) =>
8 na(this) ? "int(na)" : "int"
9

10 method getType(float this) =>
11 na(this) ? "float(na)" : "float"
12

13 method getType(bool this) =>
14 na(this) ? "bool(na)" : "bool"
15

16 method getType(color this) =>
17 na(this) ? "color(na)" : "color"
18

19 method getType(string this) =>
20 na(this) ? "string(na)" : "string"
21

22 a = 1
23 b = 1.0
24 c = true
25 d = color.white
26 e = "1"
27

28 // Inspect variables and format results.
29 results = str.format(
30 "a: {0}\nb: {1}\nc: {2}\nd: {3}\ne: {4}",
31 a.getType(), b.getType(), c.getType(), d.getType(), e.getType()
32)
33

34 var label lbl = label.new(0, 0)
35 lbl.set_x(bar_index)
36 lbl.set_text(results)

Note that:

3.13. Methods 89

https://www.tradingview.com/pine-script-reference/v5/#fun_str\{dot\}format
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}set_text

Pine Script™ v5 User Manual

• The underlying type of each variable determines which overload of getType() the compiler will use.
• The method will append “(na)” to the output string when a variable is na to demarcate that it is empty.

3.13.5 Advanced example

Let’s apply what we’ve learned to construct a script that estimates the cumulative distribution of elements in an array,
meaning the fraction of elements in the array that are less than or equal to any given value.
There are many ways in which we could choose to tackle this objective. For this example, we will start by defining a
method to replace elements of an array, which will help us count the occurrences of elements within a range of values.
Written below is an overload of the built-in fill() method for array<float> instances. This overload replaces elements
in a srcArray within the range between the lowerBound and upperBound with an innerValue, and replaces
all elements outside the range with an outerValue:

1 // @function Replaces elements in a `srcArray` between `lowerBound` and␣
↪→`upperBound` with an `innerValue`,

2 // and replaces elements outside the range with an `outerValue`.
3 // @param srcArray (array<float>) Array to modify.
4 // @param innerValue (float) Value to replace elements within the range with.
5 // @param outerValue (float) Value to replace elements outside the range with.
6 // @param lowerBound (float) Lowest value to replace with `innerValue`.
7 // @param upperBound (float) Highest value to replace with `innerValue`.
8 // @returns (array<float>) `srcArray` object.
9 method fill(array<float> srcArray, float innerValue, float outerValue, float␣

↪→lowerBound, float upperBound) =>
10 for [i, element] in srcArray
11 if (element >= lowerBound or na(lowerBound)) and (element <= upperBound or␣

↪→na(upperBound))
12 srcArray.set(i, innerValue)
13 else
14 srcArray.set(i, outerValue)
15 srcArray

With this method, we can filter an array by value ranges to produce an array of occurrences. For example, the expression:

srcArray.copy().fill(1.0, 0.0, min, val)

copies the srcArray object, replaces all elements between min and val with 1.0, then replaces all elements above
val with 0.0. From here, it’s easy to estimate the output of the cumulative distribution function at the val, as it’s simply
the average of the resulting array:

srcArray.copy().fill(1.0, 0.0, min, val).avg()

Note that:
• The compiler will only use this fill() overload instead of the built-in when the user provides inner-
Value, outerValue, lowerBound, and upperBound arguments in the call.

• If either lowerBound or upperBound is na, its value is ignored while filtering the fill range.
• We are able to call copy(), fill(), and avg() successively on the same line of code because the first
two methods return an array<float> instance.

We can now use this to define a method that will calculate our empirical distribution values. The following eCDF()
method estimates a number of evenly spaced ascendingsteps from the cumulative distribution function of asrcArray
and pushes the results into a cdfArray:

90 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}fill

Pine Script™ v5 User Manual

1 // @function Estimates the empirical CDF of a `srcArray`.
2 // @param srcArray (array<float>) Array to calculate on.
3 // @param steps (int) Number of steps in the estimation.
4 // @returns (array<float>) Array of estimated CDF ratios.
5 method eCDF(array<float> srcArray, int steps) =>
6 float min = srcArray.min()
7 float rng = srcArray.range() / steps
8 array<float> cdfArray = array.new<float>()
9 // Add averages of `srcArray` filtered by value region to the `cdfArray`.
10 float val = min
11 for i = 1 to steps
12 val += rng
13 cdfArray.push(srcArray.copy().fill(1.0, 0.0, min, val).avg())
14 cdfArray

Lastly, to ensure that our eCDF() method functions properly for arrays containing small and large values, we will define
a method to normalize our arrays.
This featureScale() method uses array min() and range() methods to produce a rescaled copy of a srcArray.
We will use this to normalize our arrays prior to invoking the eCDF() method:

1 // @function Rescales the elements within a `srcArray` to the interval [0, 1].
2 // @param srcArray (array<float>) Array to normalize.
3 // @returns (array<float>) Normalized copy of the `srcArray`.
4 method featureScale(array<float> srcArray) =>
5 float min = srcArray.min()
6 float rng = srcArray.range()
7 array<float> scaledArray = array.new<float>()
8 // Push normalized `element` values into the `scaledArray`.
9 for element in srcArray
10 scaledArray.push((element - min) / rng)
11 scaledArray

Note that:
• This method does not include special handling for divide by zero conditions. If rng is 0, the value of the
array element will be na.

The full example below queues a sourceArray of size length with sourceInput values using our previous
maintainQueue() method, normalizes the array’s elements using the featureScale() method, then calls the
eCDF() method to get an array of estimates for n evenly spaced steps on the distribution. The script then calls a user-
defined makeLabel() function to display the estimates and prices in a label on the right side of the chart:

3.13. Methods 91

https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}min
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}range

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Empirical Distribution", overlay = true)
3

4 float sourceInput = input.source(close, "Source")
5 int length = input.int(20, "Length")
6 int n = input.int(20, "Steps")
7

8 // @function Maintains a queue of the size of `srcArray`.
9 // It appends a `value` to the array and removes its oldest element␣

↪→at position zero.
10 // @param srcArray (array<float>) The array where the queue is maintained.
11 // @param value (float) The new value to be added to the queue.
12 // The queue's oldest value is also removed, so its size is␣

↪→constant.
13 // @param takeSample (bool) A new `value` is only pushed into the queue if this is␣

↪→true.
14 // @returns (array<float>) `srcArray` object.
15 method maintainQueue(array<float> srcArray, float value, bool takeSample = true) =>
16 if takeSample
17 srcArray.push(value)
18 srcArray.shift()
19 srcArray
20

21 // @function Replaces elements in a `srcArray` between `lowerBound` and␣
↪→`upperBound` with an `innerValue`,

22 // and replaces elements outside the range with an `outerValue`.
23 // @param srcArray (array<float>) Array to modify.
24 // @param innerValue (float) Value to replace elements within the range with.
25 // @param outerValue (float) Value to replace elements outside the range with.
26 // @param lowerBound (float) Lowest value to replace with `innerValue`.
27 // @param upperBound (float) Highest value to replace with `innerValue`.
28 // @returns (array<float>) `srcArray` object.
29 method fill(array<float> srcArray, float innerValue, float outerValue, float␣

↪→lowerBound, float upperBound) =>
30 for [i, element] in srcArray
31 if (element >= lowerBound or na(lowerBound)) and (element <= upperBound or␣

↪→na(upperBound))

(continues on next page)

92 Chapter 3. Language

Pine Script™ v5 User Manual

(continued from previous page)
32 srcArray.set(i, innerValue)
33 else
34 srcArray.set(i, outerValue)
35 srcArray
36

37 // @function Estimates the empirical CDF of a `srcArray`.
38 // @param srcArray (array<float>) Array to calculate on.
39 // @param steps (int) Number of steps in the estimation.
40 // @returns (array<float>) Array of estimated CDF ratios.
41 method eCDF(array<float> srcArray, int steps) =>
42 float min = srcArray.min()
43 float rng = srcArray.range() / steps
44 array<float> cdfArray = array.new<float>()
45 // Add averages of `srcArray` filtered by value region to the `cdfArray`.
46 float val = min
47 for i = 1 to steps
48 val += rng
49 cdfArray.push(srcArray.copy().fill(1.0, 0.0, min, val).avg())
50 cdfArray
51

52 // @function Rescales the elements within a `srcArray` to the interval [0, 1].
53 // @param srcArray (array<float>) Array to normalize.
54 // @returns (array<float>) Normalized copy of the `srcArray`.
55 method featureScale(array<float> srcArray) =>
56 float min = srcArray.min()
57 float rng = srcArray.range()
58 array<float> scaledArray = array.new<float>()
59 // Push normalized `element` values into the `scaledArray`.
60 for element in srcArray
61 scaledArray.push((element - min) / rng)
62 scaledArray
63

64 // @function Draws a label containing eCDF estimates in the format "{price}:
↪→{percent}%"

65 // @param srcArray (array<float>) Array of source values.
66 // @param cdfArray (array<float>) Array of CDF estimates.
67 // @returns (void)
68 makeLabel(array<float> srcArray, array<float> cdfArray) =>
69 float max = srcArray.max()
70 float rng = srcArray.range() / cdfArray.size()
71 string results = ""
72 var label lbl = label.new(0, 0, "", style = label.style_label_left, text_font_

↪→family = font.family_monospace)
73 // Add percentage strings to `results` starting from the `max`.
74 cdfArray.reverse()
75 for [i, element] in cdfArray
76 results += str.format("{0}: {1}%\n", max - i * rng, element * 100)
77 // Update `lbl` attributes.
78 lbl.set_xy(bar_index + 1, srcArray.avg())
79 lbl.set_text(results)
80

81 var array<float> sourceArray = array.new<float>(length)
82

83 // Add background color for the last `length` bars.
84 bgcolor(bar_index > last_bar_index - length ? color.new(color.orange, 80) : na)
85

86 // Queue `sourceArray`, feature scale, then estimate the distribution over `n` steps.
(continues on next page)

3.13. Methods 93

Pine Script™ v5 User Manual

(continued from previous page)
87 array<float> distArray = sourceArray.maintainQueue(sourceInput).featureScale().eCDF(n)
88 // Draw label.
89 makeLabel(sourceArray, distArray)

3.14 Arrays

• Introduction

• Declaring arrays

• Reading and writing array elements

• Looping through array elements

• Scope

• History referencing

• Inserting and removing array elements

• Calculations on arrays

• Manipulating arrays

• Searching arrays

• Error handling

Note: This page contains advanced material. If you are a beginning Pine Script™ programmer, we recommend you
become familiar with other, more accessible Pine Script™ features before you venture here.

3.14.1 Introduction

Pine Script™ Arrays are one-dimensional collections that can hold multiple value references. Think of them as a better
way to handle cases where one would otherwise need to explicitly declare a set of similar variables (e.g., price00,
price01, price02, …).
All elements within an array must be of the same type, which can be a built-in or a user-defined type, always qualified
as “series”. Scripts reference arrays using an array ID similar to the IDs of lines, labels, and other special types. Pine
Script™ does not use an indexing operator to reference individual array elements. Instead, functions including array.get()
and array.set() read and write the values of array elements. We can use array values in expressions and functions that
allow “series” values.

94 Chapter 3. Language

https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id2
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}get
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}set

Pine Script™ v5 User Manual

Scripts reference the elements of an array using an index, which starts at 0 and extends to the number of elements in the
array minus one. Arrays in Pine Script™ can have a dynamic size that varies across bars, as one can change the number
of elements in an array on each iteration of a script. Scripts can contain multiple array instances. The size of arrays is
limited to 100,000 elements.

Note: We will use beginning of an array to designate index 0, and end of an array to designate the array’s element with
the highest index value. We will also extend the meaning of array to include array IDs, for the sake of brevity.

3.14.2 Declaring arrays

Pine Script™ uses the following syntax to declare arrays:

[var/varip][array<type>/<type[]>]<identifier> = <expression>

Where <type> is a type template for the array that declares the type of values it will contain, and the <expression>
returns either an array of the specified type or na.
When declaring a variable as an array, we can use the array keyword followed by a type template. Alternatively, we can
use the type name followed by the [] modifier (not to be confused with the [] history-referencing operator).
Since Pine always uses type-specific functions to create arrays, the array<type>/type[] part of the declaration is
redundant, except when declaring an array variable assigned to na. Even when not required, explicitly declaring the array
type helps clearly state the intention to readers.
This line of code declares an array variable named prices that points to na. In this case, we must specify the type to
declare that the variable can reference arrays containing “float” values:

array<float> prices = na

We can also write the above example in this form:

float[] prices = na

When declaring an array and the <expression> is not na, use one of the following functions: array.new<type>(size,
initial_value), array.from(), or array.copy(). For array.new<type>(size, initial_value) functions, the
arguments of the size and initial_value parameters can be “series” to allow dynamic sizing and initialization
of array elements. The following example creates an array containing zero “float” elements, and this time, the array ID
returned by the array.new<float>() function call is assigned to prices:

prices = array.new<float>(0)

Note: The array.* namespace also contains type-specific functions for creating arrays, including array.new_int(),
array.new_float(), array.new_bool(), array.new_color(), array.new_string(), array.new_line(), array.new_linefill(), ar-
ray.new_label(), array.new_box() and array.new_table(). The array.new<type>() function can create an array of any
type, including user-defined types.

The initial_value parameter of array.new* functions allows users to set all elements in the array to a specified
value. If no argument is provided for initial_value, the array is filled with na values.
This line declares an array ID named prices pointing to an array containing two elements, each assigned to the bar’s
close value:

3.14. Arrays 95

https://www.tradingview.com/pine-script-reference/v5/#op_array
https://www.tradingview.com/pine-script-reference/v5/#op_{[}{]}
https://www.tradingview.com/pine-script-reference/v5/#fun_array.new%3Ctype%3E
https://www.tradingview.com/pine-script-reference/v5/#fun_array.new%3Ctype%3E
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}from
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}copy
https://www.tradingview.com/pine-script-reference/v5/#fun_array.new%3Ctype%3E
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}new_int
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}new_float
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}new_bool
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}new_color
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}new_string
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}new_line
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}new_linefill
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}new_label
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}new_label
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}new_box
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}new_table
https://www.tradingview.com/pine-script-reference/v5/#fun_array.new%3Ctype%3E

Pine Script™ v5 User Manual

prices = array.new<float>(2, close)

To create an array and initialize its elements with different values, use array.from(). This function infers the array’s size
and the type of elements it will hold from the arguments in the function call. As with array.new* functions, it accepts
“series” arguments. All values supplied to the function must be of the same type.
For example, all three of these lines of code will create identical “bool” arrays with the same two elements:

statesArray = array.from(close > open, high != close)
bool[] statesArray = array.from(close > open, high != close)
array<bool> statesArray = array.from(close > open, high != close)

Using `var` and `varip` keywords

Users can utilize var and varip keywords to instruct a script to declare an array variable only once on the first iteration
of the script on the first chart bar. Array variables declared using these keywords point to the same array instances until
explicitly reassigned, allowing an array and its element references to persist across bars.
When declaring an array variable using these keywords and pushing a new value to the end of the referenced array on
each bar, the array will grow by one on each bar and be of size bar_index + 1 (bar_index starts at zero) by the time
the script executes on the last bar, as this code demonstrates:

1 //@version=5
2 indicator("Using `var`")
3 //@variable An array that expands its size by 1 on each bar.
4 var a = array.new<float>(0)
5 array.push(a, close)
6

7 if barstate.islast
8 //@variable A string containing the size of `a` and the current `bar_index` value.
9 string labelText = "Array size: " + str.tostring(a.size()) + "\nbar_index: " +␣

↪→str.tostring(bar_index)
10 // Display the `labelText`.
11 label.new(bar_index, 0, labelText, size = size.large)

The same code without the var keyword would re-declare the array on each bar. In this case, after execution of the
array.push() call, the a.size() call would return a value of 1.

Note: Array variables declared using varip behave as ones using var on historical data, but they update their values for
realtime bars (i.e., the bars since the script’s last compilation) on each new price tick. Arrays assigned to varip variables
can only hold int, float, bool, color, or string types or user-defined types that exclusively contain within their fields these
types or collections (arrays, matrices, or maps) of these types.

96 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}from
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}push
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}size
https://www.tradingview.com/pine-script-reference/v5/#kw_varip
https://www.tradingview.com/pine-script-reference/v5/#kw_var
https://www.tradingview.com/pine-script-reference/v5/#kw_varip
https://www.tradingview.com/pine-script-reference/v5/#type_int
https://www.tradingview.com/pine-script-reference/v5/#type_float
https://www.tradingview.com/pine-script-reference/v5/#type_bool
https://www.tradingview.com/pine-script-reference/v5/#type_color
https://www.tradingview.com/pine-script-reference/v5/#type_string

Pine Script™ v5 User Manual

3.14.3 Reading and writing array elements

Scripts can write values to existing individual array elements using array.set(id, index, value), and read using array.get(id,
index). When using these functions, it is imperative that the index in the function call is always less than or equal to the
array’s size (because array indices start at zero). To get the size of an array, use the array.size(id) function.
The following example uses the set() method to populate a fillColors array with instances of one base color using
different transparency levels. It then uses array.get() to retrieve one of the colors from the array based on the location of
the bar with the highest price within the last lookbackInput bars:

1 //@version=5
2 indicator("Distance from high", "", true)
3 lookbackInput = input.int(100)
4 FILL_COLOR = color.green
5 // Declare array and set its values on the first bar only.
6 var fillColors = array.new<color>(5)
7 if barstate.isfirst
8 // Initialize the array elements with progressively lighter shades of the fill␣

↪→color.
9 fillColors.set(0, color.new(FILL_COLOR, 70))
10 fillColors.set(1, color.new(FILL_COLOR, 75))
11 fillColors.set(2, color.new(FILL_COLOR, 80))
12 fillColors.set(3, color.new(FILL_COLOR, 85))
13 fillColors.set(4, color.new(FILL_COLOR, 90))
14

15 // Find the offset to highest high. Change its sign because the function returns a␣
↪→negative value.

16 lastHiBar = - ta.highestbars(high, lookbackInput)
17 // Convert the offset to an array index, capping it to 4 to avoid a runtime error.
18 // The index used by `array.get()` will be the equivalent of `floor(fillNo)`.
19 fillNo = math.min(lastHiBar / (lookbackInput / 5), 4)
20 // Set background to a progressively lighter fill with increasing distance from␣

↪→location of highest high.
21 bgcolor(array.get(fillColors, fillNo))
22 // Plot key values to the Data Window for debugging.
23 plotchar(lastHiBar, "lastHiBar", "", location.top, size = size.tiny)
24 plotchar(fillNo, "fillNo", "", location.top, size = size.tiny)

Another technique for initializing the elements in an array is to create an empty array (an array with no elements), then
use array.push() to append new elements to the end of the array, increasing the size of the array by one on each call. The
following code is functionally identical to the initialization section from the preceding script:

3.14. Arrays 97

https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}set
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}get
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}get
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}size
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}set
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}get
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}push

Pine Script™ v5 User Manual

// Declare array and set its values on the first bar only.
var fillColors = array.new<color>(0)
if barstate.isfirst

// Initialize the array elements with progressively lighter shades of the fill␣
↪→color.

array.push(fillColors, color.new(FILL_COLOR, 70))
array.push(fillColors, color.new(FILL_COLOR, 75))
array.push(fillColors, color.new(FILL_COLOR, 80))
array.push(fillColors, color.new(FILL_COLOR, 85))
array.push(fillColors, color.new(FILL_COLOR, 90))

This code is equivalent to the one above, but it uses array.unshift() to insert new elements at the beginning of the fill-
Colors array:

// Declare array and set its values on the first bar only.
var fillColors = array.new<color>(0)
if barstate.isfirst

// Initialize the array elements with progressively lighter shades of the fill␣
↪→color.

array.unshift(fillColors, color.new(FILL_COLOR, 90))
array.unshift(fillColors, color.new(FILL_COLOR, 85))
array.unshift(fillColors, color.new(FILL_COLOR, 80))
array.unshift(fillColors, color.new(FILL_COLOR, 75))
array.unshift(fillColors, color.new(FILL_COLOR, 70))

We can also use array.from() to create the same fillColors array with a single function call:

1 //@version=5
2 indicator("Using `var`")
3 FILL_COLOR = color.green
4 var array<color> fillColors = array.from(
5 color.new(FILL_COLOR, 70),
6 color.new(FILL_COLOR, 75),
7 color.new(FILL_COLOR, 80),
8 color.new(FILL_COLOR, 85),
9 color.new(FILL_COLOR, 90)
10)
11 // Cycle background through the array's colors.
12 bgcolor(array.get(fillColors, bar_index % (fillColors.size())))

The array.fill(id, value, index_from, index_to) function points all array elements, or the elements within the in-
dex_from to index_to range, to a specified value. Without the last two optional parameters, the function fills
the whole array, so:

a = array.new<float>(10, close)

and:

a = array.new<float>(10)
a.fill(close)

are equivalent, but:

a = array.new<float>(10)
a.fill(close, 1, 3)

only fills the second and third elements (at index 1 and 2) of the array with close. Note how array.fill()’s last parameter,
index_to, must be one greater than the last index the function will fill. The remaining elements will hold na values,

98 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}unshift
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}from
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}fill
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}fill

Pine Script™ v5 User Manual

as the array.new() function call does not contain an initial_value argument.

3.14.4 Looping through array elements

When looping through an array’s element indices and the array’s size is unknown, one can use the array.size() function to
get the maximum index value. For example:

1 //@version=5
2 indicator("Protected `for` loop", overlay = true)
3 //@variable An array of `close` prices from the 1-minute timeframe.
4 array<float> a = request.security_lower_tf(syminfo.tickerid, "1", close)
5

6 //@variable A string representation of the elements in `a`.
7 string labelText = ""
8 for i = 0 to (array.size(a) == 0 ? na : array.size(a) - 1)
9 labelText += str.tostring(array.get(a, i)) + "\n"
10

11 label.new(bar_index, high, text = labelText)

Note that:
• We use the request.security_lower_tf() function which returns an array of close prices at the 1 minute
timeframe.

• This code example will throw an error if you use it on a chart timeframe smaller than 1 minute.
• for loops do not execute if the to expression is na. Note that the to value is only evaluated once upon entry.

An alternative method to loop through an array is to use a for…in loop. This approach is a variation of the standard for
loop that can iterate over the value references and indices in an array. Here is an example of how we can write the code
example from above using a for...in loop:

1 //@version=5
2 indicator("`for...in` loop", overlay = true)
3 //@variable An array of `close` prices from the 1-minute timeframe.
4 array<float> a = request.security_lower_tf(syminfo.tickerid, "1", close)
5

6 //@variable A string representation of the elements in `a`.
7 string labelText = ""
8 for price in a
9 labelText += str.tostring(price) + "\n"
10

11 label.new(bar_index, high, text = labelText)

Note that:
• for…in loops can return a tuple containing each index and corresponding element. For example, for [i,
price] in a returns the i index and price value for each element in a.

A while loop statement can also be used:

1 //@version=5
2 indicator("`while` loop", overlay = true)
3 array<float> a = request.security_lower_tf(syminfo.tickerid, "1", close)
4

5 string labelText = ""
6 int i = 0
7 while i < array.size(a)

(continues on next page)

3.14. Arrays 99

https://www.tradingview.com/pine-script-reference/v5/#fun_array.new%3Ctype%3E
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}size
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_for\{dot\}\{dot\}\{dot\}in
https://www.tradingview.com/pine-script-reference/v5/#op_for\{dot\}\{dot\}\{dot\}in
https://www.tradingview.com/pine-script-reference/v5/#op_while

Pine Script™ v5 User Manual

(continued from previous page)
8 labelText += str.tostring(array.get(a, i)) + "\n"
9 i += 1
10

11 label.new(bar_index, high, text = labelText)

3.14.5 Scope

Users can declare arrays within the global scope of a script, as well as the local scopes of functions, methods, and condi-
tional structures. Unlike some of the other built-in types, namely fundamental types, scripts can modify globally-assigned
arrays from within local scopes, allowing users to implement global variables that any function in the script can directly
interact with. We use the functionality here to calculate progressively lower or higher price levels:

1 //@version=5
2 indicator("Bands", "", true)
3 //@variable The distance ratio between plotted price levels.
4 factorInput = 1 + (input.float(-2., "Step %") / 100)
5 //@variable A single-value array holding the lowest `ohlc4` value within a 50 bar␣

↪→window from 10 bars back.
6 level = array.new<float>(1, ta.lowest(ohlc4, 50)[10])
7

8 nextLevel(val) =>
9 newLevel = level.get(0) * val
10 // Write new level to the global `level` array so we can use it as the base in␣

↪→the next function call.
11 level.set(0, newLevel)
12 newLevel
13

14 plot(nextLevel(1))
15 plot(nextLevel(factorInput))
16 plot(nextLevel(factorInput))
17 plot(nextLevel(factorInput))

100 Chapter 3. Language

Pine Script™ v5 User Manual

3.14.6 History referencing

Pine Script™’s history-referencing operator [] can access the history of array variables, allowing scripts to interact with
past array instances previously assigned to a variable.
To illustrate this, let’s create a simple example to show how one can fetch the previous bar’s close value in two equivalent
ways. This script uses the [] operator to get the array instance assigned to a on the previous bar, then uses the get()
method to retrieve the value of the first element (previousClose1). For previousClose2, we use the history-
referencing operator on the close variable directly to retrieve the value. As we see from the plots, previousClose1
and previousClose2 both return the same value:

1 //@version=5
2 indicator("History referencing")
3

4 //@variable A single-value array declared on each bar.
5 a = array.new<float>(1)
6 // Set the value of the only element in `a` to `close`.
7 array.set(a, 0, close)
8

9 //@variable The array instance assigned to `a` on the previous bar.
10 previous = a[1]
11

12 previousClose1 = na(previous) ? na : previous.get(0)
13 previousClose2 = close[1]
14

15 plot(previousClose1, "previousClose1", color.gray, 6)
16 plot(previousClose2, "previousClose2", color.white, 2)

3.14.7 Inserting and removing array elements

Inserting

The following three functions can insert new elements into an array.
array.unshift() inserts a new element at the beginning of an array (index 0) and increases the index values of any existing
elements by one.
array.insert() inserts a new element at the specified index and increases the index of existing elements at or after the
index by one.

3.14. Arrays 101

https://www.tradingview.com/pine-script-reference/v5/#op_{[}{]}
https://www.tradingview.com/pine-script-reference/v5/#op_{[}{]}
https://www.tradingview.com/pine-script-reference/v5/#fun_array.get
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}unshift
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}insert

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("`array.insert()`")
3 a = array.new<float>(5, 0)
4 for i = 0 to 4
5 array.set(a, i, i + 1)
6 if barstate.islast
7 label.new(bar_index, 0, "BEFORE\na: " + str.tostring(a), size = size.large)
8 array.insert(a, 2, 999)
9 label.new(bar_index, 0, "AFTER\na: " + str.tostring(a), style = label.style_label_

↪→up, size = size.large)

array.push() adds a new element at the end of an array.

Removing

These four functions remove elements from an array. The first three also return the value of the removed element.
array.remove() removes the element at the specified index and returns that element’s value.
array.shift() removes the first element from an array and returns its value.
array.pop() removes the last element of an array and returns its value.
array.clear() removes all elements from an array. Note that clearing an array won’t delete any objects its elements refer-
enced. See the example below that illustrates how this works:

1 //@version=5
2 indicator("`array.clear()` example", overlay = true)
3

4 // Create a label array and add a label to the array on each new bar.
5 var a = array.new<label>()
6 label lbl = label.new(bar_index, high, "Text", color = color.red)
7 array.push(a, lbl)
8

9 var table t = table.new(position.top_right, 1, 1)
10 // Clear the array on the last bar. This doesn't remove the labels from the chart.
11 if barstate.islast
12 array.clear(a)
13 table.cell(t, 0, 0, "Array elements count: " + str.tostring(array.size(a)),␣

↪→bgcolor = color.yellow)

Using an array as a stack

Stacks are LIFO (last in, first out) constructions. They behave somewhat like a vertical pile of books to which books can
only be added or removed one at a time, always from the top. Pine Script™ arrays can be used as a stack, in which case
we use the array.push() and array.pop() functions to add and remove elements at the end of the array.
array.push(prices, close) will add a new element to the end of the prices array, increasing the array’s size
by one.
array.pop(prices) will remove the end element from the prices array, return its value and decrease the array’s
size by one.
See how the functions are used here to track successive lows in rallies:

102 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}push
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}remove
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}shift
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}pop
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}clear
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}push
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}pop

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Lows from new highs", "", true)
3 var lows = array.new<float>(0)
4 flushLows = false
5

6 // Remove last element from the stack when `_cond` is true.
7 array_pop(id, cond) => cond and array.size(id) > 0 ? array.pop(id) : float(na)
8

9 if ta.rising(high, 1)
10 // Rising highs; push a new low on the stack.
11 lows.push(low)
12 // Force the return type of this `if` block to be the same as that of the next␣

↪→block.
13 bool(na)
14 else if lows.size() >= 4 or low < array.min(lows)
15 // We have at least 4 lows or price has breached the lowest low;
16 // sort lows and set flag indicating we will plot and flush the levels.
17 array.sort(lows, order.ascending)
18 flushLows := true
19

20 // If needed, plot and flush lows.
21 lowLevel = array_pop(lows, flushLows)
22 plot(lowLevel, "Low 1", low > lowLevel ? color.silver : color.purple, 2, plot.style_

↪→linebr)
23 lowLevel := array_pop(lows, flushLows)
24 plot(lowLevel, "Low 2", low > lowLevel ? color.silver : color.purple, 3, plot.style_

↪→linebr)
25 lowLevel := array_pop(lows, flushLows)
26 plot(lowLevel, "Low 3", low > lowLevel ? color.silver : color.purple, 4, plot.style_

↪→linebr)
27 lowLevel := array_pop(lows, flushLows)
28 plot(lowLevel, "Low 4", low > lowLevel ? color.silver : color.purple, 5, plot.style_

↪→linebr)
29

30 if flushLows
31 // Clear remaining levels after the last 4 have been plotted.
32 lows.clear()

3.14. Arrays 103

Pine Script™ v5 User Manual

Using an array as a queue

Queues are FIFO (first in, first out) constructions. They behave somewhat like cars arriving at a red light. New cars are
queued at the end of the line, and the first car to leave will be the first one that arrived to the red light.
In the following code example, we let users decide through the script’s inputs how many labels they want to have on their
chart. We use that quantity to determine the size of the array of labels we then create, initializing the array’s elements to
na.
When a new pivot is detected, we create a label for it, saving the label’s ID in the pLabel variable. We then queue the
ID of that label by using array.push() to append the new label’s ID to the end of the array, making our array size one
greater than the maximum number of labels to keep on the chart.
Lastly, we de-queue the oldest label by removing the array’s first element using array.shift() and deleting the label refer-
enced by that array element’s value. As we have now de-queued an element from our queue, the array contains piv-
otCountInput elements once again. Note that on the dataset’s first bars we will be deleting na label IDs until the
maximum number of labels has been created, but this does not cause runtime errors. Let’s look at our code:

1 //@version=5
2 MAX_LABELS = 100
3 indicator("Show Last n High Pivots", "", true, max_labels_count = MAX_LABELS)
4

5 pivotCountInput = input.int(5, "How many pivots to show", minval = 0, maxval = MAX_
↪→LABELS)

6 pivotLegsInput = input.int(3, "Pivot legs", minval = 1, maxval = 5)
7

8 // Create an array containing the user-selected max count of label IDs.
9 var labelIds = array.new<label>(pivotCountInput)
10

11 pHi = ta.pivothigh(pivotLegsInput, pivotLegsInput)
12 if not na(pHi)
13 // New pivot found; plot its label `i_pivotLegs` bars back.
14 pLabel = label.new(bar_index[pivotLegsInput], pHi, str.tostring(pHi, format.

↪→mintick), textcolor = color.white)
15 // Queue the new label's ID by appending it to the end of the array.
16 array.push(labelIds, pLabel)
17 // De-queue the oldest label ID from the queue and delete the corresponding label.
18 label.delete(array.shift(labelIds))

104 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}push
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}shift

Pine Script™ v5 User Manual

3.14.8 Calculations on arrays

While series variables can be viewed as a horizontal set of values stretching back in time, Pine Script™’s one-dimensional
arrays can be viewed as vertical structures residing on each bar. As an array’s set of elements is not a time series,
Pine Script™’s usual mathematical functions are not allowed on them. Special-purpose functions must be used to op-
erate on all of an array’s values. The available functions are: array.abs(), array.avg(), array.covariance(), array.min(),
array.max(), array.median(), array.mode(), array.percentile_linear_interpolation(), array.percentile_nearest_rank(), ar-
ray.percentrank(), array.range(), array.standardize(), array.stdev(), array.sum(), array.variance().
Note that contrary to the usual mathematical functions in Pine Script™, those used on arrays do not return nawhen some
of the values they calculate on have na values. There are a few exceptions to this rule:

• When all array elements have na value or the array contains no elements, na is returned. array.
standardize() however, will return an empty array.

• array.mode() will return na when no mode is found.

3.14.9 Manipulating arrays

Concatenation

Two arrays can be merged—or concatenated—using array.concat(). When arrays are concatenated, the second array is
appended to the end of the first, so the first array is modified while the second one remains intact. The function returns
the array ID of the first array:

1 //@version=5
2 indicator("`array.concat()`")
3 a = array.new<float>(0)
4 b = array.new<float>(0)
5 array.push(a, 0)
6 array.push(a, 1)
7 array.push(b, 2)
8 array.push(b, 3)
9 if barstate.islast
10 label.new(bar_index, 0, "BEFORE\na: " + str.tostring(a) + "\nb: " + str.

↪→tostring(b), size = size.large)
11 c = array.concat(a, b)
12 array.push(c, 4)
13 label.new(bar_index, 0, "AFTER\na: " + str.tostring(a) + "\nb: " + str.

↪→tostring(b) + "\nc: " + str.tostring(c), style = label.style_label_up, size = size.
↪→large)

3.14. Arrays 105

https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}abs
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}avg
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}covariance
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}min
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}max
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}median
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}mode
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}percentile_linear_interpolation
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}percentile_nearest_rank
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}percentrank
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}percentrank
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}range
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}standardize
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}stdev
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}sum
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}variance
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}concat

Pine Script™ v5 User Manual

Copying

You can copy an array using array.copy(). Here we copy the array a to a new array named _b:

1 //@version=5
2 indicator("`array.copy()`")
3 a = array.new<float>(0)
4 array.push(a, 0)
5 array.push(a, 1)
6 if barstate.islast
7 b = array.copy(a)
8 array.push(b, 2)
9 label.new(bar_index, 0, "a: " + str.tostring(a) + "\nb: " + str.tostring(b), size␣

↪→= size.large)

Note that simply using _b = a in the previous example would not have copied the array, but only its ID. From thereon,
both variables would point to the same array, so using either one would affect the same array.

Joining

Use array.join() to concatenate all of the elements in the array into a string and separate these elements with the specified
separator:

1 //@version=5
2 indicator("")
3 v1 = array.new<string>(10, "test")
4 v2 = array.new<string>(10, "test")
5 array.push(v2, "test1")
6 v3 = array.new_float(5, 5)
7 v4 = array.new_int(5, 5)
8 l1 = label.new(bar_index, close, array.join(v1))
9 l2 = label.new(bar_index, close, array.join(v2, ","))
10 l3 = label.new(bar_index, close, array.join(v3, ","))
11 l4 = label.new(bar_index, close, array.join(v4, ","))

Sorting

Arrays containing “int” or “float” elements can be sorted in either ascending or descending order using array.sort(). The
order parameter is optional and defaults to order.ascending. As all array.*() function arguments, it is qualified
as “series”, so can be determined at runtime, as is done here. Note that in the example, which array is sorted is also
determined at runtime:

106 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}copy
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}join
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}sort
https://www.tradingview.com/pine-script-reference/v5/#var_order\{dot\}ascending

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("`array.sort()`")
3 a = array.new<float>(0)
4 b = array.new<float>(0)
5 array.push(a, 2)
6 array.push(a, 0)
7 array.push(a, 1)
8 array.push(b, 4)
9 array.push(b, 3)
10 array.push(b, 5)
11 if barstate.islast
12 barUp = close > open
13 array.sort(barUp ? a : b, barUp ? order.ascending : order.descending)
14 label.new(bar_index, 0,
15 "a " + (barUp ? "is sorted ▲: " : "is not sorted: ") + str.tostring(a) + "\n\n

↪→" +
16 "b " + (barUp ? "is not sorted: " : "is sorted ▼: ") + str.tostring(b), size␣

↪→= size.large)

Another useful option for sorting arrays is to use the array.sort_indices() function, which takes a reference to the original
array and returns an array containing the indices from the original array. Please note that this function won’t modify the
original array. The order parameter is optional and defaults to order.ascending.

Reversing

Use array.reverse() to reverse an array:

1 //@version=5
2 indicator("`array.reverse()`")
3 a = array.new<float>(0)
4 array.push(a, 0)
5 array.push(a, 1)
6 array.push(a, 2)

(continues on next page)

3.14. Arrays 107

https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}sort_indices
https://www.tradingview.com/pine-script-reference/v5/#var_order\{dot\}ascending
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}reverse

Pine Script™ v5 User Manual

(continued from previous page)
7 if barstate.islast
8 array.reverse(a)
9 label.new(bar_index, 0, "a: " + str.tostring(a))

Slicing

Slicing an array using array.slice() creates a shallow copy of a subset of the parent array. You determine the size of the
subset to slice using the index_from and index_to parameters. The index_to argument must be one greater
than the end of the subset you want to slice.
The shallow copy created by the slice acts like a window on the parent array’s content. The indices used for the slice
define the window’s position and size over the parent array. If, as in the example below, a slice is created from the first
three elements of an array (indices 0 to 2), then regardless of changes made to the parent array, and as long as it contains
at least three elements, the shallow copy will always contain the parent array’s first three elements.
Additionally, once the shallow copy is created, operations on the copy are mirrored on the parent array. Adding an element
to the end of the shallow copy, as is done in the following example, will widen the window by one element and also insert
that element in the parent array at index 3. In this example, to slice the subset from index 0 to index 2 of array a, we must
use _sliceOfA = array.slice(a, 0, 3):

1 //@version=5
2 indicator("`array.slice()`")
3 a = array.new<float>(0)
4 array.push(a, 0)
5 array.push(a, 1)
6 array.push(a, 2)
7 array.push(a, 3)
8 if barstate.islast
9 // Create a shadow of elements at index 1 and 2 from array `a`.
10 sliceOfA = array.slice(a, 0, 3)
11 label.new(bar_index, 0, "BEFORE\na: " + str.tostring(a) + "\nsliceOfA: " + str.

↪→tostring(sliceOfA))
12 // Remove first element of parent array `a`.
13 array.remove(a, 0)
14 // Add a new element at the end of the shallow copy, thus also affecting the␣

↪→original array `a`.
15 array.push(sliceOfA, 4)
16 label.new(bar_index, 0, "AFTER\na: " + str.tostring(a) + "\nsliceOfA: " + str.

↪→tostring(sliceOfA), style = label.style_label_up)

108 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}slice

Pine Script™ v5 User Manual

3.14.10 Searching arrays

We can test if a value is part of an array with the array.includes() function, which returns true if the element is found. We
can find the first occurrence of a value in an array by using the array.indexof() function. The first occurence is the one
with the lowest index. We can also find the last occurrence of a value with array.lastindexof():

1 //@version=5
2 indicator("Searching in arrays")
3 valueInput = input.int(1)
4 a = array.new<float>(0)
5 array.push(a, 0)
6 array.push(a, 1)
7 array.push(a, 2)
8 array.push(a, 1)
9 if barstate.islast
10 valueFound = array.includes(a, valueInput)
11 firstIndexFound = array.indexof(a, valueInput)
12 lastIndexFound = array.lastindexof(a, valueInput)
13 label.new(bar_index, 0, "a: " + str.tostring(a) +
14 "\nFirst " + str.tostring(valueInput) + (firstIndexFound != -1 ? " value was␣

↪→found at index: " + str.tostring(firstIndexFound) : " value was not found.") +
15 "\nLast " + str.tostring(valueInput) + (lastIndexFound != -1 ? " value was␣

↪→found at index: " + str.tostring(lastIndexFound) : " value was not found."))

We can also perform a binary search on an array but note that performing a binary search on an array means that the
array will first need to be sorted in ascending order only. The array.binary_search() function will return the value’s index
if it was found or -1 if it wasn’t. If we want to always return an existing index from the array even if our chosen value
wasn’t found, then we can use one of the other binary search functions available. The array.binary_search_leftmost()
function, which returns an index if the value was found or the first index to the left where the value would be found. The
array.binary_search_rightmost() function is almost identical and returns an index if the value was found or the first index
to the right where the value would be found.

3.14.11 Error handling

Malformed array.*() call syntax in Pine scripts will cause the usual compiler error messages to appear in Pine
Editor’s console, at the bottom of the window, when you save a script. Refer to the Pine Script™ v5 Reference Manual
when in doubt regarding the exact syntax of function calls.
Scripts using arrays can also throw runtime errors, which appear as an exclamation mark next to the indicator’s name on
the chart. We discuss those runtime errors in this section.

Index xx is out of bounds. Array size is yy

This will most probably be the most frequent error you encounter. It will happen when you reference an nonexistent array
index. The “xx” value will be the value of the faulty index you tried to use, and “yy” will be the size of the array. Recall
that array indices start at zero—not one—and end at the array’s size, minus one. An array of size 3’s last valid index is
thus 2.
To avoid this error, you must make provisions in your code logic to prevent using an index lying outside of the array’s
index boundaries. This code will generate the error because the last index we use in the loop is outside the valid index
range for the array:

1 //@version=5
2 indicator("Out of bounds index")

(continues on next page)

3.14. Arrays 109

https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}includes
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}indexof
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}lastindexof
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}binary_search
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}binary_search_leftmost
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}binary_search_rightmost
https://www.tradingview.com/pine-script-reference/v5/

Pine Script™ v5 User Manual

(continued from previous page)
3 a = array.new<float>(3)
4 for i = 1 to 3
5 array.set(a, i, i)
6 plot(array.pop(a))

The correct for statement is:

for i = 0 to 2

To loop on all array elements in an array of unknown size, use:

1 //@version=5
2 indicator("Protected `for` loop")
3 sizeInput = input.int(0, "Array size", minval = 0, maxval = 100000)
4 a = array.new<float>(sizeInput)
5 for i = 0 to (array.size(a) == 0 ? na : array.size(a) - 1)
6 array.set(a, i, i)
7 plot(array.pop(a))

When you size arrays dynamically using a field in your script’s Settings/Inputs tab, protect the boundaries of that value
using input.int()’s minval and maxval parameters:

1 //@version=5
2 indicator("Protected array size")
3 sizeInput = input.int(10, "Array size", minval = 1, maxval = 100000)
4 a = array.new<float>(sizeInput)
5 for i = 0 to sizeInput - 1
6 array.set(a, i, i)
7 plot(array.size(a))

See the Looping section of this page for more information.

Cannot call array methods when ID of array is ‘na’

When an array ID is initialized to na, operations on it are not allowed, since no array exists. All that exists at that point
is an array variable containing the na value rather that a valid array ID pointing to an existing array. Note that an array
created with no elements in it, as you do when you use a = array.new_int(0), has a valid ID nonetheless. This
code will throw the error we are discussing:

1 //@version=5
2 indicator("Out of bounds index")
3 array<int> a = na
4 array.push(a, 111)
5 label.new(bar_index, 0, "a: " + str.tostring(a))

To avoid it, create an array with size zero using:

array<int> a = array.new_int(0)

or:

a = array.new_int(0)

110 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}int

Pine Script™ v5 User Manual

Array is too large. Maximum size is 100000

This error will appear if your code attempts to declare an array with a size greater than 100,000. It will also occur if,
while dynamically appending elements to an array, a new element would increase the array’s size past the maximum.

Cannot create an array with a negative size

We haven’t found any use for arrays of negative size yet, but if you ever do, we may allow them :)

Cannot use shift() if array is empty.

This error will occur if array.shift() is called to remove the first element of an empty array.

Cannot use pop() if array is empty.

This error will occur if array.pop() is called to remove the last element of an empty array.

Index ‘from’ should be less than index ‘to’

When two indices are used in functions such as array.slice(), the first index must always be smaller than the second one.

Slice is out of bounds of the parent array

This message occurs whenever the parent array’s size is modified in such a way that it makes the shallow copy created by
a slice point outside the boundaries of the parent array. This code will reproduce it because after creating a slice from
index 3 to 4 (the last two elements of our five-element parent array), we remove the parent’s first element, making its
size four and its last index 3. From that moment on, the shallow copy which is still poiting to the “window” at the parent
array’s indices 3 to 4, is pointing out of the parent array’s boundaries:

1 //@version=5
2 indicator("Slice out of bounds")
3 a = array.new<float>(5, 0)
4 b = array.slice(a, 3, 5)
5 array.remove(a, 0)
6 c = array.indexof(b, 2)
7 plot(c)

3.14. Arrays 111

https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}shift
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}pop
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}slice
https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

3.15 Matrices

• Introduction

• Declaring a matrix

• Reading and writing matrix elements

• Rows and columns

• Looping through a matrix

• Copying a matrix

• Scope and history

• Inspecting a matrix

• Manipulating a matrix

• Matrix calculations

• Error handling

Note: This page contains advanced material. If you are a beginning Pine Script™ programmer, we recommend you
become familiar with other, more accessible Pine Script™ features before you venture here.

3.15.1 Introduction

Pine Script™ Matrices are collections that store value references in a rectangular format. They are essentially the equiv-
alent of two-dimensional array objects with functions and methods for inspection, modification, and specialized calcula-
tions. As with arrays, all matrix elements must be of the same type, which can be a built-in or a user-defined type.
Matrices reference their elements using two indices: one index for their rows and the other for their columns. Each index
starts at 0 and extends to the number of rows/columns in the matrix minus one. Matrices in Pine can have dynamic
numbers of rows and columns that vary across bars. The total number of elements within a matrix is the product of the
number of rows and columns (e.g., a 5x5 matrix has a total of 25). Like arrays, the total number of elements in a matrix
cannot exceed 100,000.

3.15.2 Declaring a matrix

Pine Script™ uses the following syntax for matrix declaration:

[var/varip][matrix<type>]<identifier> = <expression>

Where <type> is a type template for the matrix that declares the type of values it will contain, and the <expression>
returns either a matrix instance of the type or na.
When declaring a matrix variable as na, users must specify that the identifier will reference matrices of a specific type
by including the matrix keyword followed by a type template.
This line declares a new myMatrix variable with a value of na. It explicitly declares the variable as matrix<float>,
which tells the compiler that the variable can only accept matrix objects containing float values:

112 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#op_array
https://www.tradingview.com/pine-script-docs/en/v5/language/Type_system.html#id2
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.elements_count
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.rows
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.columns
https://www.tradingview.com/pine-script-reference/v5/#op_matrix
https://www.tradingview.com/pine-script-reference/v5/#op_matrix
https://www.tradingview.com/pine-script-reference/v5/#op_float

Pine Script™ v5 User Manual

matrix<float> myMatrix = na

When a matrix variable is not assigned to na, the matrix keyword and its type template are optional, as the compiler will
use the type information from the object the variable references.
Here, we declare a myMatrix variable referencing a new matrix<float> instance with two rows, two columns, and
an initial_value of 0. The variable gets its type information from the new object in this case, so it doesn’t require
an explicit type declaration:

myMatrix = matrix.new<float>(2, 2, 0.0)

Using `var` and `varip` keywords

As with other variables, users can include the var or varip keywords to instruct a script to declare a matrix variable only
once rather than on every bar. A matrix variable declared with this keyword will point to the same instance throughout
the span of the chart unless the script explicitly assigns another matrix to it, allowing a matrix and its element references
to persist between script iterations.
This script declares an m variable assigned to a matrix that holds a single row of two int elements using the var keyword.
On every 20th bar, the script adds 1 to the first element on the first row of the m matrix. The plot() call displays this
element on the chart. As we see from the plot, the value of m.get(0, 0) persists between bars, never returning to the initial
value of 0:

1 //@version=5
2 indicator("var matrix demo")
3

4 //@variable A 1x2 rectangular matrix declared only at `bar_index == 0`, i.e., the␣
↪→first bar.

5 var m = matrix.new<int>(1, 2, 0)
6

7 //@variable Is `true` on every 20th bar.
8 bool update = bar_index % 20 == 0
9

10 if update
11 int currentValue = m.get(0, 0) // Get the current value of the first row and␣

↪→column.
12 m.set(0, 0, currentValue + 1) // Set the first row and column element value to␣

↪→`currentValue + 1`.
13

14 plot(m.get(0, 0), linewidth = 3) // Plot the value from the first row and column.

Note: Matrix variables declared using varip behave as ones using var on historical data, but they update their values for
realtime bars (i.e., the bars since the script’s last compilation) on each new price tick. Matrices assigned to varip variables

3.15. Matrices 113

https://www.tradingview.com/pine-script-reference/v5/#op_matrix
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-reference/v5/#op_int
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.get
https://www.tradingview.com/pine-script-reference/v5/#kw_varip
https://www.tradingview.com/pine-script-reference/v5/#kw_var
https://www.tradingview.com/pine-script-reference/v5/#kw_varip

Pine Script™ v5 User Manual

can only hold int, float, bool, color, or string types or user-defined types that exclusively contain within their fields these
types or collections (arrays, matrices, or maps) of these types.

3.15.3 Reading and writing matrix elements

`matrix.get()` and `matrix.set()`

To retrieve the value from a matrix at a specified row and column index, use matrix.get(). This function locates the
specified matrix element and returns its value. Similarly, to overwrite a specific element’s value, use matrix.set() to assign
the element at the specified row and column to a new value.
The example below defines a square matrix m with two rows and columns and an initial_value of 0 for all elements
on the first bar. The script adds 1 to each element’s value on different bars using the m.get() and m.set() methods. It
updates the first row’s first value once every 11 bars, the first row’s second value once every seven bars, the second row’s
first value once every five bars, and the second row’s second value once every three bars. The script plots each element’s
value on the chart:

1 //@version=5
2 indicator("Reading and writing elements demo")
3

4 //@variable A 2x2 square matrix of `float` values.
5 var m = matrix.new<float>(2, 2, 0.0)
6

7 switch
8 bar_index % 11 == 0 => m.set(0, 0, m.get(0, 0) + 1.0) // Adds 1 to the value at␣

↪→row 0, column 0 every 11th bar.
9 bar_index % 7 == 0 => m.set(0, 1, m.get(0, 1) + 1.0) // Adds 1 to the value at␣

↪→row 0, column 1 every 7th bar.
10 bar_index % 5 == 0 => m.set(1, 0, m.get(1, 0) + 1.0) // Adds 1 to the value at␣

↪→row 1, column 0 every 5th bar.
11 bar_index % 3 == 0 => m.set(1, 1, m.get(1, 1) + 1.0) // Adds 1 to the value at␣

↪→row 1, column 1 every 3rd bar.
12

13 plot(m.get(0, 0), "Row 0, Column 0 Value", color.red, 2)
14 plot(m.get(0, 1), "Row 0, Column 1 Value", color.orange, 2)
15 plot(m.get(1, 0), "Row 1, Column 0 Value", color.green, 2)
16 plot(m.get(1, 1), "Row 1, Column 1 Value", color.blue, 2)

114 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#type_int
https://www.tradingview.com/pine-script-reference/v5/#type_float
https://www.tradingview.com/pine-script-reference/v5/#type_bool
https://www.tradingview.com/pine-script-reference/v5/#type_color
https://www.tradingview.com/pine-script-reference/v5/#type_string
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.get
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.set
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.get
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.set

Pine Script™ v5 User Manual

`matrix.fill()`

To overwrite all matrix elements with a specific value, use matrix.fill(). This function points all items in the entire matrix or
within the from_row/column and to_row/column index range to the value specified in the call. For example,
this snippet declares a 4x4 square matrix, then fills its elements with a random value:

myMatrix = matrix.new<float>(4, 4)
myMatrix.fill(math.random())

Note when usingmatrix.fill() with matrices containing special types (line, linefill, box, polyline, label, table, or chart.point)
or UDTs, all replaced elements will point to the same object passed in the function call.
This script declares a matrix with four rows and columns of label references, which it fills with a new label object on the
first bar. On each bar, the script sets the x attribute of the label referenced at row 0, column 0 to bar_index, and the
text attribute of the one referenced at row 3, column 3 to the number of labels on the chart. Although the matrix can
reference 16 (4x4) labels, each element points to the same instance, resulting in only one label on the chart that updates
its x and text attributes on each bar:

1 //@version=5
2 indicator("Object matrix fill demo")
3

4 //@variable A 4x4 label matrix.
5 var matrix<label> m = matrix.new<label>(4, 4)
6

7 // Fill `m` with a new label object on the first bar.
8 if bar_index == 0
9 m.fill(label.new(0, 0, textcolor = color.white, size = size.huge))
10

11 //@variable The number of label objects on the chart.
12 int numLabels = label.all.size()
13

14 // Set the `x` of the label from the first row and column to `bar_index`.
15 m.get(0, 0).set_x(bar_index)
16 // Set the `text` of the label at the last row and column to the number of labels.
17 m.get(3, 3).set_text(str.format("Total labels on the chart: {0}", numLabels))

3.15. Matrices 115

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.fill
https://www.tradingview.com/pine-script-reference/v5/#fun_math.random
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.fill
https://www.tradingview.com/pine-script-reference/v5/#type_line
https://www.tradingview.com/pine-script-reference/v5/#type_linefill
https://www.tradingview.com/pine-script-reference/v5/#type_box
https://www.tradingview.com/pine-script-reference/v5/#type_polyline
https://www.tradingview.com/pine-script-reference/v5/#type_label
https://www.tradingview.com/pine-script-reference/v5/#type_table
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#op_label
https://www.tradingview.com/pine-script-reference/v5/#op_label
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index

Pine Script™ v5 User Manual

3.15.4 Rows and columns

Retrieving

Matrices facilitate the retrieval of all values from a specific row or column via the matrix.row() and matrix.col() functions.
These functions return the values as an array object sized according to the other dimension of the matrix, i.e., the size of
a matrix.row() array equals the number of columns and the size of a matrix.col() array equals the number of rows.
The script below populates a 3x2 m matrix with the values 1 - 6 on the first chart bar. It calls the m.row() and m.col()
methods to access the first row and column arrays from the matrix and displays them on the chart in a label along with
the array sizes:

1 //@version=5
2 indicator("Retrieving rows and columns demo")
3

4 //@variable A 3x2 rectangular matrix.
5 var matrix<float> m = matrix.new<float>(3, 2)
6

7 if bar_index == 0
8 m.set(0, 0, 1.0) // Set row 0, column 0 value to 1.
9 m.set(0, 1, 2.0) // Set row 0, column 1 value to 2.
10 m.set(1, 0, 3.0) // Set row 1, column 0 value to 3.
11 m.set(1, 1, 4.0) // Set row 1, column 1 value to 4.
12 m.set(2, 0, 5.0) // Set row 1, column 0 value to 5.
13 m.set(2, 1, 6.0) // Set row 1, column 1 value to 6.
14

15 //@variable The first row of the matrix.
16 array<float> row0 = m.row(0)
17 //@variable The first column of the matrix.
18 array<float> column0 = m.col(0)
19

20 //@variable Displays the first row and column of the matrix and their sizes in a␣
↪→label.

21 var label debugLabel = label.new(0, 0, color = color.blue, textcolor = color.white,␣
↪→size = size.huge)

22 debugLabel.set_x(bar_index)
23 debugLabel.set_text(str.format("Row 0: {0}, Size: {1}\nCol 0: {2}, Size: {3}", row0,␣

↪→m.columns(), column0, m.rows()))

Note that:
• To get the sizes of the arrays displayed in the label, we used the rows() and columns() methods rather than

116 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.row
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.col
https://www.tradingview.com/pine-script-reference/v5/#op_array
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.row
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.columns
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.col
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.rows
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.row
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.col
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.rows
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.columns

Pine Script™ v5 User Manual

array.size() to demonstrate that the size of the row0 array equals the number of columns and the size of the
column0 array equals the number of rows.

matrix.row() and matrix.col() copy the references in a row/column to a new array. Modifications to the arrays returned
by these functions do not directly affect the elements or the shape of a matrix.
Here, we’ve modified the previous script to set the first element of row0 to 10 via the array.set() method before displaying
the label. This script also plots the value from row 0, column 0. As we see, the label shows that the first element of the
row0 array is 10. However, the plot shows that the corresponding matrix element still has a value of 1:

1 //@version=5
2 indicator("Retrieving rows and columns demo")
3

4 //@variable A 3x2 rectangular matrix.
5 var matrix<float> m = matrix.new<float>(3, 2)
6

7 if bar_index == 0
8 m.set(0, 0, 1.0) // Set row 0, column 0 value to 1.
9 m.set(0, 1, 2.0) // Set row 0, column 1 value to 2.
10 m.set(1, 0, 3.0) // Set row 1, column 0 value to 3.
11 m.set(1, 1, 4.0) // Set row 1, column 1 value to 4.
12 m.set(2, 0, 5.0) // Set row 1, column 0 value to 5.
13 m.set(2, 1, 6.0) // Set row 1, column 1 value to 6.
14

15 //@variable The first row of the matrix.
16 array<float> row0 = m.row(0)
17 //@variable The first column of the matrix.
18 array<float> column0 = m.col(0)
19

20 // Set the first `row` element to 10.
21 row0.set(0, 10)
22

23 //@variable Displays the first row and column of the matrix and their sizes in a␣
↪→label.

24 var label debugLabel = label.new(0, m.get(0, 0), color = color.blue, textcolor =␣
↪→color.white, size = size.huge)

25 debugLabel.set_x(bar_index)
26 debugLabel.set_text(str.format("Row 0: {0}, Size: {1}\nCol 0: {2}, Size: {3}", row0,␣

↪→m.columns(), column0, m.rows()))
27

28 // Plot the first element of `m`.
29 plot(m.get(0, 0), linewidth = 3)

Although changes to an array returned by matrix.row() or matrix.col() do not directly affect a parent matrix, it’s important
to note the resulting array from a matrix containing UDTs or special types, including line, linefill, box, polyline, label,
table, or chart.point, behaves as a shallow copy of a row/column, i.e., the elements within an array returned from these

3.15. Matrices 117

https://www.tradingview.com/pine-script-reference/v5/#fun_array.size
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.row
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.col
https://www.tradingview.com/pine-script-reference/v5/#op_array
https://www.tradingview.com/pine-script-reference/v5/#fun_array.set
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#op_array
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.row
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.col
https://www.tradingview.com/pine-script-reference/v5/#type_line
https://www.tradingview.com/pine-script-reference/v5/#type_linefill
https://www.tradingview.com/pine-script-reference/v5/#type_box
https://www.tradingview.com/pine-script-reference/v5/#type_polyline
https://www.tradingview.com/pine-script-reference/v5/#type_label
https://www.tradingview.com/pine-script-reference/v5/#type_table
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point

Pine Script™ v5 User Manual

functions point to the same objects as the corresponding matrix elements.
This script contains a custom myUDT type containing a value field with an initial value of 0. It declares a 1x1 mmatrix
to hold a single myUDT instance on the first bar, then calls m.row(0) to copy the first row of the matrix as an array. On
every chart bar, the script adds 1 to the value field of the first row array element. In this case, the value field of the
matrix element increases on every bar as well since both elements reference the same object:

1 //@version=5
2 indicator("Row with reference types demo")
3

4 //@type A custom type that holds a float value.
5 type myUDT
6 float value = 0.0
7

8 //@variable A 1x1 matrix of `myUDT` type.
9 var matrix<myUDT> m = matrix.new<myUDT>(1, 1, myUDT.new())
10 //@variable A shallow copy of the first row of `m`.
11 array<myUDT> row = m.row(0)
12 //@variable The first element of the `row`.
13 myUDT firstElement = row.get(0)
14

15 firstElement.value += 1.0 // Add 1 to the `value` field of `firstElement`. Also␣
↪→affects the element in the matrix.

16

17 plot(m.get(0, 0).value, linewidth = 3) // Plot the `value` of the `myUDT` object from␣
↪→the first row and column of `m`.

Inserting

Scripts can add new rows and columns to a matrix via matrix.add_row() and matrix.add_col(). These functions insert
the value references from an array into a matrix at the specified row/column index. If the id matrix is empty (has no
rows or columns), the array_id in the call can be of any size. If a row/column exists at the specified index, the matrix
increases the index value for the existing row/column and all after it by 1.
The script below declares an empty m matrix and inserts rows and columns using the m.add_row() and m.add_col()
methods. It first inserts an array with three elements at row 0, turning m into a 1x3 matrix, then another at row 1,
changing the shape to 2x3. After that, the script inserts another array at row 0, which changes the shape of m to 3x3 and
shifts the index of all rows previously at index 0 and higher. It inserts another array at the last column index, changing
the shape to 3x4. Finally, it adds an array with four values at the end row index.
The resulting matrix has four rows and columns and contains values 1-16 in ascending order. The script displays the rows
of m after each row/column insertion with a user-defined debugLabel() function to visualize the process:

118 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#op_array
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.add_row
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.add_col
https://www.tradingview.com/pine-script-reference/v5/#op_array
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.add_row
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.add_col

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Rows and columns demo")
3

4 //@function Displays the rows of a matrix in a label with a note.
5 //@param this The matrix to display.
6 //@param barIndex The `bar_index` to display the label at.
7 //@param bgColor The background color of the label.
8 //@param textColor The color of the label's text.
9 //@param note The text to display above the rows.
10 method debugLabel(
11 matrix<float> this, int barIndex = bar_index, color bgColor = color.blue,
12 color textColor = color.white, string note = ""
13) =>
14 labelText = note + "\n" + str.tostring(this)
15 if barstate.ishistory
16 label.new(
17 barIndex, 0, labelText, color = bgColor, style = label.style_label_

↪→center,
18 textcolor = textColor, size = size.huge
19)
20

21 //Create an empty matrix.
22 var m = matrix.new<float>()
23

24 if bar_index == last_bar_index - 1
25 debugLabel(m, bar_index - 30, note = "Empty matrix")
26

27 // Insert an array at row 0. `m` will now have 1 row and 3 columns.
28 m.add_row(0, array.from(5, 6, 7))
29 debugLabel(m, bar_index - 20, note = "New row at\nindex 0")
30

31 // Insert an array at row 1. `m` will now have 2 rows and 3 columns.
32 m.add_row(1, array.from(9, 10, 11))
33 debugLabel(m, bar_index - 10, note = "New row at\nindex 1")
34

35 // Insert another array at row 0. `m` will now have 3 rows and 3 columns.
36 // The values previously on row 0 will now be on row 1, and the values from row 1␣

↪→will be on row 2.
37 m.add_row(0, array.from(1, 2, 3))
38 debugLabel(m, bar_index, note = "New row at\nindex 0")
39

40 // Insert an array at column 3. `m` will now have 3 rows and 4 columns.
41 m.add_col(3, array.from(4, 8, 12))
42 debugLabel(m, bar_index + 10, note = "New column at\nindex 3")
43

44 // Insert an array at row 3. `m` will now have 4 rows and 4 columns.
45 m.add_row(3, array.from(13, 14, 15, 16))
46 debugLabel(m, bar_index + 20, note = "New row at\nindex 3")

Note: Just as the row or column arrays retrieved from a matrix of line, linefill, box, polyline, label, table, chart.point,
or UDT instances behave as shallow copies, the elements of matrices containing such types reference the same objects as
the arrays inserted into them. Modifications to the element values in either object affect the other in such cases.

3.15. Matrices 119

https://www.tradingview.com/pine-script-reference/v5/#type_line
https://www.tradingview.com/pine-script-reference/v5/#type_linefill
https://www.tradingview.com/pine-script-reference/v5/#type_box
https://www.tradingview.com/pine-script-reference/v5/#type_polyline
https://www.tradingview.com/pine-script-reference/v5/#type_label
https://www.tradingview.com/pine-script-reference/v5/#type_table
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point

Pine Script™ v5 User Manual

Removing

To remove a specific row or column from a matrix, use matrix.remove_row() and matrix.remove_col(). These functions
remove the specified row/column and decrease the index values of all rows/columns after it by 1.
For this example, we’ve added these lines of code to our “Rows and columns demo” script from the section above:

// Removing example

// Remove the first row and last column from the matrix. `m` will now have 3 rows␣
↪→and 3 columns.

m.remove_row(0)
m.remove_col(3)
debugLabel(m, bar_index + 30, color.red, note = "Removed row 0\nand column 3")

This code removes the first row and the last column of the m matrix using the m.remove_row() and m.remove_col()
methods and displays the rows in a label at bar_index + 30. As we can see, m has a 3x3 shape after executing this
block, and the index values for all existing rows are reduced by 1:

Swapping

To swap the rows and columns of a matrix without altering its dimensions, use matrix.swap_rows() and ma-
trix.swap_columns(). These functions swap the locations of the elements at the row1/column1 and row2/column2
indices.
Let’s add the following lines to the previous example, which swap the first and last rows of m and display the changes in a
label at bar_index + 40:

// Swapping example

// Swap the first and last row. `m` retains the same dimensions.
m.swap_rows(0, 2)
debugLabel(m, bar_index + 40, color.purple, note = "Swapped rows 0\nand 2")

In the new label, we see the matrix has the same number of rows as before, and the first and last rows have traded places:

120 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.remove_row
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.remove_col
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.remove_row
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.remove_col
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.swap_rows
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.swap_columns
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.swap_columns

Pine Script™ v5 User Manual

Replacing

It may be desirable in some cases to completely replace a row or column in a matrix. To do so, insert the new array at the
desired row/column and remove the old elements previously at that index.
In the following code, we’ve defined a replaceRow() method that uses the add_row() method to insert the new
values at the row index and uses the remove_row() method to remove the old row that moved to the row + 1 index.
This script uses the replaceRow() method to fill the rows of a 3x3 matrix with the numbers 1-9. It draws a label on
the chart before and after replacing the rows using the custom debugLabel() method:

1 //@version=5
2 indicator("Replacing rows demo")
3

4 //@function Displays the rows of a matrix in a label with a note.
5 //@param this The matrix to display.
6 //@param barIndex The `bar_index` to display the label at.
7 //@param bgColor The background color of the label.
8 //@param textColor The color of the label's text.
9 //@param note The text to display above the rows.
10 method debugLabel(
11 matrix<float> this, int barIndex = bar_index, color bgColor = color.blue,

(continues on next page)

3.15. Matrices 121

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.add_row
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.remove_row

Pine Script™ v5 User Manual

(continued from previous page)
12 color textColor = color.white, string note = ""
13) =>
14 labelText = note + "\n" + str.tostring(this)
15 if barstate.ishistory
16 label.new(
17 barIndex, 0, labelText, color = bgColor, style = label.style_label_

↪→center,
18 textcolor = textColor, size = size.huge
19)
20

21 //@function Replaces the `row` of `this` matrix with a new array of `values`.
22 //@param row The row index to replace.
23 //@param values The array of values to insert.
24 method replaceRow(matrix<float> this, int row, array<float> values) =>
25 this.add_row(row, values) // Inserts a copy of the `values` array at the `row`.
26 this.remove_row(row + 1) // Removes the old elements previously at the `row`.
27

28 //@variable A 3x3 matrix.
29 var matrix<float> m = matrix.new<float>(3, 3, 0.0)
30

31 if bar_index == last_bar_index - 1
32 m.debugLabel(note = "Original")
33 // Replace each row of `m`.
34 m.replaceRow(0, array.from(1.0, 2.0, 3.0))
35 m.replaceRow(1, array.from(4.0, 5.0, 6.0))
36 m.replaceRow(2, array.from(7.0, 8.0, 9.0))
37 m.debugLabel(bar_index + 10, note = "Replaced rows")

3.15.5 Looping through a matrix

`for`

When a script only needs to iterate over the row/column indices in a matrix, the most common method is to use for loops.
For example, this line creates a loop with a row value that starts at 0 and increases by one until it reaches one less than
the number of rows in the m matrix (i.e., the last row index):

for row = 0 to m.rows() - 1

To iterate over all index values in the mmatrix, we can create a nested loop that iterates over each column index on each
row value:

for row = 0 to m.rows() - 1
for column = 0 to m.columns() - 1

Let’s use this nested structure to create a method that visualizes matrix elements. In the script below, we’ve defined
a toTable() method that displays the elements of a matrix within a table object. It iterates over each row index
and over each column index on every row. Within the loop, it converts each element to a string to display in the
corresponding table cell.
On the first bar, the script creates an empty m matrix, populates it with rows, and calls m.toTable() to display its
elements:

122 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-reference/v5/#op_table
https://www.tradingview.com/pine-script-reference/v5/#op_string

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("for loop demo", "Matrix to table")
3

4 //@function Displays the elements of `this` matrix in a table.
5 //@param this The matrix to display.
6 //@param position The position of the table on the chart.
7 //@param bgColor The background color of the table.
8 //@param textColor The color of the text in each cell.
9 //@param note A note string to display on the bottom row of the table.
10 //@returns A new `table` object with cells corresponding to each element of `this`␣

↪→matrix.
11 method toTable(
12 matrix<float> this, string position = position.middle_center,
13 color bgColor = color.blue, color textColor = color.white,
14 string note = na
15) =>
16 //@variable The number of rows in `this` matrix.
17 int rows = this.rows()
18 //@variable The number of columns in `this` matrix.
19 int columns = this.columns()
20 //@variable A table that displays the elements of `this` matrix with an optional␣

↪→`note` cell.
21 table result = table.new(position, columns, rows + 1, bgColor)
22

23 // Iterate over each row index of `this` matrix.
24 for row = 0 to rows - 1
25 // Iterate over each column index of `this` matrix on each `row`.
26 for col = 0 to columns - 1
27 //@variable The element from `this` matrix at the `row` and `col` index.
28 float element = this.get(row, col)
29 // Initialize the corresponding `result` cell with the `element` value.
30 result.cell(col, row, str.tostring(element), text_color = textColor, text_

↪→size = size.huge)
31

32 // Initialize a merged cell on the bottom row if a `note` is provided.
33 if not na(note)
34 result.cell(0, rows, note, text_color = textColor, text_size = size.huge)
35 result.merge_cells(0, rows, columns - 1, rows)
36

37 result // Return the `result` table.
38

39 //@variable A 3x4 matrix of values.
40 var m = matrix.new<float>()
41

(continues on next page)

3.15. Matrices 123

Pine Script™ v5 User Manual

(continued from previous page)
42 if bar_index == 0
43 // Add rows to `m`.
44 m.add_row(0, array.from(1, 2, 3))
45 m.add_row(1, array.from(5, 6, 7))
46 m.add_row(2, array.from(9, 10, 11))
47 // Add a column to `m`.
48 m.add_col(3, array.from(4, 8, 12))
49 // Display the elements of `m` in a table.
50 m.toTable()

`for…in`

When a script needs to iterate over and retrieve the rows of a matrix, using the for…in structure is often preferred over
the standard for loop. This structure directly references the row arrays in a matrix, making it a more convenient option
for such use cases. For example, this line creates a loop that returns a row array for each row in the m matrix:

for row in m

The following indicator calculates the moving average of OHLC data with an input length and displays the values on
the chart. The custom rowWiseAvg() method loops through the rows of a matrix using a for...in structure to
produce an array containing the array.avg() of each row.
On the first chart bar, the script creates a newmmatrix with four rows andlength columns, which it queues a new column
ofOHLCdata into via them.add_col() andm.remove_col()methods on each subsequent bar. It usesm.rowWiseAvg()
to calculate the array of row-wise averages, then it plots the element values on the chart:

1 //@version=5
2 indicator("for...in loop demo", "Average OHLC", overlay = true)
3

4 //@variable The number of terms in the average.
5 int length = input.int(20, "Length", minval = 1)
6

(continues on next page)

124 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#op_for\{dot\}\{dot\}\{dot\}in
https://www.tradingview.com/pine-script-reference/v5/#fun_array.avg
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.add_col
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.remove_col

Pine Script™ v5 User Manual

(continued from previous page)
7 //@function Calculates the average of each matrix row.
8 method rowWiseAvg(matrix<float> this) =>
9 //@variable An array with elements corresponding to each row's average.
10 array<float> result = array.new<float>()
11 // Iterate over each `row` of `this` matrix.
12 for row in this
13 // Push the average of each `row` into the `result`.
14 result.push(row.avg())
15 result // Return the resulting array.
16

17 //@variable A 4x`length` matrix of values.
18 var matrix<float> m = matrix.new<float>(4, length)
19

20 // Add a new column containing OHLC values to the matrix.
21 m.add_col(m.columns(), array.from(open, high, low, close))
22 // Remove the first column.
23 m.remove_col(0)
24

25 //@variable An array containing averages of `open`, `high`, `low`, and `close` over␣
↪→`length` bars.

26 array<float> averages = m.rowWiseAvg()
27

28 plot(averages.get(0), "Average Open", color.blue, 2)
29 plot(averages.get(1), "Average High", color.green, 2)
30 plot(averages.get(2), "Average Low", color.red, 2)
31 plot(averages.get(3), "Average Close", color.orange, 2)

Note that:
• for...in loops can also reference the index value of each row. For example, for [i, row] in m
creates a tuple containing the i row index and the corresponding row array from the m matrix on each loop
iteration.

3.15.6 Copying a matrix

Shallow copies

Pine scripts can copy matrices via matrix.copy(). This function returns a shallow copy of a matrix that does not affect the
shape of the original matrix or its references.
For example, this script assigns a new matrix to the myMatrix variable and adds two columns. It creates a new myCopy
matrix from myMatrix using the myMatrix.copy() method, then adds a new row. It displays the rows of both matrices
in labels via the user-defined debugLabel() function:

3.15. Matrices 125

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.copy
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.copy

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Shallow copy demo")
3

4 //@function Displays the rows of a matrix in a label with a note.
5 //@param this The matrix to display.
6 //@param barIndex The `bar_index` to display the label at.
7 //@param bgColor The background color of the label.
8 //@param textColor The color of the label's text.
9 //@param note The text to display above the rows.
10 method debugLabel(
11 matrix<float> this, int barIndex = bar_index, color bgColor = color.blue,
12 color textColor = color.white, string note = ""
13) =>
14 labelText = note + "\n" + str.tostring(this)
15 if barstate.ishistory
16 label.new(
17 barIndex, 0, labelText, color = bgColor, style = label.style_label_

↪→center,
18 textcolor = textColor, size = size.huge
19)
20

21 //@variable A 2x2 `float` matrix.
22 matrix<float> myMatrix = matrix.new<float>()
23 myMatrix.add_col(0, array.from(1.0, 3.0))
24 myMatrix.add_col(1, array.from(2.0, 4.0))
25

26 //@variable A shallow copy of `myMatrix`.
27 matrix<float> myCopy = myMatrix.copy()
28 // Add a row to the last index of `myCopy`.
29 myCopy.add_row(myCopy.rows(), array.from(5.0, 6.0))
30

31 if bar_index == last_bar_index - 1
32 // Display the rows of both matrices in separate labels.
33 myMatrix.debugLabel(note = "Original")
34 myCopy.debugLabel(bar_index + 10, color.green, note = "Shallow Copy")

It’s important to note that the elements within shallow copies of a matrix point to the same values as the original matrix.
When matrices contain special types (line, linefill, box, polyline, label, table, or chart.point) or user-defined types, the
elements of a shallow copy reference the same objects as the original.

126 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#type_line
https://www.tradingview.com/pine-script-reference/v5/#type_linefill
https://www.tradingview.com/pine-script-reference/v5/#type_box
https://www.tradingview.com/pine-script-reference/v5/#type_polyline
https://www.tradingview.com/pine-script-reference/v5/#type_label
https://www.tradingview.com/pine-script-reference/v5/#type_table
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point

Pine Script™ v5 User Manual

This script declares a myMatrix variable with a newLabel as the initial value. It then copies myMatrix to a myCopy
variable via myMatrix.copy() and plots the number of labels. As we see below, there’s only one label on the chart, as
the element in myCopy references the same object as the element in myMatrix. Consequently, changes to the element
values in myCopy affect the values in both matrices:

1 //@version=5
2 indicator("Shallow copy demo")
3

4 //@variable Initial value of the original matrix elements.
5 var label newLabel = label.new(
6 bar_index, 1, "Original", color = color.blue, textcolor = color.white, size =␣

↪→size.huge
7)
8

9 //@variable A 1x1 matrix containing a new `label` instance.
10 var matrix<label> myMatrix = matrix.new<label>(1, 1, newLabel)
11 //@variable A shallow copy of `myMatrix`.
12 var matrix<label> myCopy = myMatrix.copy()
13

14 //@variable The first label from the `myCopy` matrix.
15 label testLabel = myCopy.get(0, 0)
16

17 // Change the `text`, `style`, and `x` values of `testLabel`. Also affects the␣
↪→`newLabel`.

18 testLabel.set_text("Copy")
19 testLabel.set_style(label.style_label_up)
20 testLabel.set_x(bar_index)
21

22 // Plot the total number of labels.
23 plot(label.all.size(), linewidth = 3)

3.15. Matrices 127

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.copy
https://www.tradingview.com/pine-script-reference/v5/#op_label

Pine Script™ v5 User Manual

Deep copies

One can produce a deep copy of a matrix (i.e., a matrix whose elements point to copies of the original values) by explicitly
copying each object the matrix references.
Here, we’ve added a deepCopy() user-defined method to our previous script. The method creates a new matrix and
uses nested for loops to assign all elements to copies of the originals. When the script calls this method instead of the
built-in copy(), we see that there are now two labels on the chart, and any changes to the label from myCopy do not affect
the one from myMatrix:

1 //@version=5
2 indicator("Deep copy demo")
3

4 //@function Returns a deep copy of a label matrix.
5 method deepCopy(matrix<label> this) =>
6 //@variable A deep copy of `this` matrix.
7 matrix<label> that = this.copy()
8 for row = 0 to that.rows() - 1
9 for column = 0 to that.columns() - 1
10 // Assign the element at each `row` and `column` of `that` matrix to a␣

↪→copy of the retrieved label.
11 that.set(row, column, that.get(row, column).copy())
12 that
13

14 //@variable Initial value of the original matrix.
15 var label newLabel = label.new(
16 bar_index, 2, "Original", color = color.blue, textcolor = color.white, size =␣

↪→size.huge
17)
18

19 //@variable A 1x1 matrix containing a new `label` instance.
20 var matrix<label> myMatrix = matrix.new<label>(1, 1, newLabel)
21 //@variable A deep copy of `myMatrix`.
22 var matrix<label> myCopy = myMatrix.deepCopy()
23

24 //@variable The first label from the `myCopy` matrix.
25 label testLabel = myCopy.get(0, 0)
26

27 // Change the `text`, `style`, and `x` values of `testLabel`. Does not affect the␣
↪→`newLabel`.

(continues on next page)

128 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.copy

Pine Script™ v5 User Manual

(continued from previous page)
28 testLabel.set_text("Copy")
29 testLabel.set_style(label.style_label_up)
30 testLabel.set_x(bar_index)
31

32 // Change the `x` value of `newLabel`.
33 newLabel.set_x(bar_index)
34

35 // Plot the total number of labels.
36 plot(label.all.size(), linewidth = 3)

Submatrices

In Pine, a submatrix is a shallow copy of an existing matrix that only includes the rows and columns specified by the
from_row/column and to_row/column parameters. In essence, it is a sliced copy of a matrix.
For example, the script below creates an mSub matrix from the m matrix via the m.submatrix() method, then calls our
user-defined debugLabel() function to display the rows of both matrices in labels:

1 //@version=5
2 indicator("Submatrix demo")
3

4 //@function Displays the rows of a matrix in a label with a note.
5 //@param this The matrix to display.
6 //@param barIndex The `bar_index` to display the label at.
7 //@param bgColor The background color of the label.
8 //@param textColor The color of the label's text.
9 //@param note The text to display above the rows.
10 method debugLabel(
11 matrix<float> this, int barIndex = bar_index, color bgColor = color.blue,
12 color textColor = color.white, string note = ""
13) =>
14 labelText = note + "\n" + str.tostring(this)
15 if barstate.ishistory
16 label.new(
17 barIndex, 0, labelText, color = bgColor, style = label.style_label_

↪→center,
18 textcolor = textColor, size = size.huge
19)

(continues on next page)

3.15. Matrices 129

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.submatrix

Pine Script™ v5 User Manual

(continued from previous page)
20

21 //@variable A 3x3 matrix of values.
22 var m = matrix.new<float>()
23

24 if bar_index == last_bar_index - 1
25 // Add columns to `m`.
26 m.add_col(0, array.from(9, 6, 3))
27 m.add_col(1, array.from(8, 5, 2))
28 m.add_col(2, array.from(7, 4, 1))
29 // Display the rows of `m`.
30 m.debugLabel(note = "Original Matrix")
31

32 //@variable A 2x2 submatrix of `m` containing the first two rows and columns.
33 matrix<float> mSub = m.submatrix(from_row = 0, to_row = 2, from_column = 0, to_

↪→column = 2)
34 // Display the rows of `mSub`
35 debugLabel(mSub, bar_index + 10, bgColor = color.green, note = "Submatrix")

3.15.7 Scope and history

Matrix variables leave historical trails on each bar, allowing scripts to use the history-referencing operator [] to interact
with past matrix instances previously assigned to a variable. Additionally, scripts can modify matrices assigned to global
variables from within the scopes of functions, methods, and conditional structures.
This script calculates the average ratios of body and wick distances relative to the bar range over length bars. It displays
the data along with values from length bars ago in a table. The user-defined addData() function adds columns of
current and historical ratios to the globalMatrix, and the calcAvg() function references previous matrices
assigned to globalMatrix using the [] operator to calculate a matrix of averages:

1 //@version=5
2 indicator("Scope and history demo", "Bar ratio comparison")
3

(continues on next page)

130 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#op_{[}{]}
https://www.tradingview.com/pine-script-reference/v5/#op_{[}{]}

Pine Script™ v5 User Manual

(continued from previous page)
4 int length = input.int(10, "Length", 1)
5

6 //@variable A global matrix.
7 matrix<float> globalMatrix = matrix.new<float>()
8

9 //@function Calculates the ratio of body range to candle range.
10 bodyRatio() =>
11 math.abs(close - open) / (high - low)
12

13 //@function Calculates the ratio of upper wick range to candle range.
14 upperWickRatio() =>
15 (high - math.max(open, close)) / (high - low)
16

17 //@function Calculates the ratio of lower wick range to candle range.
18 lowerWickRatio() =>
19 (math.min(open, close) - low) / (high - low)
20

21 //@function Adds data to the `globalMatrix`.
22 addData() =>
23 // Add a new column of data at `column` 0.
24 globalMatrix.add_col(0, array.from(bodyRatio(), upperWickRatio(),␣

↪→lowerWickRatio()))
25 //@variable The column of `globalMatrix` from index 0 `length` bars ago.
26 array<float> pastValues = globalMatrix.col(0)[length]
27 // Add `pastValues` to the `globalMatrix`, or an array of `na` if `pastValues` is␣

↪→`na`.
28 if na(pastValues)
29 globalMatrix.add_col(1, array.new<float>(3))
30 else
31 globalMatrix.add_col(1, pastValues)
32

33 //@function Returns the `length`-bar average of matrices assigned to `globalMatrix`␣
↪→on historical bars.

34 calcAvg() =>
35 //@variable The sum historical `globalMatrix` matrices.
36 matrix<float> sums = matrix.new<float>(globalMatrix.rows(), globalMatrix.

↪→columns(), 0.0)
37 for i = 0 to length - 1
38 //@variable The `globalMatrix` matrix `i` bars before the current bar.
39 matrix<float> previous = globalMatrix[i]
40 // Break the loop if `previous` is `na`.
41 if na(previous)
42 sums.fill(na)
43 break
44 // Assign the sum of `sums` and `previous` to `sums`.
45 sums := matrix.sum(sums, previous)
46 // Divide the `sums` matrix by the `length`.
47 result = sums.mult(1.0 / length)
48

49 // Add data to the `globalMatrix`.
50 addData()
51

52 //@variable The historical average of the `globalMatrix` matrices.
53 globalAvg = calcAvg()
54

55 //@variable A `table` displaying information from the `globalMatrix`.
56 var table infoTable = table.new(

(continues on next page)

3.15. Matrices 131

Pine Script™ v5 User Manual

(continued from previous page)
57 position.middle_center, globalMatrix.columns() + 1, globalMatrix.rows() + 1,␣

↪→bgcolor = color.navy
58)
59

60 // Define value cells.
61 for [i, row] in globalAvg
62 for [j, value] in row
63 color textColor = value > 0.333 ? color.orange : color.gray
64 infoTable.cell(j + 1, i + 1, str.tostring(value), text_color = textColor,␣

↪→text_size = size.huge)
65

66 // Define header cells.
67 infoTable.cell(0, 1, "Body ratio", text_color = color.white, text_size = size.huge)
68 infoTable.cell(0, 2, "Upper wick ratio", text_color = color.white, text_size = size.

↪→huge)
69 infoTable.cell(0, 3, "Lower wick ratio", text_color = color.white, text_size = size.

↪→huge)
70 infoTable.cell(1, 0, "Current average", text_color = color.white, text_size = size.

↪→huge)
71 infoTable.cell(2, 0, str.format("{0} bars ago", length), text_color = color.white,␣

↪→text_size = size.huge)

Note that:
• The addData() and calcAvg() functions have no parameters, as they directly interact with the glob-
alMatrix and length variables declared in the outer scope.

• calcAvg() calculates the average by adding previous matrices using matrix.sum() and multiplying all
elements by 1 / length using matrix.mult(). We discuss these and other specialized functions in our
Matrix calculations section below.

3.15.8 Inspecting a matrix

The ability to inspect the shape of a matrix and patterns within its elements is crucial, as it helps reveal important
information about a matrix and its compatibility with various calculations and transformations. Pine Script™ in-
cludes several built-ins for matrix inspection, including matrix.is_square(), matrix.is_identity(), matrix.is_diagonal(), ma-
trix.is_antidiagonal(), matrix.is_symmetric(), matrix.is_antisymmetric(), matrix.is_triangular(), matrix.is_stochastic(),
matrix.is_binary(), and matrix.is_zero().
To demonstrate these features, this example contains a custom inspect() method that uses conditional blocks with
matrix.is_*() functions to return information about a matrix. It displays a string representation of an m matrix and
the description returned from m.inspect() in labels on the chart:

132 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.sum
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.mult
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_square
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_identity
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_diagonal
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_antidiagonal
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_antidiagonal
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_symmetric
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_antisymmetric
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_triangular
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_stochastic
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_binary
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_zero

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Matrix inspection demo")
3

4 //@function Inspects a matrix using `matrix.is_*()` functions and returns a `string`␣
↪→describing some of its features.

5 method inspect(matrix<int> this)=>
6 //@variable A string describing `this` matrix.
7 string result = "This matrix:\n"
8 if this.is_square()
9 result += "- Has an equal number of rows and columns.\n"
10 if this.is_binary()
11 result += "- Contains only 1s and 0s.\n"
12 if this.is_zero()
13 result += "- Is filled with 0s.\n"
14 if this.is_triangular()
15 result += "- Contains only 0s above and/or below its main diagonal.\n"
16 if this.is_diagonal()
17 result += "- Only has nonzero values in its main diagonal.\n"
18 if this.is_antidiagonal()
19 result += "- Only has nonzero values in its main antidiagonal.\n"
20 if this.is_symmetric()
21 result += "- Equals its transpose.\n"
22 if this.is_antisymmetric()
23 result += "- Equals the negative of its transpose.\n"
24 if this.is_identity()
25 result += "- Is the identity matrix.\n"
26 result
27

28 //@variable A 4x4 identity matrix.
29 matrix<int> m = matrix.new<int>()
30

31 // Add rows to the matrix.
32 m.add_row(0, array.from(1, 0, 0, 0))
33 m.add_row(1, array.from(0, 1, 0, 0))
34 m.add_row(2, array.from(0, 0, 1, 0))
35 m.add_row(3, array.from(0, 0, 0, 1))
36

37 if bar_index == last_bar_index - 1
38 // Display the `m` matrix in a blue label.
39 label.new(
40 bar_index, 0, str.tostring(m), color = color.blue, style = label.style_label_

↪→right,

(continues on next page)

3.15. Matrices 133

Pine Script™ v5 User Manual

(continued from previous page)
41 textcolor = color.white, size = size.huge
42)
43 // Display the result of `m.inspect()` in a purple label.
44 label.new(
45 bar_index, 0, m.inspect(), color = color.purple, style = label.style_label_

↪→left,
46 textcolor = color.white, size = size.huge
47)

3.15.9 Manipulating a matrix

Reshaping

The shape of a matrix can determine its compatibility with various matrix operations. In some cases, it is necessary to
change the dimensions of a matrix without affecting the number of elements or the values they reference, otherwise known
as reshaping. To reshape a matrix in Pine, use the matrix.reshape() function.
This example demonstrates the results of multiple reshaping operations on a matrix. The initial m matrix has a 1x8 shape
(one row and eight columns). Through successive calls to the m.reshape() method, the script changes the shape of m to
2x4, 4x2, and 8x1. It displays each reshaped matrix in a label on the chart using the custom debugLabel() method:

1 //@version=5
2 indicator("Reshaping example")
3

4 //@function Displays the rows of a matrix in a label with a note.
5 //@param this The matrix to display.
6 //@param barIndex The `bar_index` to display the label at.
7 //@param bgColor The background color of the label.
8 //@param textColor The color of the label's text.
9 //@param note The text to display above the rows.
10 method debugLabel(
11 matrix<float> this, int barIndex = bar_index, color bgColor = color.blue,
12 color textColor = color.white, string note = ""
13) =>
14 labelText = note + "\n" + str.tostring(this)
15 if barstate.ishistory
16 label.new(
17 barIndex, 0, labelText, color = bgColor, style = label.style_label_

(continues on next page)

134 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.reshape
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.reshape

Pine Script™ v5 User Manual

(continued from previous page)
↪→center,

18 textcolor = textColor, size = size.huge
19)
20

21 //@variable A matrix containing the values 1-8.
22 matrix<int> m = matrix.new<int>()
23

24 if bar_index == last_bar_index - 1
25 // Add the initial vector of values.
26 m.add_row(0, array.from(1, 2, 3, 4, 5, 6, 7, 8))
27 m.debugLabel(note = "Initial 1x8 matrix")
28

29 // Reshape. `m` now has 2 rows and 4 columns.
30 m.reshape(2, 4)
31 m.debugLabel(bar_index + 10, note = "Reshaped to 2x4")
32

33 // Reshape. `m` now has 4 rows and 2 columns.
34 m.reshape(4, 2)
35 m.debugLabel(bar_index + 20, note = "Reshaped to 4x2")
36

37 // Reshape. `m` now has 8 rows and 1 column.
38 m.reshape(8, 1)
39 m.debugLabel(bar_index + 30, note = "Reshaped to 8x1")

Note that:
• The order of elements in m does not change with each m.reshape() call.
• When reshaping a matrix, the product of the rows and columns arguments must equal the ma-
trix.elements_count() value, as matrix.reshape() cannot change the number of elements in a matrix.

Reversing

One can reverse the order of all elements in a matrix using matrix.reverse(). This function moves the references of an
m-by-n matrix id at the i-th row and j-th column to the m - 1 - i row and n - 1 - j column.
For example, this script creates a 3x3 matrix containing the values 1-9 in ascending order, then uses the reverse()
method to reverse its contents. It displays the original and modified versions of the matrix in labels on the chart via
m.debugLabel():

3.15. Matrices 135

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.elements_count
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.elements_count
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.reshape
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.reverse
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.reverse

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Reversing demo")
3

4 //@function Displays the rows of a matrix in a label with a note.
5 //@param this The matrix to display.
6 //@param barIndex The `bar_index` to display the label at.
7 //@param bgColor The background color of the label.
8 //@param textColor The color of the label's text.
9 //@param note The text to display above the rows.
10 method debugLabel(
11 matrix<float> this, int barIndex = bar_index, color bgColor = color.blue,
12 color textColor = color.white, string note = ""
13) =>
14 labelText = note + "\n" + str.tostring(this)
15 if barstate.ishistory
16 label.new(
17 barIndex, 0, labelText, color = bgColor, style = label.style_label_

↪→center,
18 textcolor = textColor, size = size.huge
19)
20

21 //@variable A 3x3 matrix.
22 matrix<float> m = matrix.new<float>()
23

24 // Add rows to `m`.
25 m.add_row(0, array.from(1, 2, 3))
26 m.add_row(1, array.from(4, 5, 6))
27 m.add_row(2, array.from(7, 8, 9))
28

29 if bar_index == last_bar_index - 1
30 // Display the contents of `m`.
31 m.debugLabel(note = "Original")
32 // Reverse `m`, then display its contents.
33 m.reverse()
34 m.debugLabel(bar_index + 10, color.red, note = "Reversed")

Transposing

Transposing a matrix is a fundamental operation that flips all rows and columns in a matrix about its main diagonal (the
diagonal vector of all values in which the row index equals the column index). This process produces a new matrix
with reversed row and column dimensions, known as the transpose. Scripts can calculate the transpose of a matrix using
matrix.transpose().
For any m-row, n-column matrix, the matrix returned from matrix.transpose() will have n rows and m columns. All
elements in a matrix at the i-th row and j-th column correspond to the elements in its transpose at the j-th row and i-th
column.
This example declares a 2x4 mmatrix, calculates its transpose using the m.transpose() method, and displays both matrices
on the chart using our custom debugLabel() method. As we can see below, the transposed matrix has a 4x2 shape,
and the rows of the transpose match the columns of the original:

136 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.transpose
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.transpose
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.transpose

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Transpose example")
3

4 //@function Displays the rows of a matrix in a label with a note.
5 //@param this The matrix to display.
6 //@param barIndex The `bar_index` to display the label at.
7 //@param bgColor The background color of the label.
8 //@param textColor The color of the label's text.
9 //@param note The text to display above the rows.
10 method debugLabel(
11 matrix<float> this, int barIndex = bar_index, color bgColor = color.blue,
12 color textColor = color.white, string note = ""
13) =>
14 labelText = note + "\n" + str.tostring(this)
15 if barstate.ishistory
16 label.new(
17 barIndex, 0, labelText, color = bgColor, style = label.style_label_

↪→center,
18 textcolor = textColor, size = size.huge
19)
20

21 //@variable A 2x4 matrix.
22 matrix<int> m = matrix.new<int>()
23

24 // Add columns to `m`.
25 m.add_col(0, array.from(1, 5))
26 m.add_col(1, array.from(2, 6))
27 m.add_col(2, array.from(3, 7))
28 m.add_col(3, array.from(4, 8))
29

30 //@variable The transpose of `m`. Has a 4x2 shape.
31 matrix<int> mt = m.transpose()
32

33 if bar_index == last_bar_index - 1
34 m.debugLabel(note = "Original")
35 mt.debugLabel(bar_index + 10, note = "Transpose")

3.15. Matrices 137

Pine Script™ v5 User Manual

Sorting

Scripts can sort the contents of a matrix via matrix.sort(). Unlike array.sort(), which sorts elements, this function organizes
all rows in a matrix in a specified order (order.ascending by default) based on the values in a specified column.
This script declares a 3x3 mmatrix, sorts the rows of the m1 copy in ascending order based on the first column, then sorts
the rows of the m2 copy in descending order based on the second column. It displays the original matrix and sorted copies
in labels using our debugLabel() method:

1 //@version=5
2 indicator("Sorting rows example")
3

4 //@function Displays the rows of a matrix in a label with a note.
5 //@param this The matrix to display.
6 //@param barIndex The `bar_index` to display the label at.
7 //@param bgColor The background color of the label.
8 //@param textColor The color of the label's text.
9 //@param note The text to display above the rows.
10 method debugLabel(
11 matrix<float> this, int barIndex = bar_index, color bgColor = color.blue,
12 color textColor = color.white, string note = ""
13) =>
14 labelText = note + "\n" + str.tostring(this)
15 if barstate.ishistory
16 label.new(
17 barIndex, 0, labelText, color = bgColor, style = label.style_label_

↪→center,
18 textcolor = textColor, size = size.huge
19)
20

21 //@variable A 3x3 matrix.
22 matrix<int> m = matrix.new<int>()
23

24 if bar_index == last_bar_index - 1
25 // Add rows to `m`.
26 m.add_row(0, array.from(3, 2, 4))
27 m.add_row(1, array.from(1, 9, 6))
28 m.add_row(2, array.from(7, 8, 9))
29 m.debugLabel(note = "Original")
30

31 // Copy `m` and sort rows in ascending order based on the first column (default).
32 matrix<int> m1 = m.copy()

(continues on next page)

138 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.sort
https://www.tradingview.com/pine-script-reference/v5/#fun_array.sort
https://www.tradingview.com/pine-script-reference/v5/#var_order.ascending

Pine Script™ v5 User Manual

(continued from previous page)
33 m1.sort()
34 m1.debugLabel(bar_index + 10, color.green, note = "Sorted using col 0\n(Ascending)

↪→")
35

36 // Copy `m` and sort rows in descending order based on the second column.
37 matrix<int> m2 = m.copy()
38 m2.sort(1, order.descending)
39 m2.debugLabel(bar_index + 20, color.red, note = "Sorted using col 1\n(Descending)

↪→")

It’s important to note that matrix.sort() does not sort the columns of a matrix. However, one can use this function to sort
matrix columns with the help of matrix.transpose().
As an example, this script contains a sortColumns() method that uses the sort() method to sort the transpose of a
matrix using the column corresponding to the row of the original matrix. The script uses this method to sort the mmatrix
based on the contents of its first row:

1 //@version=5
2 indicator("Sorting columns example")
3

4 //@function Displays the rows of a matrix in a label with a note.
5 //@param this The matrix to display.
6 //@param barIndex The `bar_index` to display the label at.
7 //@param bgColor The background color of the label.
8 //@param textColor The color of the label's text.
9 //@param note The text to display above the rows.
10 method debugLabel(
11 matrix<float> this, int barIndex = bar_index, color bgColor = color.blue,
12 color textColor = color.white, string note = ""
13) =>
14 labelText = note + "\n" + str.tostring(this)
15 if barstate.ishistory
16 label.new(
17 barIndex, 0, labelText, color = bgColor, style = label.style_label_

↪→center,
18 textcolor = textColor, size = size.huge
19)
20

21 //@function Sorts the columns of `this` matrix based on the values in the specified␣
↪→`row`.

(continues on next page)

3.15. Matrices 139

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.sort
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.transpose
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.sort
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.transpose

Pine Script™ v5 User Manual

(continued from previous page)
22 method sortColumns(matrix<int> this, int row = 0, bool ascending = true) =>
23 //@variable The transpose of `this` matrix.
24 matrix<int> thisT = this.transpose()
25 //@variable Is `order.ascending` when `ascending` is `true`, `order.descending`␣

↪→otherwise.
26 order = ascending ? order.ascending : order.descending
27 // Sort the rows of `thisT` using the `row` column.
28 thisT.sort(row, order)
29 //@variable A copy of `this` matrix with sorted columns.
30 result = thisT.transpose()
31

32 //@variable A 3x3 matrix.
33 matrix<int> m = matrix.new<int>()
34

35 if bar_index == last_bar_index - 1
36 // Add rows to `m`.
37 m.add_row(0, array.from(3, 2, 4))
38 m.add_row(1, array.from(1, 9, 6))
39 m.add_row(2, array.from(7, 8, 9))
40 m.debugLabel(note = "Original")
41

42 // Sort the columns of `m` based on the first row and display the result.
43 m.sortColumns(0).debugLabel(bar_index + 10, note = "Sorted using row 0\

↪→n(Ascending)")

Concatenating

Scripts can concatenate two matrices using matrix.concat(). This function appends the rows of an id2 matrix to the end
of an id1 matrix with the same number of columns.
To create a matrix with elements representing the columns of a matrix appended to another, transpose both matrices, use
matrix.concat() on the transposed matrices, then transpose() the result.
For example, this script appends the rows of the m2 matrix to the m1 matrix and appends their columns using transposed
copies of the matrices. It displays the m1 and m2 matrices and the results after concatenating their rows and columns in
labels using the custom debugLabel() method:

1 //@version=5
2 indicator("Concatenation demo")
3

4 //@function Displays the rows of a matrix in a label with a note.
5 //@param this The matrix to display.

(continues on next page)

140 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.concat
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.concat
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.transpose

Pine Script™ v5 User Manual

(continued from previous page)
6 //@param barIndex The `bar_index` to display the label at.
7 //@param bgColor The background color of the label.
8 //@param textColor The color of the label's text.
9 //@param note The text to display above the rows.
10 method debugLabel(
11 matrix<float> this, int barIndex = bar_index, color bgColor = color.blue,
12 color textColor = color.white, string note = ""
13) =>
14 labelText = note + "\n" + str.tostring(this)
15 if barstate.ishistory
16 label.new(
17 barIndex, 0, labelText, color = bgColor, style = label.style_label_

↪→center,
18 textcolor = textColor, size = size.huge
19)
20

21 //@variable A 2x3 matrix filled with 1s.
22 matrix<int> m1 = matrix.new<int>(2, 3, 1)
23 //@variable A 2x3 matrix filled with 2s.
24 matrix<int> m2 = matrix.new<int>(2, 3, 2)
25

26 //@variable The transpose of `m1`.
27 t1 = m1.transpose()
28 //@variable The transpose of `m2`.
29 t2 = m2.transpose()
30

31 if bar_index == last_bar_index - 1
32 // Display the original matrices.
33 m1.debugLabel(note = "Matrix 1")
34 m2.debugLabel(bar_index + 10, note = "Matrix 2")
35 // Append the rows of `m2` to the end of `m1` and display `m1`.
36 m1.concat(m2)
37 m1.debugLabel(bar_index + 20, color.blue, note = "Appended rows")
38 // Append the rows of `t2` to the end of `t1`, then display the transpose of `t1.
39 t1.concat(t2)
40 t1.transpose().debugLabel(bar_index + 30, color.purple, note = "Appended columns")

3.15.10 Matrix calculations

Element-wise calculations

Pine scripts can calculate the average, minimum, maximum, and mode of all elements within a matrix via matrix.avg(),
matrix.min(), matrix.max(), and matrix.mode(). These functions operate the same as their array.* equivalents, allow-
ing users to run element-wise calculations on a matrix, its submatrices, and its rows and columns using the same syntax.
For example, the built-in *.avg() functions called on a 3x3 matrix with values 1-9 and an array with the same nine
elements will both return a value of 5.
The script below uses *.avg(), *.max(), and *.min() methods to calculate developing averages and extremes
of OHLC data in a period. It adds a new column of open, high, low, and close values to the end of the ohlcData
matrix whenever queueColumn is true. When false, the script uses the get() and set() matrix methods to adjust
the elements in the last column for developing HLC values in the current period. It uses the ohlcData matrix, a
submatrix(), and row() and col() arrays to calculate the developing OHLC4 and HL2 averages over length periods, the
maximum high and minimum low over length periods, and the current period’s developing OHLC4 price:

3.15. Matrices 141

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.avg
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.min
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.max
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.mode
https://www.tradingview.com/pine-script-reference/v5/#op_array
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.get
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.set
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.submatrix
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.row
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.col

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Element-wise calculations example", "Developing values", overlay = true)
3

4 //@variable The number of data points in the averages.
5 int length = input.int(3, "Length", 1)
6 //@variable The timeframe of each reset period.
7 string timeframe = input.timeframe("D", "Reset Timeframe")
8

9 //@variable A 4x`length` matrix of OHLC values.
10 var matrix<float> ohlcData = matrix.new<float>(4, length)
11

12 //@variable Is `true` at the start of a new bar at the `timeframe`.
13 bool queueColumn = timeframe.change(timeframe)
14

15 if queueColumn
16 // Add new values to the end column of `ohlcData`.
17 ohlcData.add_col(length, array.from(open, high, low, close))
18 // Remove the oldest column from `ohlcData`.
19 ohlcData.remove_col(0)
20 else
21 // Adjust the last element of column 1 for new highs.
22 if high > ohlcData.get(1, length - 1)
23 ohlcData.set(1, length - 1, high)
24 // Adjust the last element of column 2 for new lows.
25 if low < ohlcData.get(2, length - 1)
26 ohlcData.set(2, length - 1, low)
27 // Adjust the last element of column 3 for the new closing price.
28 ohlcData.set(3, length - 1, close)
29

30 //@variable The `matrix.avg()` of all elements in `ohlcData`.
31 avgOHLC4 = ohlcData.avg()
32 //@variable The `matrix.avg()` of all elements in rows 1 and 2, i.e., the average of␣

↪→all `high` and `low` values.
33 avgHL2 = ohlcData.submatrix(from_row = 1, to_row = 3).avg()
34 //@variable The `matrix.max()` of all values in `ohlcData`. Equivalent to `ohlcData.

(continues on next page)

142 Chapter 3. Language

Pine Script™ v5 User Manual

(continued from previous page)
↪→row(1).max()`.

35 maxHigh = ohlcData.max()
36 //@variable The `array.min()` of all `low` values in `ohlcData`. Equivalent to␣

↪→`ohlcData.min()`.
37 minLow = ohlcData.row(2).min()
38 //@variable The `array.avg()` of the last column in `ohlcData`, i.e., the current␣

↪→OHLC4.
39 ohlc4Value = ohlcData.col(length - 1).avg()
40

41 plot(avgOHLC4, "Average OHLC4", color.purple, 2)
42 plot(avgHL2, "Average HL2", color.navy, 2)
43 plot(maxHigh, "Max High", color.green)
44 plot(minLow, "Min Low", color.red)
45 plot(ohlc4Value, "Current OHLC4", color.blue)

Note that:
• In this example, we used array.*() and matrix.*() methods interchangeably to demonstrate their similarities
in syntax and behavior.

• Users can calculate the matrix equivalent of array.sum() by multiplying the matrix.avg() by the ma-
trix.elements_count().

Special calculations

Pine Script™ features several built-in functions for performing essential matrix arithmetic and linear algebra opera-
tions, including matrix.sum(), matrix.diff(), matrix.mult(), matrix.pow(), matrix.det(), matrix.inv(), matrix.pinv(), ma-
trix.rank(), matrix.trace(), matrix.eigenvalues(), matrix.eigenvectors(), and matrix.kron(). These functions are advanced
features that facilitate a variety of matrix calculations and transformations.
Below, we explain a few fundamental functions with some basic examples.

`matrix.sum()` and `matrix.diff()`

Scripts can perform addition and subtraction of two matrices with the same shape or a matrix and a scalar value using
the matrix.sum() and matrix.diff() functions. These functions use the values from the id2 matrix or scalar to add to or
subtract from the elements in id1.
This script demonstrates a simple example of matrix addition and subtraction in Pine. It creates a 3x3 matrix, calculates
its transpose, then calculates the matrix.sum() and matrix.diff() of the two matrices. This example displays the original
matrix, its transpose, and the resulting sum and difference matrices in labels on the chart:

3.15. Matrices 143

https://www.tradingview.com/pine-script-reference/v5/#op_array
https://www.tradingview.com/pine-script-reference/v5/#op_matrix
https://www.tradingview.com/pine-script-reference/v5/#fun_array.sum
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.avg
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.elements_count
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.elements_count
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.sum
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.diff
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.mult
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.pow
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.det
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.inv
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.pinv
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.rank
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.rank
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.trace
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.eigenvalues
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.eigenvectors
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.kron
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.sum
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.diff
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.sum
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.diff
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.transpose

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Matrix sum and diff example")
3

4 //@function Displays the rows of a matrix in a label with a note.
5 //@param this The matrix to display.
6 //@param barIndex The `bar_index` to display the label at.
7 //@param bgColor The background color of the label.
8 //@param textColor The color of the label's text.
9 //@param note The text to display above the rows.
10 method debugLabel(
11 matrix<float> this, int barIndex = bar_index, color bgColor = color.blue,
12 color textColor = color.white, string note = ""
13) =>
14 labelText = note + "\n" + str.tostring(this)
15 if barstate.ishistory
16 label.new(
17 barIndex, 0, labelText, color = bgColor, style = label.style_label_

↪→center,
18 textcolor = textColor, size = size.huge
19)
20

21 //@variable A 3x3 matrix.
22 m = matrix.new<float>()
23

24 // Add rows to `m`.
25 m.add_row(0, array.from(0.5, 1.0, 1.5))
26 m.add_row(1, array.from(2.0, 2.5, 3.0))
27 m.add_row(2, array.from(3.5, 4.0, 4.5))
28

29 if bar_index == last_bar_index - 1
30 // Display `m`.
31 m.debugLabel(note = "A")
32 // Get and display the transpose of `m`.
33 matrix<float> t = m.transpose()
34 t.debugLabel(bar_index + 10, note = "A ")
35 // Calculate the sum of the two matrices. The resulting matrix is symmetric.
36 matrix.sum(m, t).debugLabel(bar_index + 20, color.green, note = "A + A ")
37 // Calculate the difference between the two matrices. The resulting matrix is␣

↪→antisymmetric.
38 matrix.diff(m, t).debugLabel(bar_index + 30, color.red, note = "A - A ")

Note that:
• In this example, we’ve labeled the original matrix as “A” and the transpose as “AT”.
• Adding “A” and “AT” produces a symmetric matrix, and subtracting them produces an antisymmetric matrix.

144 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_symmetric
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_antisymmetric

Pine Script™ v5 User Manual

`matrix.mult()`

Scripts can multiply two matrices via the matrix.mult() function. This function also facilitates the multiplication of a
matrix by an array or a scalar value.
In the case of multiplying two matrices, unlike addition and subtraction, matrix multiplication does not require two ma-
trices to share the same shape. However, the number of columns in the first matrix must equal the number of rows in the
second one. The resulting matrix returned by matrix.mult() will contain the same number of rows as id1 and the same
number of columns as id2. For instance, a 2x3 matrix multiplied by a 3x4 matrix will produce a matrix with two rows
and four columns, as shown below. Each value within the resulting matrix is the dot product of the corresponding row in
id1 and column in id2:

1 //@version=5
2 indicator("Matrix mult example")
3

4 //@function Displays the rows of a matrix in a label with a note.
5 //@param this The matrix to display.
6 //@param barIndex The `bar_index` to display the label at.
7 //@param bgColor The background color of the label.
8 //@param textColor The color of the label's text.
9 //@param note The text to display above the rows.
10 method debugLabel(
11 matrix<float> this, int barIndex = bar_index, color bgColor = color.blue,
12 color textColor = color.white, string note = ""
13) =>
14 labelText = note + "\n" + str.tostring(this)
15 if barstate.ishistory
16 label.new(
17 barIndex, 0, labelText, color = bgColor, style = label.style_label_

↪→center,
18 textcolor = textColor, size = size.huge
19)
20

21 //@variable A 2x3 matrix.
22 a = matrix.new<float>()
23 //@variable A 3x4 matrix.
24 b = matrix.new<float>()
25

26 // Add rows to `a`.
27 a.add_row(0, array.from(1, 2, 3))
28 a.add_row(1, array.from(4, 5, 6))
29

(continues on next page)

3.15. Matrices 145

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.mult
https://www.tradingview.com/pine-script-reference/v5/#op_array
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.mult
https://en.wikipedia.org/wiki/Dot_product

Pine Script™ v5 User Manual

(continued from previous page)
30 // Add rows to `b`.
31 b.add_row(0, array.from(0.5, 1.0, 1.5, 2.0))
32 b.add_row(1, array.from(2.5, 3.0, 3.5, 4.0))
33 b.add_row(0, array.from(4.5, 5.0, 5.5, 6.0))
34

35 if bar_index == last_bar_index - 1
36 //@variable The result of `a` * `b`.
37 matrix<float> ab = a.mult(b)
38 // Display `a`, `b`, and `ab` matrices.
39 debugLabel(a, note = "A")
40 debugLabel(b, bar_index + 10, note = "B")
41 debugLabel(ab, bar_index + 20, color.green, note = "A * B")

Note that:
• In contrast to the multiplication of scalars, matrix multiplication is non-commutative, i.e., matrix.
mult(a, b) does not necessarily produce the same result as matrix.mult(b, a). In the context
of our example, the latter will raise a runtime error because the number of columns in b doesn’t equal the
number of rows in a.

When multiplying a matrix and an array, this function treats the operation the same as multiplying id1 by a single-column
matrix, but it returns an array with the same number of elements as the number of rows in id1. When matrix.mult()
passes a scalar as its id2 value, the function returns a new matrix whose elements are the elements in id1 multiplied by
the id2 value.

`matrix.det()`

A determinant is a scalar value associated with a square matrix that describes some of its characteristics, namely its
invertibility. If a matrix has an inverse, its determinant is nonzero. Otherwise, the matrix is singular (non-invertible).
Scripts can calculate the determinant of a matrix via matrix.det().
Programmers can use determinants to detect similarities between matrices, identify full-rank and rank-deficient matrices,
and solve systems of linear equations, among other applications.
For example, this script utilizes determinants to solve a system of linear equations with a matching number of unknown
values using Cramer’s rule. The user-defined solve() function returns an array containing solutions for each unknown
value in the system, where the n-th element of the array is the determinant of the coefficient matrix with the n-th column
replaced by the column of constants divided by the determinant of the original coefficients.
In this script, we’ve defined the matrix m that holds coefficients and constants for these three equations:

3 * x0 + 4 * x1 - 1 * x2 = 8
5 * x0 - 2 * x1 + 1 * x2 = 4
2 * x0 - 2 * x1 + 1 * x2 = 1

The solution to this system is (x0 = 1, x1 = 2, x2 = 3). The script calculates these values from m via
m.solve() and plots them on the chart:

146 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#op_array
https://www.tradingview.com/pine-script-reference/v5/#op_array
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.mult
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_square
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.inv
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.det
https://en.wikipedia.org/wiki/Cramer's_rule
https://www.tradingview.com/pine-script-reference/v5/#op_array

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Determinants example", "Cramer's Rule")
3

4 //@function Solves a system of linear equations with a matching number of unknowns␣
↪→using Cramer's rule.

5 //@param this An augmented matrix containing the coefficients for each unknown and␣
↪→the results of

6 // the equations. For example, a row containing the values 2, -1, and 3␣
↪→represents the equation

7 // `2 * x0 + (-1) * x1 = 3`, where `x0` and `x1` are the unknown values in␣
↪→the system.

8 //@returns An array containing solutions for each variable in the system.
9 solve(matrix<float> this) =>
10 //@variable The coefficient matrix for the system of equations.
11 matrix<float> coefficients = this.submatrix(from_column = 0, to_column = this.

↪→columns() - 1)
12 //@variable The array of resulting constants for each equation.
13 array<float> constants = this.col(this.columns() - 1)
14 //@variable An array containing solutions for each unknown in the system.
15 array<float> result = array.new<float>()
16

17 //@variable The determinant value of the coefficient matrix.
18 float baseDet = coefficients.det()
19 matrix<float> modified = na
20 for col = 0 to coefficients.columns() - 1
21 modified := coefficients.copy()
22 modified.add_col(col, constants)
23 modified.remove_col(col + 1)
24

25 // Calculate the solution for the column's unknown by dividing the␣
↪→determinant of `modified` by the `baseDet`.

26 result.push(modified.det() / baseDet)
27

28 result
29

30 //@variable A 3x4 matrix containing coefficients and results for a system of three␣
↪→equations.

31 m = matrix.new<float>()
32

33 // Add rows for the following equations:
34 // Equation 1: 3 * x0 + 4 * x1 - 1 * x2 = 8
35 // Equation 2: 5 * x0 - 2 * x1 + 1 * x2 = 4
36 // Equation 3: 2 * x0 - 2 * x1 + 1 * x2 = 1
37 m.add_row(0, array.from(3.0, 4.0, -1.0, 8.0))
38 m.add_row(1, array.from(5.0, -2.0, 1.0, 4.0))
39 m.add_row(2, array.from(2.0, -2.0, 1.0, 1.0))

(continues on next page)

3.15. Matrices 147

Pine Script™ v5 User Manual

(continued from previous page)
40

41 //@variable An array of solutions to the unknowns in the system of equations␣
↪→represented by `m`.

42 solutions = solve(m)
43

44 plot(solutions.get(0), "x0", color.red, 3) // Plots 1.
45 plot(solutions.get(1), "x1", color.green, 3) // Plots 2.
46 plot(solutions.get(2), "x2", color.blue, 3) // Plots 3.

Note that:
• Solving systems of equations is particularly useful for regression analysis, e.g., linear and polynomial regres-
sion.

• Cramer’s rule works fine for small systems of equations. However, it’s computationally inefficient on larger
systems. Other methods, such as Gaussian elimination, are often preferred for such use cases.

`matrix.inv()` and `matrix.pinv()`

For any non-singular square matrix, there is an inverse matrix that yields the identity matrix when multiplied by the
original. Inverses have utility in various matrix transformations and solving systems of equations. Scripts can calculate
the inverse of a matrix when one exists via the matrix.inv() function.
For singular (non-invertible) matrices, one can calculate a generalized inverse (pseudoinverse), regardless of whether the
matrix is square or has a nonzero determinant, via the matrix.pinv() function. Keep in mind that unlike a true inverse,
the product of a pseudoinverse and the original matrix does not necessarily equal the identity matrix unless the original
matrix is invertible.
The following example forms a 2x2 m matrix from user inputs, then uses the m.inv() and m.pinv() methods to calculate
the inverse or pseudoinverse of m. The script displays the original matrix, its inverse or pseudoinverse, and their product
in labels on the chart:

1 //@version=5
2 indicator("Inverse example")
3

4 // Element inputs for the 2x2 matrix.
5 float r0c0 = input.float(4.0, "Row 0, Col 0")
6 float r0c1 = input.float(3.0, "Row 0, Col 1")
7 float r1c0 = input.float(2.0, "Row 1, Col 0")

(continues on next page)

148 Chapter 3. Language

https://en.wikipedia.org/wiki/Gaussian_elimination
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_square
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_identity
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.inv
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.pinv
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.inv
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.pinv

Pine Script™ v5 User Manual

(continued from previous page)
8 float r1c1 = input.float(1.0, "Row 1, Col 1")
9

10 //@function Displays the rows of a matrix in a label with a note.
11 //@param this The matrix to display.
12 //@param barIndex The `bar_index` to display the label at.
13 //@param bgColor The background color of the label.
14 //@param textColor The color of the label's text.
15 //@param note The text to display above the rows.
16 method debugLabel(
17 matrix<float> this, int barIndex = bar_index, color bgColor = color.blue,
18 color textColor = color.white, string note = ""
19) =>
20 labelText = note + "\n" + str.tostring(this)
21 if barstate.ishistory
22 label.new(
23 barIndex, 0, labelText, color = bgColor, style = label.style_label_

↪→center,
24 textcolor = textColor, size = size.huge
25)
26

27 //@variable A 2x2 matrix of input values.
28 m = matrix.new<float>()
29

30 // Add input values to `m`.
31 m.add_row(0, array.from(r0c0, r0c1))
32 m.add_row(1, array.from(r1c0, r1c1))
33

34 //@variable Is `true` if `m` is square with a nonzero determinant, indicating␣
↪→invertibility.

35 bool isInvertible = m.is_square() and m.det()
36

37 //@variable The inverse or pseudoinverse of `m`.
38 mInverse = isInvertible ? m.inv() : m.pinv()
39

40 //@variable The product of `m` and `mInverse`. Returns the identity matrix when␣
↪→`isInvertible` is `true`.

41 matrix<float> product = m.mult(mInverse)
42

43 if bar_index == last_bar_index - 1
44 // Display `m`, `mInverse`, and their `product`.
45 m.debugLabel(note = "Original")
46 mInverse.debugLabel(bar_index + 10, color.purple, note = isInvertible ? "Inverse"␣

↪→: "Pseudoinverse")
47 product.debugLabel(bar_index + 20, color.green, note = "Product")

Note that:
• This script will only call m.inv() when isInvertible is true, i.e., when m is square and has a nonzero
determinant. Otherwise, it uses m.pinv() to calculate the generalized inverse.

3.15. Matrices 149

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.inv
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.is_square
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.det
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.pinv

Pine Script™ v5 User Manual

`matrix.rank()`

The rank of a matrix represents the number of linearly independent vectors (rows or columns) it contains. In essence,
matrix rank measures the number of vectors one cannot express as a linear combination of others, or in other words, the
number of vectors that contain unique information. Scripts can calculate the rank of a matrix via matrix.rank().
This script identifies the number of linearly independent vectors in two 3x3 matrices (m1 and m2) and plots the values in
a separate pane. As we see on the chart, the m1.rank() value is 3 because each vector is unique. The m2.rank() value, on
the other hand, is 1 because it has just one unique vector:

1 //@version=5
2 indicator("Matrix rank example")
3

4 //@variable A 3x3 full-rank matrix.
5 m1 = matrix.new<float>()
6 //@variable A 3x3 rank-deficient matrix.
7 m2 = matrix.new<float>()
8

9 // Add linearly independent vectors to `m1`.
10 m1.add_row(0, array.from(3, 2, 3))
11 m1.add_row(1, array.from(4, 6, 6))
12 m1.add_row(2, array.from(7, 4, 9))
13

14 // Add linearly dependent vectors to `m2`.
15 m2.add_row(0, array.from(1, 2, 3))
16 m2.add_row(1, array.from(2, 4, 6))
17 m2.add_row(2, array.from(3, 6, 9))
18

19 // Plot `matrix.rank()` values.
20 plot(m1.rank(), color = color.green, linewidth = 3)
21 plot(m2.rank(), color = color.red, linewidth = 3)

Note that:
• The highest rank value a matrix can have is the minimum of its number of rows and columns. A matrix with
the maximum possible rank is known as a full-rank matrix, and any matrix without full rank is known as a
rank-deficient matrix.

• The determinants of full-rank square matrices are nonzero, and such matrices have inverses. Conversely, the
determinant of a rank-deficient matrix is always 0.

• For any matrix that contains nothing but the same value in each of its elements (e.g., a matrix filled with 0),
the rank is always 0 since none of the vectors hold unique information. For any other matrix with distinct

150 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.rank
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.rank
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.rank
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.det

Pine Script™ v5 User Manual

values, the minimum possible rank is 1.

3.15.11 Error handling

In addition to usual compiler errors, which occur during a script’s compilation due to improper syntax, scripts using
matrices can raise specific runtime errors during their execution. When a script raises a runtime error, it displays a red
exclamation point next to the script title. Users can view the error message by clicking this icon.
In this section, we discuss runtime errors that users may encounter while utilizing matrices in their scripts.

The row/column index (xx) is out of bounds, row/column size is (yy).

This runtime error occurs when trying to access indices outside the matrix dimensions with functions including ma-
trix.get(), matrix.set(), matrix.fill(), and matrix.submatrix(), as well as some of the functions relating to the rows and
columns of a matrix.
For example, this code contains two lines that will produce this runtime error. The m.set() method references a row index
that doesn’t exist (2). The m.submatrix() method references all column indices up to to_column - 1. A to_column
value of 4 results in a runtime error because the last column index referenced (3) does not exist in m:

1 //@version=5
2 indicator("Out of bounds demo")
3

4 //@variable A 2x3 matrix with a max row index of 1 and max column index of 2.
5 matrix<float> m = matrix.new<float>(2, 3, 0.0)
6

7 m.set(row = 2, column = 0, value = 1.0) // The `row` index is out of bounds on␣
↪→this line. The max value is 1.

8 m.submatrix(from_column = 1, to_column = 4) // The `to_column` index is invalid on␣
↪→this line. The max value is 3.

9

10 if bar_index == last_bar_index - 1
11 label.new(bar_index, 0, str.tostring(m), color = color.navy, textcolor = color.

↪→white, size = size.huge)

Users can avoid this error in their scripts by ensuring their function calls do not reference indices greater than or equal to
the number of rows/columns.

The array size does not match the number of rows/columns in the matrix.

When using matrix.add_row() and matrix.add_col() functions to insert rows and columns into a non-empty matrix, the
size of the inserted array must align with the matrix dimensions. The size of an inserted row must match the number of
columns, and the size of an inserted column must match the number of rows. Otherwise, the script will raise this runtime
error. For example:

1 //@version=5
2 indicator("Invalid array size demo")
3

4 // Declare an empty matrix.
5 m = matrix.new<float>()
6

7 m.add_col(0, array.from(1, 2)) // Add a column. Changes the shape of `m` to 2x1.
8 m.add_col(1, array.from(1, 2, 3)) // Raises a runtime error because `m` has 2 rows,␣

↪→not 3.

(continues on next page)

3.15. Matrices 151

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.get
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.get
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.set
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.fill
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.submatrix
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.set
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.submatrix
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.add_row
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.add_col

Pine Script™ v5 User Manual

(continued from previous page)
9

10 plot(m.col(0).get(1))

Note that:
• When m is empty, one can insert a row or column array of any size, as shown in the first m.add_col()
line.

Cannot call matrix methods when the ID of matrix is ‘na’.

When a matrix variable is assigned to na, it means that the variable doesn’t reference an existing object. Consequently,
one cannot use built-in matrix.*() functions and methods with it. For example:

1 //@version=5
2 indicator("na matrix methods demo")
3

4 //@variable A `matrix` variable assigned to `na`.
5 matrix<float> m = na
6

7 mCopy = m.copy() // Raises a runtime error. You can't copy a matrix that doesn't␣
↪→exist.

8

9 if bar_index == last_bar_index - 1
10 label.new(bar_index, 0, str.tostring(mCopy), color = color.navy, textcolor =␣

↪→color.white, size = size.huge)

To resolve this error, assign m to a valid matrix instance before using matrix.*() functions.

Matrix is too large. Maximum size of the matrix is 100,000 elements.

The total number of elements in a matrix (matrix.elements_count()) cannot exceed 100,000, regardless of its shape. For
example, this script will raise an error because it inserts 1000 rows with 101 elements into the m matrix:

1 //@version=5
2 indicator("Matrix too large demo")
3

4 var matrix<float> m = matrix.new<float>()
5

6 if bar_index == 0
7 for i = 1 to 1000
8 // This raises an error because the script adds 101 elements on each␣

↪→iteration.
9 // 1000 rows * 101 elements per row = 101000 total elements. This is too␣

↪→large.
10 m.add_row(m.rows(), array.new<float>(101, i))
11

12 plot(m.get(0, 0))

152 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.elements_count

Pine Script™ v5 User Manual

The row/column index must be 0 <= from_row/column < to_row/column.

When using matrix.*() functions with from_row/column and to_row/column indices, the from_* values
must be less than the corresponding to_* values, with the minimum possible value being 0. Otherwise, the script will
raise a runtime error.
For example, this script shows an attempt to declare a submatrix from a 4x4 m matrix with a from_row value of 2 and
a to_row value of 2, which will result in an error:

1 //@version=5
2 indicator("Invalid from_row, to_row demo")
3

4 //@variable A 4x4 matrix filled with a random value.
5 matrix<float> m = matrix.new<float>(4, 4, math.random())
6

7 matrix<float> mSub = m.submatrix(from_row = 2, to_row = 2) // Raises an error. `from_
↪→row` can't equal `to_row`.

8

9 plot(mSub.get(0, 0))

Matrices ‘id1’ and ‘id2’ must have an equal number of rows and columns to be added.

When using matrix.sum() and matrix.diff() functions, the id1 and id2 matrices must have the same number of rows
and the same number of columns. Attempting to add or subtract two matrices with mismatched dimensions will raise an
error, as demonstrated by this code:

1 //@version=5
2 indicator("Invalid sum dimensions demo")
3

4 //@variable A 2x3 matrix.
5 matrix<float> m1 = matrix.new<float>(2, 3, 1)
6 //@variable A 3x4 matrix.
7 matrix<float> m2 = matrix.new<float>(3, 4, 2)
8

9 mSum = matrix.sum(m1, m2) // Raises an error. `m1` and `m2` don't have matching␣
↪→dimensions.

10

11 plot(mSum.get(0, 0))

The number of columns in the ‘id1’ matrix must equal the number of rows in the matrix (or the
number of elements in the array) ‘id2’.

When using matrix.mult() to multiply an id1matrix by an id2matrix or array, the matrix.rows() or array.size() of id2
must equal the matrix.columns() in id1. If they don’t align, the script will raise this error.
For example, this script tries to multiply two 2x3 matrices. While adding these matrices is possible, multiplying them is
not:

1 //@version=5
2 indicator("Invalid mult dimensions demo")
3

4 //@variable A 2x3 matrix.
5 matrix<float> m1 = matrix.new<float>(2, 3, 1)
6 //@variable A 2x3 matrix.
7 matrix<float> m2 = matrix.new<float>(2, 3, 2)

(continues on next page)

3.15. Matrices 153

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.rows
https://www.tradingview.com/pine-script-reference/v5/#fun_array.size
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.columns

Pine Script™ v5 User Manual

(continued from previous page)
8

9 mSum = matrix.mult(m1, m2) // Raises an error. The number of columns in `m1` and rows␣
↪→in `m2` aren't equal.

10

11 plot(mSum.get(0, 0))

Operation not available for non-square matrices.

Some matrix operations, including matrix.inv(), matrix.det(), matrix.eigenvalues(), and matrix.eigenvectors() only work
with square matrices, i.e., matrices with the same number of rows and columns. When attempting to execute such
functions on non-square matrices, the script will raise an error stating the operation isn’t available or that it cannot calculate
the result for the matrix id. For example:

1 //@version=5
2 indicator("Non-square demo")
3

4 //@variable A 3x5 matrix.
5 matrix<float> m = matrix.new<float>(3, 5, 1)
6

7 plot(m.det()) // Raises a runtime error. You can't calculate the determinant of a 3x5␣
↪→matrix.

3.16 Maps

• Introduction

• Declaring a map

• Reading and writing

• Looping through a map

• Copying a map

• Scope and history

• Maps of other collections

Note: This page contains advanced material. If you are a beginning Pine Script™ programmer, we recommend you
become familiar with other, more accessible Pine Script™ features before you venture here.

154 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.inv
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.det
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.eigenvalues
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix.inv
https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

3.16.1 Introduction

Pine Script™ Maps are collections that store elements in key-value pairs. They allow scripts to collect multiple value
references associated with unique identifiers (keys).
Unlike arrays and matrices, maps are considered unordered collections. Scripts quickly access a map’s values by refer-
encing the keys from the key-value pairs put into them rather than traversing an internal index.
A map’s keys can be of any fundamental type, and its values can be of any built-in or user-defined type. Maps cannot
directly use other collections (maps, arrays, or matrices) as values, but they can hold UDT instances containing these data
structures within their fields. See this section for more information.
As with other collections, maps can contain up to 100,000 elements in total. Since each key-value pair in a map consists of
two elements (a unique key and its associated value), the maximum number of key-value pairs a map can hold is 50,000.

3.16.2 Declaring a map

Pine Script™ uses the following syntax to declare maps:

[var/varip][map<keyType, valueType>]<identifier> = <expression>

Where <keyType, valueType> is the map’s type template that declares the types of keys and values it will contain,
and the <expression> returns either a map instance or na.
When declaring a map variable assigned to na, users must include the map keyword followed by a type template to tell
the compiler that the variable can accept maps with keyType keys and valueType values.
For example, this line of code declares a new myMap variable that can accept map instances holding pairs of string keys
and float values:

map<string, float> myMap = na

When the <expression> is not na, the compiler does not require explicit type declaration, as it will infer the type
information from the assigned map object.
This line declares a myMap variable assigned to an empty map with string keys and float values. Any maps assigned to
this variable later must have the same key and value types:

myMap = map.new<string, float>()

Using `var` and `varip` keywords

Users can include the var or varip keywords to instruct their scripts to declare map variables only on the first chart bar.
Variables that use these keywords point to the same map instances on each script iteration until explicitly reassigned.
For example, this script declares a colorMap variable assigned to a map that holds pairs of string keys and color values
on the first chart bar. The script displays an oscillator on the chart and uses the values it put into the colorMap
on the first bar to color the plots on all bars:

3.16. Maps 155

https://www.tradingview.com/pine-script-reference/v5/#type_map
https://www.tradingview.com/pine-script-reference/v5/#type_string
https://www.tradingview.com/pine-script-reference/v5/#type_float
https://www.tradingview.com/pine-script-reference/v5/#type_string
https://www.tradingview.com/pine-script-reference/v5/#type_float
https://www.tradingview.com/pine-script-reference/v5/#kw_var
https://www.tradingview.com/pine-script-reference/v5/#kw_varip
https://www.tradingview.com/pine-script-reference/v5/#type_string
https://www.tradingview.com/pine-script-reference/v5/#type_color
https://www.tradingview.com/pine-script-reference/v5/#fun_map.put

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("var map demo")
3

4 //@variable A map associating color values with string keys.
5 var colorMap = map.new<string, color>()
6

7 // Put `<string, color>` pairs into `colorMap` on the first bar.
8 if bar_index == 0
9 colorMap.put("Bull", color.green)
10 colorMap.put("Bear", color.red)
11 colorMap.put("Neutral", color.gray)
12

13 //@variable The 14-bar RSI of `close`.
14 float oscillator = ta.rsi(close, 14)
15

16 //@variable The color of the `oscillator`.
17 color oscColor = switch
18 oscillator > 50 => colorMap.get("Bull")
19 oscillator < 50 => colorMap.get("Bear")
20 => colorMap.get("Neutral")
21

22 // Plot the `oscillator` using the `oscColor` from our `colorMap`.
23 plot(oscillator, "Histogram", oscColor, 2, plot.style_histogram, histbase = 50)
24 plot(oscillator, "Line", oscColor, 3)

Note: Map variables declared using varip behave as ones using var on historical data, but they update their key-value
pairs for realtime bars (i.e., the bars since the script’s last compilation) on each new price tick. Maps assigned to varip
variables can only hold values of int, float, bool, color, or string types or user-defined types that exclusively contain within
their fields these types or collections (arrays, matrices, or maps) of these types.

156 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#kw_varip
https://www.tradingview.com/pine-script-reference/v5/#kw_var
https://www.tradingview.com/pine-script-reference/v5/#kw_varip
https://www.tradingview.com/pine-script-reference/v5/#type_int
https://www.tradingview.com/pine-script-reference/v5/#type_float
https://www.tradingview.com/pine-script-reference/v5/#type_bool
https://www.tradingview.com/pine-script-reference/v5/#type_color
https://www.tradingview.com/pine-script-reference/v5/#type_string

Pine Script™ v5 User Manual

3.16.3 Reading and writing

Putting and getting key-value pairs

The map.put() function is one that map users will utilize quite often, as it’s the primary method to put a new key-value
pair into a map. It associates the key argument with the value argument in the call and adds the pair to the map id.
If the key argument in the map.put() call already exists in the map’s keys, the new pair passed into the function will
replace the existing one.
To retrieve the value from a map id associated with a given key, use map.get(). This function returns the value if the
id map contains the key. Otherwise, it returns na.
The following example calculates the difference between the bar_index values from when close was last rising and falling
over a givenlengthwith the help ofmap.put() andmap.get() methods. The script puts a("Rising", bar_index)
pair into the data map when the price is rising and puts a ("Falling", bar_index) pair into the map when the
price is falling. It then puts a pair containing the “Difference” between the “Rising” and “Falling” values into the map and
plots its value on the chart:

1 //@version=5
2 indicator("Putting and getting demo")
3

4 //@variable The length of the `ta.rising()` and `ta.falling()` calculation.
5 int length = input.int(2, "Length")
6

7 //@variable A map associating `string` keys with `int` values.
8 var data = map.new<string, int>()
9

10 // Put a new ("Rising", `bar_index`) pair into the `data` map when `close` is rising.
11 if ta.rising(close, length)
12 data.put("Rising", bar_index)
13 // Put a new ("Falling", `bar_index`) pair into the `data` map when `close` is␣

↪→falling.
14 if ta.falling(close, length)
15 data.put("Falling", bar_index)

(continues on next page)

3.16. Maps 157

https://www.tradingview.com/pine-script-reference/v5/#fun_map.put
https://www.tradingview.com/pine-script-reference/v5/#fun_map.put
https://www.tradingview.com/pine-script-reference/v5/#fun_map.keys
https://www.tradingview.com/pine-script-reference/v5/#fun_map.get
https://www.tradingview.com/pine-script-reference/v5/#fun_map.contains
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.rising
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.falling
https://www.tradingview.com/pine-script-reference/v5/#fun_map.put
https://www.tradingview.com/pine-script-reference/v5/#fun_map.get

Pine Script™ v5 User Manual

(continued from previous page)
16

17 // Put the "Difference" between current "Rising" and "Falling" values into the `data`␣
↪→map.

18 data.put("Difference", data.get("Rising") - data.get("Falling"))
19

20 //@variable The difference between the last "Rising" and "Falling" `bar_index`.
21 int index = data.get("Difference")
22

23 //@variable Returns `color.green` when `index` is positive, `color.red` when negative,
↪→ and `color.gray` otherwise.

24 color indexColor = index > 0 ? color.green : index < 0 ? color.red : color.gray
25

26 plot(index, color = indexColor, style = plot.style_columns)

Note that:
• This script replaces the values associated with the “Rising”, “Falling”, and “Difference” keys on successive
data.put() calls, as each of these keys is unique and can only appear once in the data map.

• Replacing the pairs in a map does not change the internal insertion order of its keys. We discuss this further
in the next section.

Similar to working with other collections, when putting a value of a special type (line, linefill, box, polyline, label, table, or
chart.point) or a user-defined type into a map, it’s important to note the inserted pair’s value points to that same object
without copying it. Modifying the value referenced by a key-value pair will also affect the original object.
For example, this script contains a custom ChartData type with o, h, l, and c fields. On the first chart bar, the script
declares a myMap variable and adds the pair ("A", myData), where myData is a ChartData instance with initial
field values of na. It adds the pair ("B", myData) to myMap and updates the object from this pair on every bar via
the user-defined update() method.
Each change to the object with the “B” key affects the one referenced by the “A” key, as shown by the candle plot of the
“A” object’s fields:

1 //@version=5
2 indicator("Putting and getting objects demo")
3

4 //@type A custom type to hold OHLC data.
5 type ChartData
6 float o
7 float h

(continues on next page)

158 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_map.put
https://www.tradingview.com/pine-script-reference/v5/#type_line
https://www.tradingview.com/pine-script-reference/v5/#type_linefill
https://www.tradingview.com/pine-script-reference/v5/#type_box
https://www.tradingview.com/pine-script-reference/v5/#type_polyline
https://www.tradingview.com/pine-script-reference/v5/#type_label
https://www.tradingview.com/pine-script-reference/v5/#type_table
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point

Pine Script™ v5 User Manual

(continued from previous page)
8 float l
9 float c
10

11 //@function Updates the fields of a `ChartData` object.
12 method update(ChartData this) =>
13 this.o := open
14 this.h := high
15 this.l := low
16 this.c := close
17

18 //@variable A new `ChartData` instance declared on the first bar.
19 var myData = ChartData.new()
20 //@variable A map associating `string` keys with `ChartData` instances.
21 var myMap = map.new<string, ChartData>()
22

23 // Put a new pair with the "A" key into `myMap` only on the first bar.
24 if bar_index == 0
25 myMap.put("A", myData)
26

27 // Put a pair with the "B" key into `myMap` on every bar.
28 myMap.put("B", myData)
29

30 //@variable The `ChartData` value associated with the "A" key in `myMap`.
31 ChartData oldest = myMap.get("A")
32 //@variable The `ChartData` value associated with the "B" key in `myMap`.
33 ChartData newest = myMap.get("B")
34

35 // Update `newest`. Also affects `oldest` and `myData` since they all reference the␣
↪→same `ChartData` object.

36 newest.update()
37

38 // Plot the fields of `oldest` as candles.
39 plotcandle(oldest.o, oldest.h, oldest.l, oldest.c)

Note that:
• This script would behave differently if it passed a copy of myData into each myMap.put() call. For more
information, see this section of our User Manual’s page on objects.

Inspecting keys and values

`map.keys()` and `map.values()`

To retrieve all keys and values put into a map, use map.keys() and map.values(). These functions copy all key/value
references within a map id to a new array object. Modifying the array returned from either of these functions does not
affect the id map.
Although maps are unordered collections, Pine Script™ internally maintains the insertion order of a map’s key-value
pairs. As a result, the map.keys() and map.values() functions always return arrays with their elements ordered based on
the id map’s insertion order.
The script below demonstrates this by displaying the key and value arrays from an m map in a label once every 50 bars.
As we see on the chart, the order of elements in each array returned by m.keys() and m.values() aligns with the
insertion order of the key-value pairs in m:

3.16. Maps 159

https://www.tradingview.com/pine-script-reference/v5/#fun_map.put
https://www.tradingview.com/pine-script-reference/v5/#fun_map.keys
https://www.tradingview.com/pine-script-reference/v5/#fun_map.values
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#fun_map.keys
https://www.tradingview.com/pine-script-reference/v5/#fun_map.values
https://www.tradingview.com/pine-script-reference/v5/#type_label

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Keys and values demo")
3

4 if bar_index % 50 == 0
5 //@variable A map containing pairs of `string` keys and `float` values.
6 m = map.new<string, float>()
7

8 // Put pairs into `m`. The map will maintain this insertion order.
9 m.put("First", math.round(math.random(0, 100)))
10 m.put("Second", m.get("First") + 1)
11 m.put("Third", m.get("Second") + 1)
12

13 //@variable An array containing the keys of `m` in their insertion order.
14 array<string> keys = m.keys()
15 //@variable An array containing the values of `m` in their insertion order.
16 array<float> values = m.values()
17

18 //@variable A label displaying the `size` of `m` and the `keys` and `values`␣
↪→arrays.

19 label debugLabel = label.new(
20 bar_index, 0,
21 str.format("Pairs: {0}\nKeys: {1}\nValues: {2}", m.size(), keys, values),
22 color = color.navy, style = label.style_label_center,
23 textcolor = color.white, size = size.huge
24)

Note that:
• The value with the “First” key is a random whole number between 0 and 100. The “Second” value is one
greater than the “First”, and the “Third” value is one greater than the “Second”.

It’s important to note a map’s internal insertion order does not change when replacing its key-value pairs. The locations of
the new elements in the keys() and values() arrays will be the same as the old elements in such cases. The only exception
is if the script completely removes the key beforehand.
Below, we’ve added a line of code to put a new value with the “Second” key into the m map, overwriting the previous
value associated with that key. Although the script puts this new pair into the map after the one with the “Third” key, the
pair’s key and value are still second in the keys and values arrays since the key was already present in m before the
change:

160 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_math.random
https://www.tradingview.com/pine-script-reference/v5/#fun_map.keys
https://www.tradingview.com/pine-script-reference/v5/#fun_map.values
https://www.tradingview.com/pine-script-reference/v5/#fun_map.put

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Keys and values demo")
3

4 if bar_index % 50 == 0
5 //@variable A map containing pairs of `string` keys and `float` values.
6 m = map.new<string, float>()
7

8 // Put pairs into `m`. The map will maintain this insertion order.
9 m.put("First", math.round(math.random(0, 100)))
10 m.put("Second", m.get("First") + 1)
11 m.put("Third", m.get("Second") + 1)
12

13 // Overwrite the "Second" pair in `m`. This will NOT affect the insertion order.
14 // The key and value will still appear second in the `keys` and `values` arrays.
15 m.put("Second", -2)
16

17 //@variable An array containing the keys of `m` in their insertion order.
18 array<string> keys = m.keys()
19 //@variable An array containing the values of `m` in their insertion order.
20 array<float> values = m.values()
21

22 //@variable A label displaying the `size` of `m` and the `keys` and `values`␣
↪→arrays.

23 label debugLabel = label.new(
24 bar_index, 0,
25 str.format("Pairs: {0}\nKeys: {1}\nValues: {2}", m.size(), keys, values),
26 color = color.navy, style = label.style_label_center,
27 textcolor = color.white, size = size.huge
28)

Note: The elements in a map.values() array point to the same values as the map id. Consequently, when the map’s values
are of reference types, including line, linefill, box, polyline, label, table, chart.point, or UDTs, modifying the instances
referenced by the map.values() array will also affect those referenced by the map id since the contents of both collections
point to identical objects.

3.16. Maps 161

https://www.tradingview.com/pine-script-reference/v5/#fun_map.values
https://www.tradingview.com/pine-script-reference/v5/#type_line
https://www.tradingview.com/pine-script-reference/v5/#type_linefill
https://www.tradingview.com/pine-script-reference/v5/#type_box
https://www.tradingview.com/pine-script-reference/v5/#type_polyline
https://www.tradingview.com/pine-script-reference/v5/#type_label
https://www.tradingview.com/pine-script-reference/v5/#type_table
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#fun_map.values

Pine Script™ v5 User Manual

`map.contains()`

To check if a specific key exists within a map id, use map.contains(). This function is a convenient alternative to calling
array.includes() on the array returned from map.keys().
For example, this script checks if various keys exist within an m map, then displays the results in a label:

1 //@version=5
2 indicator("Inspecting keys demo")
3

4 //@variable A map containing `string` keys and `string` values.
5 m = map.new<string, string>()
6

7 // Put key-value pairs into the map.
8 m.put("A", "B")
9 m.put("C", "D")
10 m.put("E", "F")
11

12 //@variable An array of keys to check for in `m`.
13 array<string> testKeys = array.from("A", "B", "C", "D", "E", "F")
14

15 //@variable An array containing all elements from `testKeys` found in the keys of `m`.
16 array<string> mappedKeys = array.new<string>()
17

18 for key in testKeys
19 // Add the `key` to `mappedKeys` if `m` contains it.
20 if m.contains(key)
21 mappedKeys.push(key)
22

23 //@variable A string representing the `testKeys` array and the elements found within␣
↪→the keys of `m`.

24 string testText = str.format("Tested keys: {0}\nKeys found: {1}", testKeys,␣
↪→mappedKeys)

25

26 if bar_index == last_bar_index - 1
27 //@variable Displays the `testText` in a label at the `bar_index` before the last.
28 label debugLabel = label.new(
29 bar_index, 0, testText, style = label.style_label_center,
30 textcolor = color.white, size = size.huge
31)

162 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_map.contains
https://www.tradingview.com/pine-script-reference/v5/#fun_array.includes
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#fun_map.keys
https://www.tradingview.com/pine-script-reference/v5/#type_label

Pine Script™ v5 User Manual

Removing key-value pairs

To remove a specific key-value pair from a map id, use map.remove(). This function removes the key and its associated
value from the map while preserving the insertion order of other key-value pairs. It returns the removed value if the map
contained the key. Otherwise, it returns na.
To remove all key-value pairs from a map id at once, use map.clear().
The following script creates a new m map, puts key-value pairs into the map, uses m.remove() within a loop to remove
each valid key listed in the removeKeys array, then calls m.clear() to remove all remaining key-value pairs. It uses a
custom debugLabel() method to display the size, keys, and values of m after each change:

1 //@version=5
2 indicator("Removing key-value pairs demo")
3

4 //@function Returns a label to display the keys and values from a map.
5 method debugLabel(
6 map<string, int> this, int barIndex = bar_index,
7 color bgColor = color.blue, string note = ""
8) =>
9 //@variable A string representing the size, keys, and values in `this` map.
10 string repr = str.format(
11 "{0}\nSize: {1}\nKeys: {2}\nValues: {3}",
12 note, this.size(), str.tostring(this.keys()), str.tostring(this.values())
13)
14 label.new(
15 barIndex, 0, repr, color = bgColor, style = label.style_label_center,
16 textcolor = color.white, size = size.huge
17)
18

19 if bar_index == last_bar_index - 1
20 //@variable A map containing `string` keys and `int` values.
21 m = map.new<string, int>()
22

23 // Put key-value pairs into `m`.
24 for [i, key] in array.from("A", "B", "C", "D", "E")
25 m.put(key, i)
26 m.debugLabel(bar_index, color.green, "Added pairs")
27

28 //@variable An array of keys to remove from `m`.
29 array<string> removeKeys = array.from("B", "B", "D", "F", "a")
30

31 // Remove each `key` in `removeKeys` from `m`.
32 for key in removeKeys
33 m.remove(key)

(continues on next page)

3.16. Maps 163

https://www.tradingview.com/pine-script-reference/v5/#fun_map.remove
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_map.clear
https://www.tradingview.com/pine-script-reference/v5/#fun_map.remove
https://www.tradingview.com/pine-script-reference/v5/#fun_map.clear
https://www.tradingview.com/pine-script-reference/v5/#fun_map.size
https://www.tradingview.com/pine-script-reference/v5/#fun_map.keys
https://www.tradingview.com/pine-script-reference/v5/#fun_map.values

Pine Script™ v5 User Manual

(continued from previous page)
34 m.debugLabel(bar_index + 10, color.red, "Removed pairs")
35

36 // Remove all remaining keys from `m`.
37 m.clear()
38 m.debugLabel(bar_index + 20, color.purple, "Cleared the map")

Note that:
• Not all strings in the removeKeys array were present in the keys of m. Attempting to remove non-existent
keys (“F”, “a”, and the second “B” in this example) has no effect on a map’s contents.

Combining maps

Scripts can combine two maps via map.put_all(). This function puts all key-value pairs from the id2 map, in their
insertion order, into the id1 map. As with map.put(), if any keys in id2 are also present in id1, this function replaces
the key-value pairs that contain those keys without affecting their initial insertion order.
This example contains a user-defined hexMap() function that maps decimal int keys to string representations of their
hexadecimal forms. The script uses this function to create two maps, mapA and mapB, then uses mapA.put_all(mapB)
to put all key-value pairs from mapB into mapA.
The script uses a custom debugLabel() function to display labels showing the keys and values of mapA and mapB,
then another label displaying the contents of mapA after putting all key-value pairs from mapB into it:

1 //@version=5
2 indicator("Combining maps demo", "Hex map")
3

4 //@variable An array of string hex digits.
5 var array<string> hexDigits = str.split("0123456789ABCDEF", "")
6

7 //@function Returns a hexadecimal string for the specified `value`.
8 hex(int value) =>
9 //@variable A string representing the hex form of the `value`.
10 string result = ""
11 //@variable A temporary value for digit calculation.
12 int tempValue = value
13 while tempValue > 0
14 //@variable The next integer digit.
15 int digit = tempValue % 16
16 // Add the hex form of the `digit` to the `result`.
17 result := hexDigits.get(digit) + result
18 // Divide the `tempValue` by the base.

(continues on next page)

164 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_map.put_all
https://www.tradingview.com/pine-script-reference/v5/#fun_map.put
https://www.tradingview.com/pine-script-reference/v5/#type_int
https://www.tradingview.com/pine-script-reference/v5/#type_string
https://en.wikipedia.org//wiki/Hexadecimal
https://www.tradingview.com/pine-script-reference/v5/#fun_map.put_all
https://www.tradingview.com/pine-script-reference/v5/#fun_map.keys
https://www.tradingview.com/pine-script-reference/v5/#fun_map.values

Pine Script™ v5 User Manual

(continued from previous page)
19 tempValue := int(tempValue / 16)
20 result
21

22 //@function Returns a map holding the `numbers` as keys and their `hex` strings as␣
↪→values.

23 hexMap(array<int> numbers) =>
24 //@variable A map associating `int` keys with `string` values.
25 result = map.new<int, string>()
26 for number in numbers
27 // Put a pair containing the `number` and its `hex()` representation into the␣

↪→`result`.
28 result.put(number, hex(number))
29 result
30

31 //@function Returns a label to display the keys and values of a hex map.
32 debugLabel(
33 map<int, string> this, int barIndex = bar_index, color bgColor = color.blue,
34 string style = label.style_label_center, string note = ""
35) =>
36 string repr = str.format(
37 "{0}\nDecimal: {1}\nHex: {2}",
38 note, str.tostring(this.keys()), str.tostring(this.values())
39)
40 label.new(
41 barIndex, 0, repr, color = bgColor, style = style,
42 textcolor = color.white, size = size.huge
43)
44

45 if bar_index == last_bar_index - 1
46 //@variable A map with decimal `int` keys and hexadecimal `string` values.
47 map<int, string> mapA = hexMap(array.from(101, 202, 303, 404))
48 debugLabel(mapA, bar_index, color.navy, label.style_label_down, "A")
49

50 //@variable A map containing key-value pairs to add to `mapA`.
51 map<int, string> mapB = hexMap(array.from(303, 404, 505, 606, 707, 808))
52 debugLabel(mapB, bar_index, color.maroon, label.style_label_up, "B")
53

54 // Put all pairs from `mapB` into `mapA`.
55 mapA.put_all(mapB)
56 debugLabel(mapA, bar_index + 10, color.purple, note = "Merge B into A")

3.16.4 Looping through a map

There are several ways scripts can iteratively access the keys and values in a map. For example, one could loop through a
map’s keys() array and get() the value for each key, like so:

for key in thisMap.keys()
value = thisMap.get(key)

However, we recommend using a for...in loop directly on a map, as it iterates over the map’s key-value pairs in their
insertion order, returning a tuple containing the next pair’s key and value on each iteration.
For example, this line of code loops through each key and value in thisMap, starting from the first key-value pair
put into it:

3.16. Maps 165

https://www.tradingview.com/pine-script-reference/v5/#fun_map.keys
https://www.tradingview.com/pine-script-reference/v5/#fun_map.get

Pine Script™ v5 User Manual

for [key, value] in thisMap

Let’s use this structure to write a script that displays a map’s key-value pairs in a table. In the example below, we’ve defined
a custom toTable()method that creates a table, then uses a for...in loop to iterate over the map’s key-value pairs
and populate the table’s cells. The script uses this method to visualize a map containing length-bar averages of
price and volume data:

1 //@version=5
2 indicator("Looping through a map demo", "Table of averages")
3

4 //@variable The length of the moving average.
5 int length = input.int(20, "Length")
6 //@variable The size of the table text.
7 string txtSize = input.string(
8 size.huge, "Text size",
9 options = [size.auto, size.tiny, size.small, size.normal, size.large, size.huge]
10)
11

12 //@function Displays the pairs of `this` map within a table.
13 //@param this A map with `string` keys and `float` values.
14 //@param position The position of the table on the chart.
15 //@param header The string to display on the top row of the table.
16 //@param textSize The size of the text in the table.
17 //@returns A new `table` object with cells displaying each pair in `this`.
18 method toTable(
19 map<string, float> this, string position = position.middle_center, string header␣

↪→= na,
20 string textSize = size.huge
21) =>
22 // Color variables
23 borderColor = #000000
24 headerColor = color.rgb(1, 88, 80)
25 pairColor = color.maroon
26 textColor = color.white
27

(continues on next page)

166 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#type_table
https://www.tradingview.com/pine-script-reference/v5/#type_table

Pine Script™ v5 User Manual

(continued from previous page)
28 //@variable A table that displays the key-value pairs of `this` map.
29 table result = table.new(
30 position, this.size() + 1, 3, border_width = 2, border_color = borderColor
31)
32 // Initialize top and side header cells.
33 result.cell(1, 0, header, bgcolor = headerColor, text_color = textColor, text_

↪→size = textSize)
34 result.merge_cells(1, 0, this.size(), 0)
35 result.cell(0, 1, "Key", bgcolor = headerColor, text_color = textColor, text_size␣

↪→= textSize)
36 result.cell(0, 2, "Value", bgcolor = headerColor, text_color = textColor, text_

↪→size = textSize)
37

38 //@variable The column index of the table. Updates on each loop iteration.
39 int col = 1
40

41 // Loop over each `key` and `value` from `this` map in the insertion order.
42 for [key, value] in this
43 // Initialize a `key` cell in the `result` table on row 1.
44 result.cell(
45 col, 1, str.tostring(key), bgcolor = color.maroon,
46 text_color = color.white, text_size = textSize
47)
48 // Initialize a `value` cell in the `result` table on row 2.
49 result.cell(
50 col, 2, str.tostring(value), bgcolor = color.maroon,
51 text_color = color.white, text_size = textSize
52)
53 // Move to the next column index.
54 col += 1
55 result // Return the `result` table.
56

57 //@variable A map with `string` keys and `float` values to hold `length`-bar averages.
58 averages = map.new<string, float>()
59

60 // Put key-value pairs into the `averages` map.
61 averages.put("Open", ta.sma(open, length))
62 averages.put("High", ta.sma(high, length))
63 averages.put("Low", ta.sma(low, length))
64 averages.put("Close", ta.sma(close, length))
65 averages.put("Volume", ta.sma(volume, length))
66

67 //@variable The text to display at the top of the table.
68 string headerText = str.format("{0} {1}-bar averages", "'" + syminfo.tickerid + "'",␣

↪→length)
69 // Display the `averages` map in a `table` with the `headerText`.
70 averages.toTable(header = headerText, textSize = txtSize)

3.16. Maps 167

Pine Script™ v5 User Manual

3.16.5 Copying a map

Shallow copies

Scripts can make a shallow copy of a map id using the map.copy() function. Modifications to a shallow copy do not
affect the original id map or its internal insertion order.
For example, this script constructs an mmap with the keys “A”, “B”, “C”, and “D” assigned to four random values between
0 and 10. It then creates an mCopymap as a shallow copy of m and updates the values associated with its keys. The script
displays the key-value pairs in m and mCopy on the chart using our custom debugLabel() method:

1 //@version=5
2 indicator("Shallow copy demo")
3

4 //@function Displays the key-value pairs of `this` map in a label.
5 method debugLabel(
6 map<string, float> this, int barIndex = bar_index, color bgColor = color.blue,
7 color textColor = color.white, string note = ""
8) =>
9 //@variable The text to display in the label.
10 labelText = note + "\n{"
11 for [key, value] in this
12 labelText += str.format("{0}: {1}, ", key, value)
13 labelText := str.replace(labelText, ", ", "}", this.size() - 1)
14

15 if barstate.ishistory
16 label result = label.new(
17 barIndex, 0, labelText, color = bgColor, style = label.style_label_

↪→center,
18 textcolor = textColor, size = size.huge
19)
20

21 if bar_index == last_bar_index - 1
22 //@variable A map of `string` keys and random `float` values.
23 m = map.new<string, float>()
24

25 // Assign random values to an array of keys in `m`.
26 for key in array.from("A", "B", "C", "D")
27 m.put(key, math.random(0, 10))
28

29 //@variable A shallow copy of `m`.
30 mCopy = m.copy()
31

32 // Assign the insertion order value `i` to each `key` in `mCopy`.

(continues on next page)

168 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_map.copy
https://www.tradingview.com/pine-script-reference/v5/#fun_math.random

Pine Script™ v5 User Manual

(continued from previous page)
33 for [i, key] in mCopy.keys()
34 mCopy.put(key, i)
35

36 // Display the labels.
37 m.debugLabel(bar_index, note = "Original")
38 mCopy.debugLabel(bar_index + 10, color.purple, note = "Copied and changed")

Deep copies

While a shallow copy will suffice when copying maps that have values of a fundamental type, it’s important to remember
that shallow copies of a map holding values of a reference type (line, linefill, box, polyline, label, table, chart.point or
a UDT) point to the same objects as the original. Modifying the objects referenced by a shallow copy will affect the
instances referenced by the original map and vice versa.
To ensure changes to objects referenced by a copied map do not affect instances referenced in other locations, one can
make a deep copy by creating a new map with key-value pairs containing copies of each value in the original map.
This example creates an originalmap of string keys and label values and puts a key-value pair into it. The script copies
the map to a shallow variable via the built-in copy() method, then to a deep variable using a custom deepCopy()
method.
As we see from the chart, changes to the label retrieved from the shallow copy also affect the instance referenced by
the original map, but changes to the one from the deep copy do not:

1 //@version=5
2 indicator("Deep copy demo")
3

4 //@function Returns a deep copy of `this` map.
5 method deepCopy(map<string, label> this) =>
6 //@variable A deep copy of `this` map.
7 result = map.new<string, label>()
8 // Add key-value pairs with copies of each `value` to the `result`.
9 for [key, value] in this
10 result.put(key, value.copy())
11 result //Return the `result`.
12

13 //@variable A map containing `string` keys and `label` values.
14 var original = map.new<string, label>()
15

16 if bar_index == last_bar_index - 1
17 // Put a new key-value pair into the `original` map.
18 map.put(

(continues on next page)

3.16. Maps 169

https://www.tradingview.com/pine-script-reference/v5/#type_line
https://www.tradingview.com/pine-script-reference/v5/#type_linefill
https://www.tradingview.com/pine-script-reference/v5/#type_box
https://www.tradingview.com/pine-script-reference/v5/#type_polyline
https://www.tradingview.com/pine-script-reference/v5/#type_label
https://www.tradingview.com/pine-script-reference/v5/#type_table
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#type_string
https://www.tradingview.com/pine-script-reference/v5/#type_label
https://www.tradingview.com/pine-script-reference/v5/#fun_map.put
https://www.tradingview.com/pine-script-reference/v5/#fun_map.copy

Pine Script™ v5 User Manual

(continued from previous page)
19 original, "Test",
20 label.new(bar_index, 0, "Original", textcolor = color.white, size = size.

↪→huge)
21)
22

23 //@variable A shallow copy of the `original` map.
24 map<string, label> shallow = original.copy()
25 //@variable A deep copy of the `original` map.
26 map<string, label> deep = original.deepCopy()
27

28 //@variable The "Test" label from the `shallow` copy.
29 label shallowLabel = shallow.get("Test")
30 //@variable The "Test" label from the `deep` copy.
31 label deepLabel = deep.get("Test")
32

33 // Modify the "Test" label's `y` attribute in the `original` map.
34 // This also affects the `shallowLabel`.
35 original.get("Test").set_y(label.all.size())
36

37 // Modify the `shallowLabel`. Also modifies the "Test" label in the `original`␣
↪→map.

38 shallowLabel.set_text("Shallow copy")
39 shallowLabel.set_color(color.red)
40 shallowLabel.set_style(label.style_label_up)
41

42 // Modify the `deepLabel`. Does not modify any other label instance.
43 deepLabel.set_text("Deep copy")
44 deepLabel.set_color(color.navy)
45 deepLabel.set_style(label.style_label_left)
46 deepLabel.set_x(bar_index + 5)

Note that:
• The deepCopy() method loops through the original map, copying each value and putting key-value
pairs containing the copies into a new map instance.

3.16.6 Scope and history

As with other collections in Pine, map variables leave historical trails on each bar, allowing a script to access past map
instances assigned to a variable using the history-referencing operator []. Scripts can also assign maps to global variables
and interact with them from the scopes of functions, methods, and conditional structures.
As an example, this script uses a global map and its history to calculate an aggregate set of EMAs. It declares a glob-
alDatamap of int keys and float values, where each key in the map corresponds to the length of each EMA calculation.
The user-defined update() function calculates each key-length EMA by mixing the values from the previousmap
assigned to globalData with the current source value.
The script plots the maximum and minimum values in the global map’s values() array and the value from globalData.
get(50) (i.e., the 50-bar EMA):

170 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#fun_map.new%3Ctype,type%3E
https://www.tradingview.com/pine-script-reference/v5/#op_{[}{]}
https://www.tradingview.com/support/solutions/43000592270/
https://www.tradingview.com/pine-script-reference/v5/#type_int
https://www.tradingview.com/pine-script-reference/v5/#type_float
https://www.tradingview.com/pine-script-reference/v5/#fun_array.max
https://www.tradingview.com/pine-script-reference/v5/#fun_array.min
https://www.tradingview.com/pine-script-reference/v5/#fun_map.values

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Scope and history demo", overlay = true)
3

4 //@variable The source value for EMA calculation.
5 float source = input.source(close, "Source")
6

7 //@variable A map containing global key-value pairs.
8 globalData = map.new<int, float>()
9

10 //@function Calculates a set of EMAs and updates the key-value pairs in `globalData`.
11 update() =>
12 //@variable The previous map instance assigned to `globalData`.
13 map<int, float> previous = globalData[1]
14

15 // Put key-value pairs with keys 10-200 into `globalData` if `previous` is `na`.
16 if na(previous)
17 for i = 10 to 200
18 globalData.put(i, source)
19 else
20 // Iterate each `key` and `value` in the `previous` map.
21 for [key, value] in previous
22 //@variable The smoothing parameter for the `key`-length EMA.
23 float alpha = 2.0 / (key + 1.0)
24 //@variable The `key`-length EMA value.
25 float ema = (1.0 - alpha) * value + alpha * source
26 // Put the `key`-length `ema` into the `globalData` map.
27 globalData.put(key, ema)
28

29 // Update the `globalData` map.
30 update()
31

32 //@variable The array of values from `globalData` in their insertion order.
33 array<float> values = globalData.values()
34

35 // Plot the max EMA, min EMA, and 50-bar EMA values.
36 plot(values.max(), "Max EMA", color.green, 2)
37 plot(values.min(), "Min EMA", color.red, 2)
38 plot(globalData.get(50), "50-bar EMA", color.orange, 3)

3.16. Maps 171

Pine Script™ v5 User Manual

3.16.7 Maps of other collections

Maps cannot directly use other maps, arrays, or matrices as values, but they can hold values of a user-defined type that
contains collections within its fields.
For example, suppose we want to create a “2D” map that uses string keys to access nested maps that hold pairs of string
keys and float values. Since maps cannot use other collections as values, we will first create a wrapper type with a field to
hold a map<string, float> instance, like so:

//@type A wrapper type for maps with `string` keys and `float` values.
type Wrapper

map<string, float> data

With our Wrapper type defined, we can create maps of string keys and Wrapper values, where the data field of each
value in the map points to a map<string, float> instance:

mapOfMaps = map.new<string, Wrapper>()

The script below uses this concept to construct a map containing maps that hold OHLCV data requested from multiple
tickers. The user-defined requestData() function requests price and volume data from a ticker, creates a <string,
float> map, puts the data into it, then returns a Wrapper instance containing the new map.
The script puts the results from each call to requestData() into the mapOfMaps, then creates a string representation
of the nested maps with a user-defined toString() method, which it displays on the chart in a label:

1 //@version=5
2 indicator("Nested map demo")
3

4 //@variable The timeframe of the requested data.
5 string tf = input.timeframe("D", "Timeframe")
6 // Symbol inputs.
7 string symbol1 = input.symbol("EURUSD", "Symbol 1")
8 string symbol2 = input.symbol("GBPUSD", "Symbol 2")
9 string symbol3 = input.symbol("EURGBP", "Symbol 3")
10

11 //@type A wrapper type for maps with `string` keys and `float` values.
12 type Wrapper
13 map<string, float> data
14

15 //@function Returns a wrapped map containing OHLCV data from the `tickerID` at the␣
↪→`timeframe`.

16 requestData(string tickerID, string timeframe) =>
17 // Request a tuple of OHLCV values from the specified ticker and timeframe.
18 [o, h, l, c, v] = request.security(
19 tickerID, timeframe,

(continues on next page)

172 Chapter 3. Language

https://www.tradingview.com/pine-script-reference/v5/#type_string
https://www.tradingview.com/pine-script-reference/v5/#type_string
https://www.tradingview.com/pine-script-reference/v5/#type_float
https://www.tradingview.com/pine-script-reference/v5/#type_string
https://www.tradingview.com/pine-script-reference/v5/#fun_map.put
https://www.tradingview.com/pine-script-reference/v5/#fun_map.put
https://www.tradingview.com/pine-script-reference/v5/#type_string
https://www.tradingview.com/pine-script-reference/v5/#type_label

Pine Script™ v5 User Manual

(continued from previous page)
20 [open, high, low, close, volume]
21)
22 //@variable A map containing requested OHLCV data.
23 result = map.new<string, float>()
24 // Put key-value pairs into the `result`.
25 result.put("Open", o)
26 result.put("High", h)
27 result.put("Low", l)
28 result.put("Close", c)
29 result.put("Volume", v)
30 //Return the wrapped `result`.
31 Wrapper.new(result)
32

33 //@function Returns a string representing `this` map of `string` keys and `Wrapper`␣
↪→values.

34 method toString(map<string, Wrapper> this) =>
35 //@variable A string representation of `this` map.
36 string result = "{"
37

38 // Iterate over each `key1` and associated `wrapper` in `this`.
39 for [key1, wrapper] in this
40 // Add `key1` to the `result`.
41 result += key1
42

43 //@variable A string representation of the `wrapper.data` map.
44 string innerStr = ": {"
45 // Iterate over each `key2` and associated `value` in the wrapped map.
46 for [key2, value] in wrapper.data
47 // Add the key-value pair's representation to `innerStr`.
48 innerStr += str.format("{0}: {1}, ", key2, str.tostring(value))
49

50 // Replace the end of `innerStr` with "}" and add to `result`.
51 result += str.replace(innerStr, ", ", "},\n", wrapper.data.size() - 1)
52

53 // Replace the blank line at the end of `result` with "}".
54 result := str.replace(result, ",\n", "}", this.size() - 1)
55 result
56

57 //@variable A map of wrapped maps containing OHLCV data from multiple tickers.
58 var mapOfMaps = map.new<string, Wrapper>()
59

60 //@variable A label showing the contents of the `mapOfMaps`.
61 var debugLabel = label.new(
62 bar_index, 0, color = color.navy, textcolor = color.white, size = size.huge,
63 style = label.style_label_center, text_font_family = font.family_monospace
64)
65

66 // Put wrapped maps into `mapOfMaps`.
67 mapOfMaps.put(symbol1, requestData(symbol1, tf))
68 mapOfMaps.put(symbol2, requestData(symbol2, tf))
69 mapOfMaps.put(symbol3, requestData(symbol3, tf))
70

71 // Update the label.
72 debugLabel.set_text(mapOfMaps.toString())
73 debugLabel.set_x(bar_index)

3.16. Maps 173

Pine Script™ v5 User Manual

174 Chapter 3. Language

https://www.tradingview.com/

CHAPTER

FOUR

CONCEPTS

4.1 Alerts

• Introduction

• Script alerts

• `alertcondition()` events

• Avoiding repainting with alerts

4.1.1 Introduction

TradingView alerts run 24x7 on our servers and do not require users to be logged in to execute. Alerts are created from
the charts user interface (UI). You will find all the information necessary to understand how alerts work and how to create
them from the charts UI in the Help Center’s About TradingView alerts page.
Some of the alert types available on TradingView (generic alerts, drawing alerts and script alerts on order fill events) are
created from symbols or scripts loaded on the chart and do not require specific coding. Any user can create these types
of alerts from the charts UI.
Other types of alerts (script alerts triggering on alert() function calls, and alertcondition() alerts) require specific Pine
Script™ code to be present in a script to create an alert event before script users can create alerts from them using the
charts UI. Additionally, while script users can create script alerts triggering on order fill events from the charts UI on any
strategy loaded on their chart, Programmers can specify explicit order fill alert messages in their script for each type of
order filled by the broker emulator.
This page covers the different ways Pine Script™ programmers can code their scripts to create alert events from which
script users will in turn be able to create alerts from the charts UI. We will cover:

• How to use the alert() function to alert() function calls in indicators or strategies, which can then be included in
script alerts created from the charts UI.

• How to add custom alert messages to be included in script alerts triggering on the order fill events of strategies.

175

https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html
https://www.tradingview.com/support/solutions/43000520149
https://www.tradingview.com/pine-script-reference/v5/#fun_alert

Pine Script™ v5 User Manual

• How to use the alertcondition() function to generate, in indicators only, alertcondition() events which can then be
used to create alertcondition() alerts from the charts UI.

Keep in mind that:
• No alert-related Pine Script™ code can create a running alert in the charts UI; it merely creates alert events which
can then be used by script users to create running alerts from the charts UI.

• Alerts only trigger in the realtime bar. The operational scope of Pine Script™ code dealing with any type of alert
is therefore restricted to realtime bars only.

• When an alert is created in the charts UI, TradingView saves a mirror image of the script and its inputs, along with
the chart’s main symbol and timeframe to run the alert on its servers. Subsequent changes to your script’s inputs or
the chart will thus not affect running alerts previously created from them. If you want any changes to your context
to be reflected in a running alert’s behavior, you will need to delete the alert and create a new one in the new context.

Background

The different methods Pine programmers can use today to create alert events in their script are the result of successive
enhancements deployed throughout Pine Script™’s evolution. The alertcondition() function, which works in indicators
only, was the first feature allowing Pine Script™ programmers to create alert events. Then came order fill alerts for
strategies, which trigger when the broker emulator creates order fill events. Order fill events require no special code for
script users to create alerts on them, but by way of the alert_message parameter for order-generating strategy.
*() functions, programmers can customize the message of alerts triggering on order fill events by defining a distinct alert
message for any number of order fulfillment events.
The alert() function is the most recent addition to Pine Script™. It more or less supersedes alertcondition(), and when
used in strategies, provides a useful complement to alerts on order fill events.

Which type of alert is best?

For Pine Script™ programmers, the alert() function will generally be easier and more flexible to work with. Contrary to
alertcondition(), it allows for dynamic alert messages, works in both indicators and strategies and the programmer decides
on the frequency of alert() events.
While alert() calls can be generated on any logic programmable in Pine, including when orders are sent to the broker
emulator in strategies, they cannot be coded to trigger when orders are executed (or filled) because after orders are sent
to the broker emulator, the emulator controls their execution and does not report fill events back to the script directly.
When a script user wants to generate an alert on a strategy’s order fill events, he must include those events when creating
a script alert on the strategy in the “Create Alert” dialog box. No special code is required in scripts for users to be able
to do this. The message sent with order fill events can, however, be customized by programmers through use of the
alert_message parameter in order-generating strategy.*() function calls. A combination of alert() calls and
the use of custom alert_message arguments in order-generating strategy.*() calls should allow programmers
to generate alert events on most conditions occurring in their script’s execution.
The alertcondition() function remains in Pine Script™ for backward compatibility, but it can also be used advantageously
to generate distinct alerts available for selection as individual items in the “Create Alert” dialog box’s “Condition” field.

176 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition

Pine Script™ v5 User Manual

4.1.2 Script alerts

When a script user creates a script alert using the “Create Alert” dialog box, the events able to trigger the alert will vary
depending on whether the alert is created from an indicator or a strategy.
A script alert created from an indicator will trigger when:

• The indicator contains alert() calls.
• The code’s logic allows a specific alert() call to execute.
• The frequency specified in the alert() call allows the alert to trigger.

A script alert created from a strategy can trigger on alert() function calls, on order fill events, or both. The script user
creating an alert on a strategy decides which type of events he wishes to include in his script alert. While users can create
a script alert on order fill events without the need for a strategy to include special code, it must contain alert() calls for
users to include alert() function calls in their script alert.

`alert()` function events

The alert() function has the following signature:

alert(message, freq)

message
A “series string” representing the message text sent when the alert triggers. Because this argument allows “series”
values, it can be generated at runtime and differ bar to bar, making it dynamic.

freq
An “input string” specifying the triggering frequency of the alert. Valid arguments are:

• alert.freq_once_per_bar: Only the first call per realtime bar triggers the alert (default value).
• alert.freq_once_per_bar_close: An alert is only triggered when the realtime bar closes and an
alert() call is executed during that script iteration.

• alert.freq_all: All calls during the realtime bar trigger the alert.
The alert() function can be used in both indicators and strategies. For an alert() call to trigger a script alert configured on
alert() function calls, the script’s logic must allow the alert() call to execute, and the frequency determined by the freq
parameter must allow the alert to trigger.
Note that by default, strategies are recalculated at the bar’s close, so if the alert() function with the frequency alert.
freq_all or alert.freq_once_per_bar is used in a strategy, then it will be called no more often than once at
the bar’s close. In order to enable the alert() function to be called during the bar construction process, you need to enable
the calc_on_every_tick option.

Using all `alert()` calls

Let’s look at an example where we detect crosses of the RSI centerline:

1 //@version=5
2 indicator("All `alert()` calls")
3 r = ta.rsi(close, 20)
4

5 // Detect crosses.
6 xUp = ta.crossover(r, 50)
7 xDn = ta.crossunder(r, 50)

(continues on next page)

4.1. Alerts 177

https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert

Pine Script™ v5 User Manual

(continued from previous page)
8 // Trigger an alert on crosses.
9 if xUp
10 alert("Go long (RSI is " + str.tostring(r, "#.00)"))
11 else if xDn
12 alert("Go short (RSI is " + str.tostring(r, "#.00)"))
13

14 plotchar(xUp, "Go Long", "▲", location.bottom, color.lime, size = size.tiny)
15 plotchar(xDn, "Go Short", "▼", location.top, color.red, size = size.tiny)
16 hline(50)
17 plot(r)

If a script alert is created from this script:
• When RSI crosses the centerline up, the script alert will trigger with the “Go long…” message. When RSI crosses
the centerline down, the script alert will trigger with the “Go short…” message.

• Because no argument is specified for the freq parameter in the alert() call, the default value of alert.
freq_once_per_barwill be used, so the alert will only trigger the first time each of the alert() calls is executed
during the realtime bar.

• The message sent with the alert is composed of two parts: a constant string and then the result of the str.tostring()
call which will include the value of RSI at the moment where the alert() call is executed by the script. An alert
message for a cross up would look like: “Go long (RSI is 53.41)”.

• Because a script alert always triggers on any occurrence of a call to alert(), as long as the frequency used in the call
allows for it, this particular script does not allow a script user to restrict his script alert to longs only, for example.

Note that:
• Contrary to an alertcondition() call which is always placed at column 0 (in the script’s global scope), the alert() call
is placed in the local scope of an if branch so it only executes when our triggering condition is met. If an alert()
call was placed in the script’s global scope at column 0, it would execute on all bars, which would likely not be the
desired behavior.

• An alertcondition() could not accept the same string we use for our alert’s message because of its use of the
str.tostring() call. alertcondition() messages must be constant strings.

Lastly, because alert() messages can be constructed dynamically at runtime, we could have used the following code to
generate our alert events:

// Trigger an alert on crosses.
if xUp or xDn

firstPart = (xUp ? "Go long" : "Go short") + " (RSI is "
alert(firstPart + str.tostring(r, "#.00)"))

Using selective `alert()` calls

When users create a script alert on alert() function calls, the alert will trigger on any call the script makes to the alert()
function, provided its frequency constraints are met. If you want to allow your script’s users to select which alert() function
call in your script will trigger a script alert, you will need to provide them with the means to indicate their preference in
your script’s inputs, and code the appropriate logic in your script. This way, script users will be able to create multiple
script alerts from a single script, each behaving differently as per the choices made in the script’s inputs prior to creating
the alert in the charts UI.
Suppose, for our next example, that we want to provide the option of triggering alerts on only longs, only shorts, or both.
You could code your script like this:

178 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_str\{dot\}tostring
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_str\{dot\}tostring
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Selective `alert()` calls")
3 detectLongsInput = input.bool(true, "Detect Longs")
4 detectShortsInput = input.bool(true, "Detect Shorts")
5 repaintInput = input.bool(false, "Allow Repainting")
6

7 r = ta.rsi(close, 20)
8 // Detect crosses.
9 xUp = ta.crossover(r, 50)
10 xDn = ta.crossunder(r, 50)
11 // Only generate entries when the trade's direction is allowed in inputs.
12 enterLong = detectLongsInput and xUp and (repaintInput or barstate.isconfirmed)
13 enterShort = detectShortsInput and xDn and (repaintInput or barstate.isconfirmed)
14 // Trigger the alerts only when the compound condition is met.
15 if enterLong
16 alert("Go long (RSI is " + str.tostring(r, "#.00)"))
17 else if enterShort
18 alert("Go short (RSI is " + str.tostring(r, "#.00)"))
19

20 plotchar(enterLong, "Go Long", "▲", location.bottom, color.lime, size = size.tiny)
21 plotchar(enterShort, "Go Short", "▼", location.top, color.red, size = size.tiny)
22 hline(50)
23 plot(r)

Note how:
• We create a compound condition that is met only when the user’s selection allows for an entry in that direction. A
long entry on a crossover of the centerline only triggers the alert when long entries have been enabled in the script’s
Inputs.

• We offer the user to indicate his repainting preference. When he does not allow the calculations to repaint, we wait
until the bar’s confirmation to trigger the compound condition. This way, the alert and the marker only appear at
the end of the realtime bar.

• If a user of this script wanted to create two distinct script alerts from this script, i.e., one triggering only on longs,
and one only on shorts, then he would need to:

– Select only “Detect Longs” in the inputs and create a first script alert on the script.
– Select only “Detect Shorts” in the Inputs and create another script alert on the script.

In strategies

alert() function calls can be used in strategies also, with the provision that strategies, by default, only execute on the close
of realtime bars. Unless calc_on_every_tick = true is used in the strategy() declaration statement, all alert()
calls will use the alert.freq_once_per_bar_close frequency, regardless of the argument used for freq.
While script alerts on strategies will use order fill events to trigger alerts when the broker emulator fills orders, alert() can
be used advantageously to generate other alert events in strategies.
This strategy creates alert() function calls when RSI moves against the trade for three consecutive bars:

1 //@version=5
2 strategy("Strategy with selective `alert()` calls")
3 r = ta.rsi(close, 20)
4

5 // Detect crosses.
6 xUp = ta.crossover(r, 50)

(continues on next page)

4.1. Alerts 179

https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alert

Pine Script™ v5 User Manual

(continued from previous page)
7 xDn = ta.crossunder(r, 50)
8 // Place orders on crosses.
9 if xUp
10 strategy.entry("Long", strategy.long)
11 else if xDn
12 strategy.entry("Short", strategy.short)
13

14 // Trigger an alert when RSI diverges from our trade's direction.
15 divInLongTrade = strategy.position_size > 0 and ta.falling(r, 3)
16 divInShortTrade = strategy.position_size < 0 and ta.rising(r, 3)
17 if divInLongTrade
18 alert("WARNING: Falling RSI", alert.freq_once_per_bar_close)
19 if divInShortTrade
20 alert("WARNING: Rising RSI", alert.freq_once_per_bar_close)
21

22 plotchar(xUp, "Go Long", "▲", location.bottom, color.lime, size = size.tiny)
23 plotchar(xDn, "Go Short", "▼", location.top, color.red, size = size.tiny)
24 plotchar(divInLongTrade, "WARNING: Falling RSI", "•", location.top, color.red, ␣

↪→size = size.tiny)
25 plotchar(divInShortTrade, "WARNING: Rising RSI", "•", location.bottom, color.lime,␣

↪→size = size.tiny)
26 hline(50)
27 plot(r)

If a user created a script alert from this strategy and included both order fill events and alert() function calls in his alert, the
alert would trigger whenever an order is executed, or when one of the alert() calls was executed by the script on the realtime
bar’s closing iteration, i.e., when barstate.isrealtime and barstate.isconfirmed are both true. The alert() function events in
the script would only trigger the alert when the realtime bar closes because alert.freq_once_per_bar_close
is the argument used for the freq parameter in the alert() calls.

Order fill events

When a script alert is created from an indicator, it can only trigger on alert() function calls. However, when a script alert
is created from a strategy, the user can specify that order fill events also trigger the script alert. An order fill event is any
event generated by the broker emulator which causes a simulated order to be executed. It is the equivalent of a trade
order being filled by a broker/exchange. Orders are not necessarily executed when they are placed. In a strategy, the
execution of orders can only be detected indirectly and after the fact, by analyzing changes in built-in variables such as
strategy.opentrades or strategy.position_size. Script alerts configured on order fill events are thus useful in that they allow
the triggering of alerts at the precise moment of an order’s execution, before a script’s logic can detect it.
Pine Script™ programmers can customize the alert message sent when specific orders are executed. While this is not
a pre-requisite for order fill events to trigger, custom alert messages can be useful because they allow custom syntax to
be included with alerts in order to route actual orders to a third-party execution engine, for example. Specifying custom
alert messages for specific order fill events is done by means of the alert_message parameter in functions which can
generate orders: strategy.close(), strategy.entry(), strategy.exit() and strategy.order().
The argument used for the alert_message parameter is a “series string”, so it can be constructed dynamically using
any variable available to the script, as long as it is converted to string format.
Let’s look at a strategy where we use the alert_message parameter in both our strategy.entry() calls:

1 //@version=5
2 strategy("Strategy using `alert_message`")
3 r = ta.rsi(close, 20)
4

(continues on next page)

180 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}isrealtime
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}isconfirmed
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}opentrades
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}position_size
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}close
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}order
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry

Pine Script™ v5 User Manual

(continued from previous page)
5 // Detect crosses.
6 xUp = ta.crossover(r, 50)
7 xDn = ta.crossunder(r, 50)
8 // Place order on crosses using a custom alert message for each.
9 if xUp
10 strategy.entry("Long", strategy.long, stop = high, alert_message = "Stop-buy␣

↪→executed (stop was " + str.tostring(high) + ")")
11 else if xDn
12 strategy.entry("Short", strategy.short, stop = low, alert_message = "Stop-sell␣

↪→executed (stop was " + str.tostring(low) + ")")
13

14 plotchar(xUp, "Go Long", "▲", location.bottom, color.lime, size = size.tiny)
15 plotchar(xDn, "Go Short", "▼", location.top, color.red, size = size.tiny)
16 hline(50)
17 plot(r)

Note that:
• We use the stop parameter in our strategy.entry() calls, which creates stop-buy and stop-sell orders. This entails
that buy orders will only execute once price is higher than the high on the bar where the order is placed, and sell
orders will only execute once price is lower than the low on the bar where the order is placed.

• The up/down arrows which we plot with plotchar() are plotted when orders are placed. Any number of bars may
elapse before the order is actually executed, and in some cases the order will never be executed because price does
not meet the required condition.

• Because we use the same id argument for all buy orders, any new buy order placed before a previous order’s
condition is met will replace that order. The same applies to sell orders.

• Variables included in the alert_message argument are evaluated when the order is executed, so when the alert
triggers.

When the alert_message parameter is used in a strategy’s order-generating strategy.*() function calls, script
users must include the {{strategy.order.alert_message}} placeholder in the “Create Alert” dialog box’s
“Message” field when creating script alerts on order fill events. This is required so the alert_message argument
used in the order-generating strategy.*() function calls is used in the message of alerts triggering on each order
fill event. When only using the {{strategy.order.alert_message}} placeholder in the “Message” field and
the alert_message parameter is present in only some of the order-generating strategy.*() function calls in
your strategy, an empty string will replace the placeholder in the message of alerts triggered by any order-generating
strategy.*() function call not using the alert_message parameter.
While other placeholders can be used in the “Create Alert” dialog box’s “Message” field by users creating alerts on order
fill events, they cannot be used in the argument of alert_message.

4.1.3 `alertcondition()` events

The alertcondition() function allows programmers to create individual alertcondition events in their indicators. One indi-
cator may contain more than one alertcondition() call. Each call to alertcondition() in a script will create a corresponding
alert selectable in the “Condition” dropdown menu of the “Create Alert” dialog box.
While the presence of alertcondition() calls in a strategy script will not cause a compilation error, alerts cannot be created
from them.
The alertcondition() function has the following signature:

alertcondition(condition, title, message)

4.1. Alerts 181

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition

Pine Script™ v5 User Manual

condition
A “series bool” value (true or false) which determines when the alert will trigger. It is a required argument.
When the value is true the alert will trigger. When the value is false the alert will not trigger. Contrary to
alert() function calls, alertcondition() calls must start at column zero of a line, so cannot be placed in conditional
blocks.

title
A “const string” optional argument that sets the name of the alert condition as it will appear in the “Create Alert”
dialog box’s “Condition” field in the charts UI. If no argument is supplied, “Alert” will be used.

message
A “const string” optional argument that specifies the text message to display when the alert triggers. The text will
appear in the “Message” field of the “Create Alert” dialog box, from where script users can then modify it when
creating an alert. As this argument must be a “const string”, it must be known at compilation time and
thus cannot vary bar to bar. It can, however, contain placeholders which will be replaced at runtime by dynamic
values that may change bar to bar. See this page’s Placeholders section for a list.

The alertcondition() function does not include a freq parameter. The frequency of alertcondition() alerts is determined
by users in the “Create Alert” dialog box.

Using one condition

Here is an example of code creating alertcondition() events:

1 //@version=5
2 indicator("`alertcondition()` on single condition")
3 r = ta.rsi(close, 20)
4

5 xUp = ta.crossover(r, 50)
6 xDn = ta.crossunder(r, 50)
7

8 plot(r, "RSI")
9 hline(50)
10 plotchar(xUp, "Long", "▲", location.bottom, color.lime, size = size.tiny)
11 plotchar(xDn, "Short", "▼", location.top, color.red, size = size.tiny)
12

13 alertcondition(xUp, "Long Alert", "Go long")
14 alertcondition(xDn, "Short Alert", "Go short ")

Because we have two alertcondition() calls in our script, two different alerts will be available in the “Create Alert” dialog
box’s “Condition” field: “Long Alert” and “Short Alert”.
If we wanted to include the value of RSI when the cross occurs, we could not simply add its value to the message string
using str.tostring(r), as we could in an alert() call or in an alert_message argument in a strategy. We can,
however, include it using a placeholder. This shows two alternatives:

alertcondition(xUp, "Long Alert", "Go long. RSI is {{plot_0}}")
alertcondition(xDn, "Short Alert", 'Go short. RSI is {{plot("RSI")}}')

Note that:
• The first line uses the {{plot_0}} placeholder, where the plot number corresponds to the order of the plot in
the script.

• The second line uses the {{plot("[plot_title]")}} type of placeholder, which must include the ti-
tle of the plot() call used in our script to plot RSI. Double quotes are used to wrap the plot’s title inside the
{{plot("RSI")}} placeholder. This requires that we use single quotes to wrap the message string.

182 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_plot

Pine Script™ v5 User Manual

• Using one of these methods, we can include any numeric value that is plotted by our indicator, but as strings cannot
be plotted, no string variable can be used.

Using compound conditions

If we want to offer script users the possiblity of creating a single alert from an indicator using multiple alertcondition()
calls, we will need to provide options in the script’s inputs through which users will indicate the conditions they want to
trigger their alert before creating it.
This script demonstrates one way to do it:

1 //@version=5
2 indicator("`alertcondition()` on multiple conditions")
3 detectLongsInput = input.bool(true, "Detect Longs")
4 detectShortsInput = input.bool(true, "Detect Shorts")
5

6 r = ta.rsi(close, 20)
7 // Detect crosses.
8 xUp = ta.crossover(r, 50)
9 xDn = ta.crossunder(r, 50)
10 // Only generate entries when the trade's direction is allowed in inputs.
11 enterLong = detectLongsInput and xUp
12 enterShort = detectShortsInput and xDn
13

14 plot(r)
15 plotchar(enterLong, "Go Long", "▲", location.bottom, color.lime, size = size.tiny)
16 plotchar(enterShort, "Go Short", "▼", location.top, color.red, size = size.tiny)
17 hline(50)
18 // Trigger the alert when one of the conditions is met.
19 alertcondition(enterLong or enterShort, "Compound alert", "Entry")

Note how the alertcondition() call is allowed to trigger on one of two conditions. Each condition can only trigger the alert
if the user enables it in the script’s inputs before creating the alert.

Placeholders

These placeholders can be used in the message argument of alertcondition() calls. They will be replaced with dynamic
values when the alert triggers. They are the only way to include dynamic values (values that can vary bar to bar) in
alertcondition() messages.
Note that users creating alertcondition() alerts from the “Create Alert” dialog box in the charts UI are also able to use
these placeholders in the dialog box’s “Message” field.
{{exchange}}

Exchange of the symbol used in the alert (NASDAQ, NYSE, MOEX, etc.). Note that for delayed symbols, the
exchange will end with “_DL” or “_DLY.” For example, “NYMEX_DL.”

{{interval}}
Returns the timeframe of the chart the alert is created on. Note that Range charts are calculated based on 1m data,
so the placeholder will always return “1” on any alert created on a Range chart.

{{open}}, {{high}}, {{low}}, {{close}}, {{volume}}
Corresponding values of the bar on which the alert has been triggered.

{{plot_0}}, {{plot_1}}, […], {{plot_19}}
Value of the corresponding plot number. Plots are numbered from zero to 19 in order of appearance in the script,

4.1. Alerts 183

https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition

Pine Script™ v5 User Manual

so only one of the first 20 plots can be used. For example, the built-in “Volume” indicator has two output series:
Volume and Volume MA, so you could use the following:

alertcondition(volume > ta.sma(volume,20), "Volume alert", "Volume ({{plot_0}}) >␣
↪→average ({{plot_1}})")

{{plot("[plot_title]")}}
This placeholder can be used when one needs to refer to a plot using the title argument used in a plot() call.
Note that double quotation marks (") must be used inside the placeholder to wrap the title argument. This
requires that a single quotation mark (') be used to wrap the message string:

1 //@version=5
2 indicator("")
3 r = ta.rsi(close, 14)
4 xUp = ta.crossover(r, 50)
5 plot(r, "RSI", display = display.none)
6 alertcondition(xUp, "xUp alert", message = 'RSI is bullish at: {{plot("RSI")}}')

{{ticker}}
Ticker of the symbol used in the alert (AAPL, BTCUSD, etc.).

{{time}}
Returns the time at the beginning of the bar. Time is UTC, formatted as yyyy-MM-ddTHH:mm:ssZ, so for
example: 2019-08-27T09:56:00Z.

{{timenow}}
Current time when the alert triggers, formatted in the same way as {{time}}. The precision is to the nearest
second, regardless of the chart’s timeframe.

4.1.4 Avoiding repainting with alerts

The most common instances of repainting traders want to avoid with alerts are ones where they must prevent an alert
from triggering at some point during the realtime bar when it would not have triggered at its close. This can happen when
these conditions are met:

• The calculations used in the condition triggering the alert can vary during the realtime bar. This will be the case
with any calculation using high, low or close, for example, which includes almost all built-in indicators. It will
also be the case with the result of any request.security() call using a higher timeframe than the chart’s, when the
higher timeframe’s current bar has not closed yet.

• The alert can trigger before the close of the realtime bar, so with any frequency other than “Once Per Bar Close”.
The simplest way to avoid this type of repainting is to configure the triggering frequency of alerts so they only trigger on
the close of the realtime bar. There is no panacea; avoiding this type of repainting always entails waiting for confirmed
information, which means the trader must sacrifice immediacy to achieve reliability.
Note that other types of repainting such as those documented in our Repainting section may not be preventable by simply
triggering alerts on the close of realtime bars.

184 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/

Pine Script™ v5 User Manual

4.2 Backgrounds

The bgcolor() function changes the color of the script’s background. If the script is running in overlay = true
mode, then it will color the chart’s background.
The function’s signature is:

bgcolor(color, offset, editable, show_last, title) → void

Its color parameter allows a “series color” to be used for its argument, so it can be dynamically calculated in an expres-
sion.
If the correct transparency is not part of the color to be used, it can be be generated using the color.new() function.
Here is a script that colors the background of trading sessions (try it on 30min EURUSD, for example):

1 //@version=5
2 indicator("Session backgrounds", overlay = true)
3

4 // Default color constants using tranparency of 25.
5 BLUE_COLOR = #0050FF40
6 PURPLE_COLOR = #0000FF40
7 PINK_COLOR = #5000FF40
8 NO_COLOR = color(na)
9

10 // Allow user to change the colors.
11 preMarketColor = input.color(BLUE_COLOR, "Pre-market")
12 regSessionColor = input.color(PURPLE_COLOR, "Pre-market")
13 postMarketColor = input.color(PINK_COLOR, "Pre-market")
14

15 // Function returns `true` when the bar's time is
16 timeInRange(tf, session) =>
17 time(tf, session) != 0
18

19 // Function prints a message at the bottom-right of the chart.
20 f_print(_text) =>
21 var table _t = table.new(position.bottom_right, 1, 1)
22 table.cell(_t, 0, 0, _text, bgcolor = color.yellow)
23

24 var chartIs30MinOrLess = timeframe.isseconds or (timeframe.isintraday and timeframe.
↪→multiplier <=30)

25 sessionColor = if chartIs30MinOrLess
26 switch
27 timeInRange(timeframe.period, "0400-0930") => preMarketColor
28 timeInRange(timeframe.period, "0930-1600") => regSessionColor
29 timeInRange(timeframe.period, "1600-2000") => postMarketColor
30 => NO_COLOR
31 else
32 f_print("No background is displayed.\nChart timeframe must be <= 30min.")

(continues on next page)

4.2. Backgrounds 185

https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html
https://www.tradingview.com/pine-script-reference/v5/#fun_bgcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}new

Pine Script™ v5 User Manual

(continued from previous page)
33 NO_COLOR
34

35 bgcolor(sessionColor)

Note that:
• The script only works on chart timeframes of 30min or less. It prints an error message when the chart’s timeframe
is higher than 30min.

• When the if structure’s else branch is used because the chart’s timeframe is incorrect, the local block returns the
NO_COLOR color so that no background is displayed in that case.

• We first initialize constants using our base colors, which include the 40 transparency in hex notation at the end.
40 in the hexadecimal notation on the reversed 00-FF scale for transparency corresponds to 75 in Pine Script™’s
0-100 decimal scale for transparency.

• We provide color inputs allowing script users to change the default colors we propose.
In our next example, we generate a gradient for the background of a CCI line:

1 //@version=5
2 indicator("CCI Background")
3

4 bullColor = input.color(color.lime, " ", inline = "1")
5 bearColor = input.color(color.fuchsia, " ", inline = "1")
6

7 // Calculate CCI.
8 myCCI = ta.cci(hlc3, 20)
9 // Get relative position of CCI in last 100 bars, on a 0-100% scale.
10 myCCIPosition = ta.percentrank(myCCI, 100)
11 // Generate a bull gradient when position is 50-100%, bear gradient when position is␣

↪→0-50%.
12 backgroundColor = if myCCIPosition >= 50
13 color.from_gradient(myCCIPosition, 50, 100, color.new(bullColor, 75), bullColor)
14 else
15 color.from_gradient(myCCIPosition, 0, 50, bearColor, color.new(bearColor, 75))
16

17 // Wider white line background.
18 plot(myCCI, "CCI", color.white, 3)
19 // Think black line.
20 plot(myCCI, "CCI", color.black, 1)
21 // Zero level.

(continues on next page)

186 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#op_if

Pine Script™ v5 User Manual

(continued from previous page)
22 hline(0)
23 // Gradient background.
24 bgcolor(backgroundColor)

Note that:
• We use the ta.cci() built-in function to calculate the indicator value.
• We use the ta.percentrank() built-in function to calculate myCCIPosition, i.e., the percentage of past myCCI
values in the last 100 bars that are below the current value of myCCI.

• To calculate the gradient, we use two different calls of the color.from_gradient() built-in: one for the bull gradient
when myCCIPosition is in the 50-100% range, which means that more past values are below its current value,
and another for the bear gradient when myCCIPosition is in the 0-49.99% range, which means that more past
values are above it.

• We provide inputs so the user can change the bull/bear colors, and we place both color input widgets on the same
line using inline = "1" in both input.color() calls.

• We plot the CCI signal using two plot() calls to achieve the best contrast over the busy background: the first plot is
a 3-pixel wide white background, the second plot() call plots the thin, 1-pixel wide black line.

See the Colors page for more examples of backgrounds.

4.2. Backgrounds 187

https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}cci
https://www.tradingview.com/pine-script-reference/v5/#ta.percentrank
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}from_gradient
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}color
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

4.3 Bar coloring

The barcolor() function lets you color chart bars. It is the only Pine Script™ function that allows a script running in a
pane to affect the chart.
The function’s signature is:

barcolor(color, offset, editable, show_last, title) → void

The coloring can be conditional because the color parameter accepts “series color” arguments.
The following script renders inside and outside bars in different colors:

1 //@version=5
2 indicator("barcolor example", overlay = true)
3 isUp = close > open
4 isDown = close <= open
5 isOutsideUp = high > high[1] and low < low[1] and isUp
6 isOutsideDown = high > high[1] and low < low[1] and isDown
7 isInside = high < high[1] and low > low[1]
8 barcolor(isInside ? color.yellow : isOutsideUp ? color.aqua : isOutsideDown ? color.

↪→purple : na)

Note that:
• The na value leaves bars as is.
• In the barcolor() call, we use embedded ?: ternary operator expressions to select the color.

188 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_barcolor
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_barcolor
https://www.tradingview.com/pine-script-reference/v5/#op_\{question\}\{colon\}
https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

4.4 Bar plotting

• Introduction

• Plotting candles with `plotcandle()`

• Plotting bars with `plotbar()`

4.4.1 Introduction

The plotcandle() built-in function is used to plot candles. plotbar() is used to plot conventional bars.
Both functions require four arguments that will be used for the OHLC prices (open, high, low, close) of the bars they will
be plotting. If one of those is na, no bar is plotted.

4.4.2 Plotting candles with `plotcandle()`

The signature of plotcandle() is:

plotcandle(open, high, low, close, title, color, wickcolor, editable, show_last,␣
↪→bordercolor, display) → void

This plots simple candles, all in blue, using the habitual OHLC values, in a separate pane:

1 //@version=5
2 indicator("Single-color candles")
3 plotcandle(open, high, low, close)

To color them green or red, we can use the following code:

1 //@version=5
2 indicator("Example 2")
3 paletteColor = close >= open ? color.lime : color.red
4 plotbar(open, high, low, close, color = paletteColor)

4.4. Bar plotting 189

https://www.tradingview.com/pine-script-reference/v5/#fun_plotcandle
https://www.tradingview.com/pine-script-reference/v5/#fun_plotbar
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_plotcandle

Pine Script™ v5 User Manual

Note that the color parameter accepts “series color” arguments, so constant values such as color.red, color.
lime, "#FF9090", as well as expressions that calculate colors at runtime, as is done with the paletteColor variable
here, will all work.
You can build bars or candles using values other than the actual OHLC values. For example you could calculate and plot
smoothed candles using the following code, which also colors wicks depending on the position of close relative to the
smoothed close (c) of our indicator:

1 //@version=5
2 indicator("Smoothed candles", overlay = true)
3 lenInput = input.int(9)
4 smooth(source, length) =>
5 ta.sma(source, length)
6 o = smooth(open, lenInput)
7 h = smooth(high, lenInput)
8 l = smooth(low, lenInput)
9 c = smooth(close, lenInput)
10 ourWickColor = close > c ? color.green : color.red
11 plotcandle(o, h, l, c, wickcolor = ourWickColor)

190 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#var_close

Pine Script™ v5 User Manual

You may find it useful to plot OHLC values taken from a higher timeframe. You can, for example, plot daily bars on an
intraday chart:

1 // NOTE: Use this script on an intraday chart.
2 //@version=5
3 indicator("Daily bars")
4

5 // Use gaps to only return data when the 1D timeframe completes, `na` otherwise.
6 [o, h, l, c] = request.security(syminfo.tickerid, "D", [open, high, low, close], gaps␣

↪→= barmerge.gaps_on)
7

8 var color UP_COLOR = color.silver
9 var color DN_COLOR = color.blue
10 color wickColor = c >= o ? UP_COLOR : DN_COLOR
11 color bodyColor = c >= o ? color.new(UP_COLOR, 70) : color.new(DN_COLOR, 70)
12 // Only plot candles on intraday timeframes,
13 // and when non `na` values are returned by `request.security()` because a HTF has␣

↪→completed.
14 plotcandle(timeframe.isintraday ? o : na, h, l, c, color = bodyColor, wickcolor =␣

↪→wickColor)

Note that:
• We show the script’s plot after having used “Visual Order/Bring to Front” from the script’s “More” menu. This
causes our script’s candles to appear on top of the chart’s candles.

• The script will only display candles when two conditions are met:
– The chart is using an intraday timeframe (see the check on timeframe.isintraday in the plotcandle()
call). We do this because it’s not useful to show a daily value on timeframes higher or equal to 1D.

– The request.security() function returns non na values (see gaps = barmerge.gaps_on in the function
call).

• We use a tuple ([open, high, low, close]) with request.security() to fetch four values in one call.
• We use var to declare our UP_COLOR and DN_COLOR color constants on bar zero only. We use constants because
those colors are used in more than one place in our code. This way, if we need to change them, we need only do
so in one place.

4.4. Bar plotting 191

https://www.tradingview.com/pine-script-reference/v5/#fun_plotcandle
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#op_var

Pine Script™ v5 User Manual

• We create a lighter transparency for the body of our candles in the bodyColor variable initialization, so they
don’t obstruct the chart’s candles.

4.4.3 Plotting bars with `plotbar()`

The signature of plotbar() is:

plotbar(open, high, low, close, title, color, editable, show_last, display) → void

Note that plotbar() has no parameter for bordercolor or wickcolor, as there are no borders or wicks on conven-
tional bars.
This plots conventional bars using the same coloring logic as in the second example of the previous section:

1 //@version=5
2 indicator("Dual-color bars")
3 paletteColor = close >= open ? color.lime : color.red
4 plotbar(open, high, low, close, color = paletteColor)

4.5 Bar states

• Introduction

• Bar state built-in variables

• Example

192 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_plotbar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotbar
https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

4.5.1 Introduction

A set of built-in variables in the barstate namespace allow your script to detect different properties of the bar on
which the script is currently executing.
These states can be used to restrict the execution or the logic of your code to specific bars.
Some built-ins return information on the trading session the current bar belongs to. They are explained in the Session
states section.

4.5.2 Bar state built-in variables

Note that while indicators and libraries run on all price or volume updates in real time, strategies not using
calc_on_every_tick will not; they will only execute when the realtime bar closes. This will affect the detec-
tion of bar states in that type of script. On open markets, for example, this code will not display a background until the
realtime closes because that is when the strategy runs:

1 //@version=5
2 strategy("S")
3 bgcolor(barstate.islast ? color.silver : na)

`barstate.isfirst`

barstate.isfirst is only true on the dataset’s first bar, i.e., when bar_index is zero.
It can be useful to initialize variables on the first bar only, e.g.:

1 // Declare array and set its values on the first bar only.
2 FILL_COLOR = color.green
3 var fillColors = array.new_color(0)
4 if barstate.isfirst
5 // Initialize the array elements with progressively lighter shades of the fill␣

↪→color.
6 array.push(fillColors, color.new(FILL_COLOR, 70))
7 array.push(fillColors, color.new(FILL_COLOR, 75))
8 array.push(fillColors, color.new(FILL_COLOR, 80))
9 array.push(fillColors, color.new(FILL_COLOR, 85))
10 array.push(fillColors, color.new(FILL_COLOR, 90))

`barstate.islast`

barstate.islast is true if the current bar is the last one on the chart, whether that bar is a realtime bar or not.
It can be used to restrict the execution of code to the chart’s last bar, which is often useful when drawing lines, labels or
tables. Here, we use it to determine when to update a label which we want to appear only on the last bar. We create the
label only once and then update its properties using label.set_*() functions because it is more efficient:

1 //@version=5
2 indicator("", "", true)
3 // Create label on the first bar only.
4 var label hiLabel = label.new(na, na, "")
5 // Update the label's position and text on the last bar,
6 // including on all realtime bar updates.
7 if barstate.islast

(continues on next page)

4.5. Bar states 193

https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}isfirst
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}islast

Pine Script™ v5 User Manual

(continued from previous page)
8 label.set_xy(hiLabel, bar_index, high)
9 label.set_text(hiLabel, str.tostring(high, format.mintick))

`barstate.ishistory`

barstate.ishistory is true on all historical bars. It can never be true on a bar when barstate.isrealtime is also true,
and it does not become true on a realtime bar’s closing update, when barstate.isconfirmed becomes true. On closed
markets, it can be true on the same bar where barstate.islast is also true.

`barstate.isrealtime`

barstate.isrealtime is true if the current data update is a real-time bar update, false otherwise (thus it is historical).
Note that barstate.islast is also true on all realtime bars.

`barstate.isnew`

barstate.isnew is true on all historical bars and on the realtime bar’s first (opening) update.
All historical bars are considered new bars because the Pine Script™ runtime executes your script on each bar sequentially,
from the chart’s first bar in time, to the last. Each historical bar is thus discovered by your script as it executes, bar to bar.
barstate.isnew can be useful to reset varip variables when a new realtime bar comes in. The following code will reset
updateNo to 1 on all historical bars and at the beginning of each realtime bar. It calculates the number of realtime
updates during each realtime bar:

1 //@version=5
2 indicator("")
3 updateNo() =>
4 varip int updateNo = na
5 if barstate.isnew
6 updateNo := 1
7 else
8 updateNo += 1
9 plot(updateNo())

`barstate.isconfirmed`

barstate.isconfirmed is true on all historical bars and on the last (closing) update of a realtime bar.
It can be useful to avoid repainting by requiring the realtime bar to be closed before a condition can become true. We
use it here to hold plotting of our RSI until the realtime bar closes and becomes an elapsed realtime bar. It will plot on
historical bars because barstate.isconfirmed is always true on them:

1 //@version=5
2 indicator("")
3 myRSI = ta.rsi(close, 20)
4 plot(barstate.isconfirmed ? myRSI : na)

barstate.isconfirmed will not work when used in a request.security() call.

194 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}ishistory
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}isrealtime
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}isconfirmed
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}islast
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}isrealtime
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}islast
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}isnew
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}isnew
https://www.tradingview.com/pine-script-reference/v5/#op_varip
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}isconfirmed
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}isconfirmed
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}isconfirmed
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security

Pine Script™ v5 User Manual

`barstate.islastconfirmedhistory`

barstate.islastconfirmedhistory is true if the script is executing on the dataset’s last bar when the market is closed, or on
the bar immediately preceding the realtime bar if the market is open.
It can be used to detect the first realtime bar with barstate.islastconfirmedhistory[1], or to postpone
server-intensive calculations until the last historical bar, which would otherwise be undetectable on open markets.

4.5.3 Example

Here is an example of a script using barstate.* variables:

1 //@version=5
2 indicator("Bar States", overlay = true, max_labels_count = 500)
3

4 stateText() =>
5 string txt = ""
6 txt += barstate.isfirst ? "isfirst\n" : ""
7 txt += barstate.islast ? "islast\n" : ""
8 txt += barstate.ishistory ? "ishistory\n" : ""
9 txt += barstate.isrealtime ? "isrealtime\n" : ""
10 txt += barstate.isnew ? "isnew\n" : ""
11 txt += barstate.isconfirmed ? "isconfirmed\n" : ""
12 txt += barstate.islastconfirmedhistory ? "islastconfirmedhistory\n" : ""
13

14 labelColor = switch
15 barstate.isfirst => color.fuchsia
16 barstate.islastconfirmedhistory => color.gray
17 barstate.ishistory => color.silver
18 barstate.isconfirmed => color.orange
19 barstate.isnew => color.red
20 => color.yellow
21

22 label.new(bar_index, na, stateText(), yloc = yloc.abovebar, color = labelColor)

Note that:
• Each state’s name will appear in the label’s text when it is true.
• There are five possible colors for the label’s background:

– fuchsia on the first bar
– silver on historical bars
– gray on the last confirmed historical bar
– orange when a realtime bar is confirmed (when it closes and becomes an elapsed realtime bar)
– red on the realtime bar’s first execution
– yellow for other executions of the realtime bar

We begin by adding the indicator to the chart of an open market, but before any realtime update is received. Note how
the last confirmed history bar is identified in #1, and how the last bar is identified as the last one, but is still considered a
historical bar because no realtime updates have been received.

4.5. Bar states 195

https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}islastconfirmedhistory

Pine Script™ v5 User Manual

Let’s look at what happens when realtime updates start coming in:

Note that:
• The realtime bar is red because it is its first execution, because barstate.isnew is true and barstate.
ishistory is no longer true, so our switch structure determing our color uses the barstate.isnew =>
color.red branch. This will usually not last long because on the next update barstate.isnewwill no longer
be true so the label’s color will turn yellow.

• The label of elapsed realtime bars is orange because those bars were not historical bars when they closed. Accord-
ingly, the barstate.ishistory => color.silver branch in the switch structure was not executed, but
the next one, barstate.isconfirmed => color.orange was.

This last example shows how the realtime bar’s label will turn yellow after the first execution on the bar. This is the way
the label will usually appear on realtime bars:

196 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-reference/v5/#op_switch

Pine Script™ v5 User Manual

4.6 Chart information

• Introduction

• Prices and volume

• Symbol information

• Chart timeframe

• Session information

4.6.1 Introduction

The way scripts can obtain information about the chart and symbol they are currently running on is through a subset of
Pine Script™’s built-in variables. The ones we cover here allow scripts to access information relating to:

• The chart’s prices and volume
• The chart’s symbol
• The chart’s timeframe
• The session (or time period) the symbol trades on

4.6. Chart information 197

https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

4.6.2 Prices and volume

The built-in variables for OHLCV values are:
• open: the bar’s opening price.
• high: the bar’s highest price, or the highest price reached during the realtime bar’s elapsed time.
• low: the bar’s lowest price, or the lowest price reached during the realtime bar’s elapsed time.
• close: the bar’s closing price, or the current price in the realtime bar.
• volume: the volume traded during the bar, or the volume traded during the realtime bar’s elapsed time. The unit of
volume information varies with the instrument. It is in shares for stocks, in lots for forex, in contracts for futures,
in the base currency for crypto, etc.

Other values are available through:
• hl2: the average of the bar’s high and low values.
• hlc3: the average of the bar’s high, low and close values.
• ohlc4: the average of the bar’s open, high, low and close values.

On historical bars, the values of the above variables do not vary during the bar because only OHLCV information is
available on them. When running on historical bars, scripts execute on the bar’s close, when all the bar’s information is
known and cannot change during the script’s execution on the bar.
Realtime bars are another story altogether. When indicators (or strategies using calc_on_every_tick = true)
run in realtime, the values of the above variables (except open) will vary between successive iterations of the script on
the realtime bar, because they represent their current value at one point in time during the progress of the realtime bar.
This may lead to one form of repainting. See the page on Pine Script™’s execution model for more details.
The [] history-referencing operator can be used to refer to past values of the built-in variables, e.g., close[1] refers to
the value of close on the previous bar, relative to the particular bar the script is executing on.

4.6.3 Symbol information

Built-in variables in the syminfo namespace provide scripts with information on the symbol of the chart the script is
running on. This information changes every time a script user changes the chart’s symbol. The script then re-executes on
all the chart’s bars using the new values of the built-in variables:

• syminfo.basecurrency: the base currency, e.g., “BTC” in “BTCUSD”, or “EUR” in “EURUSD”.
• syminfo.currency: the quote currency, e.g., “USD” in “BTCUSD”, or “CAD” in “USDCAD”.
• syminfo.description: The long description of the symbol.
• syminfo.mintick: The symbol’s tick value, or the minimum increment price can move in. Not to be confused with

pips or points. On “ES1!” (“S&P 500 E-Mini”) the tick size is 0.25 because that is the minimal increment the price
moves in.

• syminfo.pointvalue: The point value is the multiple of the underlying asset determining a contract’s value. On
“ES1!” (“S&P 500 E-Mini”) the point value is 50, so a contract is worth 50 times the price of the instrument.

• syminfo.prefix: The prefix is the exchange or broker’s identifier: “NASDAQ” or “BATS” for “AAPL”,
“CME_MINI_DL” for “ES1!”.

• syminfo.root: It is the ticker’s prefix for structured tickers like those of futures. It is “ES” for “ES1!”, “ZW” for
“ZW1!”.

198 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_volume
https://www.tradingview.com/pine-script-reference/v5/#var_hl2
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_hlc3
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_ohlc4
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#op_{[}{]}
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}basecurrency
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}currency
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}description
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}mintick
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}pointvalue
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}prefix
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}root

Pine Script™ v5 User Manual

• syminfo.session: It reflects the session setting on the chart for that symbol. If the “Chart settings/Symbol/Session”
field is set to “Extended”, it will only return “extended” if the symbol and the user’s feed allow for extended sessions.
It is rarely displayed and used mostly as an argument to the session parameter in ticker.new().

• syminfo.ticker: It is the symbol’s name, without the exchange part (syminfo.prefix): “BTCUSD”, “AAPL”, “ES1!”,
“USDCAD”.

• syminfo.tickerid: This string is rarely displayed. It is mostly used as an argument for request.security()’s symbol
parameter. It includes session, prefix and ticker information.

• syminfo.timezone: The timezone the symbol is traded in. The string is an IANA time zone database name (e.g.,
“America/New_York”).

• syminfo.type: The type of market the symbol belongs to. The values are “stock”, “futures”, “index”, “forex”,
“crypto”, “fund”, “dr”, “cfd”, “bond”, “warrant”, “structured” and “right”.

This script will display the values of those built-in variables on the chart:

1 //@version=5
2 indicator("`syminfo.*` built-ins", "", true)
3 printTable(txtLeft, txtRight) =>
4 var table t = table.new(position.middle_right, 2, 1)
5 table.cell(t, 0, 0, txtLeft, bgcolor = color.yellow, text_halign = text.align_

↪→right)
6 table.cell(t, 1, 0, txtRight, bgcolor = color.yellow, text_halign = text.align_

↪→left)
7

8 nl = "\n"
9 left =
10 "syminfo.basecurrency: " + nl +
11 "syminfo.currency: " + nl +
12 "syminfo.description: " + nl +
13 "syminfo.mintick: " + nl +
14 "syminfo.pointvalue: " + nl +
15 "syminfo.prefix: " + nl +
16 "syminfo.root: " + nl +
17 "syminfo.session: " + nl +
18 "syminfo.ticker: " + nl +
19 "syminfo.tickerid: " + nl +
20 "syminfo.timezone: " + nl +
21 "syminfo.type: "
22

23 right =
24 syminfo.basecurrency + nl +
25 syminfo.currency + nl +
26 syminfo.description + nl +
27 str.tostring(syminfo.mintick) + nl +
28 str.tostring(syminfo.pointvalue) + nl +
29 syminfo.prefix + nl +
30 syminfo.root + nl +
31 syminfo.session + nl +
32 syminfo.ticker + nl +
33 syminfo.tickerid + nl +
34 syminfo.timezone + nl +
35 syminfo.type
36

37 printTable(left, right)

4.6. Chart information 199

https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}session
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}ticker
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}prefix
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}tickerid
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}timezone
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}type

Pine Script™ v5 User Manual

4.6.4 Chart timeframe

A script can obtain information on the type of timeframe used on the chart using these built-ins, which all return a “simple
bool” result:

• timeframe.isseconds
• timeframe.isminutes
• timeframe.isintraday
• timeframe.isdaily
• timeframe.isweekly
• timeframe.ismonthly
• timeframe.isdwm

Two additional built-ins return more specific timeframe information:
• timeframe.multiplier returns a “simple int” containing the multiplier of the timeframe unit. A chart timeframe of
one hour will return 60 because intraday timeframes are expressed in minutes. A 30sec timeframe will return 30
(seconds), a daily chart will return 1 (day), a quarterly chart will return 3 (months), and a yearly chart will return
12 (months). The value of this variable cannot be used as an argument to timeframe parameters in built-in
functions, as they expect a string in timeframe specifications format.

• timeframe.period returns a string in Pine Script™’s timeframe specification format.
See the page on Timeframes for more information.

4.6.5 Session information

Session information is available in different forms:
• The syminfo.session built-in variable returns a value that is either session.regular or session.extended. It reflects
the session setting on the chart for that symbol. If the “Chart settings/Symbol/Session” field is set to “Extended”, it
will only return “extended” if the symbol and the user’s feed allow for extended sessions. It is used when a session
type is expected, for example as the argument for the session parameter in ticker.new().

• Session state built-ins provide information on the trading session a bar belongs to.

200 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}isseconds
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}isminutes
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}isintraday
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}isdaily
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}isweekly
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}ismonthly
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}isdwm
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}multiplier
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}period
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}session
https://www.tradingview.com/pine-script-reference/v5/#var_session\{dot\}regular
https://www.tradingview.com/pine-script-reference/v5/#var_session\{dot\}extended
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker\{dot\}new
https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

4.7 Colors

• Introduction

• Constant colors

• Conditional coloring

• Calculated colors

• Mixing transparencies

• Tips

4.7.1 Introduction

Script visuals can play a critical role in the usability of the indicators we write in Pine Script™. Well-designed plots and
drawings make indicators easier to use and understand. Good visual designs establish a visual hierarchy that allows the
more important information to stand out, and the less important one to not get in the way.
Using colors in Pine can be as simple as you want, or as involved as your concept requires. The 4,294,967,296 possible
assemblies of color and transparency available in Pine Script™ can be applied to:

• Any element you can plot or draw in an indicator’s visual space, be it lines, fills, text or candles.
• The background of a script’s visual space, whether the script is running in its own pane, or in overlay mode on the
chart.

• The color of bars or the body of candles appearing on a chart.
A script can only color the elements it places in its own visual space. The only exception to this rule is that a pane indicator
can color chart bars or candles.
Pine Script™ has built-in colors such as color.green, as well as functions like color.rgb() which allow you to dynamically
generate any color in the RGBA color space.

Transparency

Each color in Pine Script™ is defined by four values:
• Its red, green and blue components (0-255), following the RGB color model.
• Its transparency (0-100), often referred to as the Alpha channel outside Pine, as defined in the RGBA color model.
Even though transparency is expressed in the 0-100 range, its value can be a “float” when used in functions, which
gives you access to the 256 underlying values of the alpha channel.

The transparency of a color defines how opaque it is: zero is fully opaque, 100makes the color—whichever it is—invisible.
Modulating transparency can be crucial in more involved color visuals or when using backgrounds, to control which colors
dominate the others, and how they mix together when superimposed.

4.7. Colors 201

https://www.tradingview.com/pine-script-reference/v5/#var_color\{dot\}green
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}rgb
https://en.wikipedia.org/wiki/RGB_color_space
https://en.wikipedia.org/wiki/RGB_color_space

Pine Script™ v5 User Manual

Z-index

When you place elements in a script’s visual space, they have relative depth on the z axis; some will appear on top of
others. The z-index is a value that represents the position of elements on the z axis. Elements with the highest z-index
appear on top.
Elements drawn in Pine Script™ are divided in groups. Each group has its own position in the z space, and within the
same group, elements created last in the script’s logic will appear on top of other elements from the same group. An
element of one group cannot be placed outside the region of the z space attributed to its group, so a plot can never appear
on top of a table, for example, because tables have the highest z-index.
This list contains the groups of visual elements, ordered by increasing z-index, so background colors are always at the
bottom of z space, and tables will always appear on top of all other elements:

• Background colors
• Fills
• Plots
• Hlines
• LineFills
• Lines
• Boxes
• Labels
• Tables

Note that by using explicit_plot_zorder = true in indicator() or strategy(), you can control the relative
z-index of plot*(), hline() and fill() visuals using their sequential order in the script.

4.7.2 Constant colors

There are 17 built-in colors in Pine Script™. This table lists their names, hexadecimal equivalent, and RGB values as
arguments to color.rgb():

Name Hex RGB values
color.aqua #00BCD4 color.rgb(0, 188, 212)
color.black #363A45 color.rgb(54, 58, 69)
color.blue #2196F3 color.rgb(33, 150, 243)
color.fuchsia #E040FB color.rgb(224, 64, 251)
color.gray #787B86 color.rgb(120, 123, 134)
color.green #4CAF50 color.rgb(76, 175, 80)
color.lime #00E676 color.rgb(0, 230, 118)
color.maroon #880E4F color.rgb(136, 14, 79)
color.navy #311B92 color.rgb(49, 27, 146)
color.olive #808000 color.rgb(128, 128, 0)
color.orange #FF9800 color.rgb(255, 152, 0)
color.purple #9C27B0 color.rgb(156, 39, 176)
color.red #FF5252 color.rgb(255, 82, 82)
color.silver #B2B5BE color.rgb(178, 181, 190)
color.teal #00897B color.rgb(0, 137, 123)
color.white #FFFFFF color.rgb(255, 255, 255)
color.yellow #FFEB3B color.rgb(255, 235, 59)

202 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}rgb

Pine Script™ v5 User Manual

In the following script, all plots use the same color.olive color with a transparency of 40, but expressed in different ways.
All five methods are functionally equivalent:

1 //@version=5
2 indicator("", "", true)
3 // ———— Transparency (#99) is included in the hex value.
4 plot(ta.sma(close, 10), "10", #80800099)
5 // ———— Transparency is included in the color-generating function's arguments.
6 plot(ta.sma(close, 30), "30", color.new(color.olive, 40))
7 plot(ta.sma(close, 50), "50", color.rgb(128, 128, 0, 40))
8 // ———— Use `transp` parameter (deprecated and advised against)
9 plot(ta.sma(close, 70), "70", color.olive, transp = 40)
10 plot(ta.sma(close, 90), "90", #808000, transp = 40)

Note: The last two plot() calls specify transparency using the transp parameter. This use should be avoided as the
transp is deprecated in Pine Script™ v5. Using the transp parameter to define transparency is not as flexible because
it requires an argument of input integer type, which entails it must be known before the script is executed, and so cannot
be calculated dynamically, as your script executes bar to bar. Additionally, if you use a color argument that already
includes transparency information, as is done in the next three plot() calls, any argument used for the transp parameter
would have no effect. This is also true for other functions with a transp parameter.

The colors in the previous script do not vary as the script executes bar to bar. Sometimes, however, colors need to be
created as the script executes on each bar because they depend on conditions that are unknown at compile time, or when
the script begins execution on bar zero. For those cases, programmers have two options:

1. Use conditional statements to select colors from a few pre-determined base colors.
2. Build new colors dynamically, by calculating them as the script executes bar to bar, to implement color gradients,

for example.

4.7.3 Conditional coloring

Let’s say you want to color a moving average in different colors, depending on some conditions you define. To do so, you
can use a conditional statement that will select a different color for each of your states. Let’s start by coloring a moving
average in a bull color when it’s rising, and in a bear color when it’s not:

4.7. Colors 203

https://www.tradingview.com/pine-script-reference/v5/#var_color\{dot\}olive
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_plot

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Conditional colors", "", true)
3 int lengthInput = input.int(20, "Length", minval = 2)
4 color maBullColorInput = input.color(color.green, "Bull")
5 color maBearColorInput = input.color(color.maroon, "Bear")
6 float ma = ta.sma(close, lengthInput)
7 // Define our states.
8 bool maRising = ta.rising(ma, 1)
9 // Build our color.
10 color c_ma = maRising ? maBullColorInput : maBearColorInput
11 plot(ma, "MA", c_ma, 2)

Note that:
• We provide users of our script a selection of colors for our bull/bear colors.
• We define an maRising boolean variable which will hold truewhen the moving average is higher on the current
bar than it was on the last.

• We define a c_ma color variable that is assigned one of our two colors, depending on the value of the maRising
boolean. We use the ? : ternary operator to write our conditional statement.

You can also use conditional colors to avoid plotting under certain conditions. Here, we plot high and low pivots using a
line, but we do not want to plot anything when a new pivot comes in, to avoid the joints that would otherwise appear in
pivot transitions. To do so, we test for pivot changes and use na as the color value when a change is detected, so that no
line is plotted on that bar:

1 //@version=5
2 indicator("Conditional colors", "", true)
3 int legsInput = input.int(5, "Pivot Legs", minval = 1)
4 color pHiColorInput = input.color(color.olive, "High pivots")

(continues on next page)

204 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#op_\{question\}\{colon\}
https://www.tradingview.com/pine-script-reference/v5/#var_na

Pine Script™ v5 User Manual

(continued from previous page)
5 color pLoColorInput = input.color(color.orange, "Low pivots")
6 // Intialize the pivot level variables.
7 var float pHi = na
8 var float pLo = na
9 // When a new pivot is detected, save its value.
10 pHi := nz(ta.pivothigh(legsInput, legsInput), pHi)
11 pLo := nz(ta.pivotlow(legsInput, legsInput), pLo)
12 // When a new pivot is detected, do not plot a color.
13 plot(pHi, "High", ta.change(pHi) ? na : pHiColorInput, 2, plot.style_line)
14 plot(pLo, "Low", ta.change(pLo) ? na : pLoColorInput, 2, plot.style_line)

To undertand how this code works, one must first know that ta.pivothigh() and ta.pivotlow(), used as they are here without
an argument to the source parameter, will return a value when they find a high/low pivot, otherwise they return na.
When we test the value returned by the pivot function for na using the nz() function, we allow the value returned to
be assigned to the pHi or pLo variables only when it is not na, otherwise the previous value of the variable is simply
reassigned to it, which has no impact on its value. Keep in mind that previous values of pHi and pLo are preserved bar
to bar because we use the var keyword when initializing them, which causes the initialization to only occur on the first
bar.
All that’s left to do next is, when we plot our lines, to insert a ternary conditional statement that will yield na for the color
when the pivot value changes, or the color selected in the script’s inputs when the pivot level does not change.

4.7.4 Calculated colors

Using functions like color.new(), color.rgb() and color.from_gradient(), one can build colors on the fly, as the script
executes bar to bar.
color.new() is most useful when you need to generate different transparency levels from a base color.
color.rgb() is useful when you need to build colors dynamically from red, green, blue, or tranparency components. While
color.rgb() creates a color, its sister functions color.r(), color.g(), color.b() and color.t() can be used to extract the red,
green, blue or transparency values from a color, which can in turn be used to generate a variant.
color.from_gradient() is useful to create linear gradients between two base colors. It determines which intermediary color
to use by evaluating a source value against minimum and maximum values.

4.7. Colors 205

https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}pivothigh
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}pivotlow
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_nz
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}rgb
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}from_gradient
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}rgb
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}rgb
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}r
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}g
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}b
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}t
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}from_gradient

Pine Script™ v5 User Manual

color.new()

Let’s put color.new(color, transp) to use to create different transparencies for volume columns using one of two bull/bear
base colors:

1 //@version=5
2 indicator("Volume")
3 // We name our color constants to make them more readable.
4 var color GOLD_COLOR = #CCCC00ff
5 var color VIOLET_COLOR = #AA00FFff
6 color bullColorInput = input.color(GOLD_COLOR, "Bull")
7 color bearColorInput = input.color(VIOLET_COLOR, "Bear")
8 int levelsInput = input.int(10, "Gradient levels", minval = 1)
9 // We initialize only once on bar zero with `var`, otherwise the count would reset to␣

↪→zero on each bar.
10 var float riseFallCnt = 0
11 // Count the rises/falls, clamping the range to: 1 to `i_levels`.
12 riseFallCnt := math.max(1, math.min(levelsInput, riseFallCnt + math.sign(volume -␣

↪→nz(volume[1]))))
13 // Rescale the count on a scale of 80, reverse it and cap transparency to <80 so that␣

↪→colors remains visible.
14 float transparency = 80 - math.abs(80 * riseFallCnt / levelsInput)
15 // Build the correct transparency of either the bull or bear color.
16 color volumeColor = color.new(close > open ? bullColorInput : bearColorInput,␣

↪→transparency)
17 plot(volume, "Volume", volumeColor, 1, plot.style_columns)

Note that:
• In the next to last line of our script, we dynamically calculate the column color by varying both the base color used,
depending on whether the bar is up or down, and the transparency level, which is calculated from the cumulative
rises or falls of volume.

• We offer the script user control over not only the base bull/bear colors used, but also on the number of brightness
levels we use. We use this value to determine the maximum number of rises or falls we will track. Giving users the
possiblity to manage this value allows them to adapt the indicator’s visuals to the timeframe or market they use.

• We take care to control the maximum level of transparency we use so that it never goes higher than 80. This ensures
our colors always retain some visibility.

• We also set the minimum value for the number of levels to 1 in the inputs. When the user selects 1, the volume
columns will be either in bull or bear color of maximum brightness—or transparency zero.

206 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}new

Pine Script™ v5 User Manual

color.rgb()

In our next example we use color.rgb(red, green, blue, transp) to build colors from RGBA values. We use the result in a
holiday season gift for our friends, so they can bring their TradingView charts to parties:

1 //@version=5
2 indicator("Holiday candles", "", true)
3 float r = math.random(0, 255)
4 float g = math.random(0, 255)
5 float b = math.random(0, 255)
6 float t = math.random(0, 100)
7 color holidayColor = color.rgb(r, g, b, t)
8 plotcandle(open, high, low, close, color = c_holiday, wickcolor = holidayColor,␣

↪→bordercolor = c_holiday)

Note that:
• We generate values in the zero to 255 range for the red, green and blue channels, and in the zero to 100 range for
transparency. Also note that because math.random() returns float values, the float 0.0-100.0 range provides access
to the full 0-255 transparency values of the underlying alpha channel.

• We use the math.random(min, max, seed) function to generate pseudo-random values. We do not use an argument
for the third parameter of the function: seed. Using it is handy when you want to ensure the repeatability of the
function’s results. Called with the same seed, it will produce the same sequence of values.

color.from_gradient()

Our last examples of color calculations will use color.from_gradient(value, bottom_value, top_value, bottom_color,
top_color). Let’s first use it in its simplest form, to color a CCI signal in a version of the indicator that otherwise looks
like the built-in:

1 //@version=5
2 indicator(title="CCI line gradient", precision=2, timeframe="")
3 var color GOLD_COLOR = #CCCC00
4 var color VIOLET_COLOR = #AA00FF

(continues on next page)

4.7. Colors 207

https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}rgb
https://www.tradingview.com/pine-script-reference/v5/#fun_math\{dot\}random
https://www.tradingview.com/pine-script-reference/v5/#fun_math\{dot\}random
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}from_gradient
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}from_gradient

Pine Script™ v5 User Manual

(continued from previous page)
5 var color BEIGE_COLOR = #9C6E1B
6 float srcInput = input.source(close, title="Source")
7 int lenInput = input.int(20, "Length", minval = 5)
8 color bullColorInput = input.color(GOLD_COLOR, "Bull")
9 color bearColorInput = input.color(BEIGE_COLOR, "Bear")
10 float signal = ta.cci(srcInput, lenInput)
11 color signalColor = color.from_gradient(signal, -200, 200, bearColorInput,␣

↪→bullColorInput)
12 plot(signal, "CCI", signalColor)
13 bandTopPlotID = hline(100, "Upper Band", color.silver, hline.style_dashed)
14 bandBotPlotID = hline(-100, "Lower Band", color.silver, hline.style_dashed)
15 fill(bandTopPlotID, bandBotPlotID, color.new(BEIGE_COLOR, 90), "Background")

Note that:
• To calculate the gradient, color.from_gradient() requires minimum and maximum values against which the argu-
ment used for the value parameter will be compared. The fact that we want a gradient for an unbounded signal
like CCI (i.e., without fixed boundaries such as RSI, which always oscillates between 0-100), does not entail we can-
not use color.from_gradient(). Here, we solve our conundrum by providing values of -200 and 200 as arguments.
They do not represent the real minimum and maximum values for CCI, but they are at levels from which we do
not mind the colors no longer changing, as whenever the series is outside the bottom_value and top_value
limits, the colors used for bottom_color and top_color will apply.

• The color progression calculated by color.from_gradient() is linear. If the value of the series is halfway between
the bottom_value and top_value arguments, the generated color’s RGBA components will also be halfway
between those of bottom_color and top_color.

• Many common indicator calculations are available in Pine Script™ as built-in functions. Here we use ta.cci()
instead of calculating it the long way.

The argument used for value in color.from_gradient() does not necessarily have to be the value of the line we are
calculating. Anything we want can be used, as long as arguments for bottom_value and top_value can be supplied.
Here, we enhance our CCI indicator by coloring the band using the number of bars since the signal has been above/below
the centerline:

1 //@version=5
2 indicator(title="CCI line gradient", precision=2, timeframe="")
3 var color GOLD_COLOR = #CCCC00
4 var color VIOLET_COLOR = #AA00FF
5 var color GREEN_BG_COLOR = color.new(color.green, 70)
6 var color RED_BG_COLOR = color.new(color.maroon, 70)
7 float srcInput = input.source(close, "Source")
8 int lenInput = input.int(20, "Length", minval = 5)
9 int stepsInput = input.int(50, "Gradient levels", minval = 1)
10 color bullColorInput = input.color(GOLD_COLOR, "Line: Bull", inline = "11")
11 color bearColorInput = input.color(VIOLET_COLOR, "Bear", inline = "11")
12 color bullBgColorInput = input.color(GREEN_BG_COLOR, "Background: Bull", inline = "12

↪→")
13 color bearBgColorInput = input.color(RED_BG_COLOR, "Bear", inline = "12")

(continues on next page)

208 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}from_gradient
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}from_gradient
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}from_gradient
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}cci
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}from_gradient

Pine Script™ v5 User Manual

(continued from previous page)
14

15 // Plot colored signal line.
16 float signal = ta.cci(srcInput, lenInput)
17 color signalColor = color.from_gradient(signal, -200, 200, color.new(bearColorInput,␣

↪→0), color.new(bullColorInput, 0))
18 plot(signal, "CCI", signalColor, 2)
19

20 // Detect crosses of the centerline.
21 bool signalX = ta.cross(signal, 0)
22 // Count no of bars since cross. Capping it to the no of steps from inputs.
23 int gradientStep = math.min(stepsInput, nz(ta.barssince(signalX)))
24 // Choose bull/bear end color for the gradient.
25 color endColor = signal > 0 ? bullBgColorInput : bearBgColorInput
26 // Get color from gradient going from no color to `c_endColor`
27 color bandColor = color.from_gradient(gradientStep, 0, stepsInput, na, endColor)
28 bandTopPlotID = hline(100, "Upper Band", color.silver, hline.style_dashed)
29 bandBotPlotID = hline(-100, "Lower Band", color.silver, hline.style_dashed)
30 fill(bandTopPlotID, bandBotPlotID, bandColor, title = "Band")

Note that:
• The signal plot uses the same base colors and gradient as in our previous example. We have however increased the
width of the line from the default 1 to 2. It is the most important component of our visuals; increasing its width is
a way to give it more prominence, and ensure users are not distracted by the band, which has become busier than
it was in its original, flat beige color.

• The fill must remain unobtrusive for two reasons. First, it is of secondary importance to the visuals, as it provides
complementary information, i.e., the duration for which the signal has been in bull/bear territory. Second, since
fills have a greater z-index than plots, the fill will cover the signal plot. For these reasons, we make the fill’s base
colors fairly transparent, at 70, so they do not mask the plots. The gradient used for the band starts with no color at
all (see the na used as the argument to bottom_color in the color.from_gradient() call), and goes to the base
bull/bear colors from the inputs, which the conditional, c_endColor color variable contains.

• We provide users with distinct bull/bear color selections for the line and the band.
• When we calculate the gradientStep variable, we use nz() on ta.barssince() because in early bars of the dataset,
when the condition tested has not occurred yet, ta.barssince() will return na. Because we use nz(), the value returned
is replaced with zero in those cases.

4.7.5 Mixing transparencies

In this example we take our CCI indicator in another direction. We will build dynamically adjusting extremes zone buffers
using a Donchian Channel (historical highs/lows) calculated from the CCI.We build the top/bottom bands bymaking them
1/4 the height of the DC. We will use a dynamically adjusting lookback to calculate the DC. To modulate the lookback,
we will calculate a simple measure of volatility by keeping a ratio of a short-period ATR to a long one. When that ratio is
higher than 50 of its last 100 values, we consider the volatility high. When the volatility is high/low, we decrease/increase
the lookback.
Our aim is to provide users of our indicator with:

• The CCI line colored using a bull/bear gradient, as we illustrated in our most recent examples.
• The top and bottom bands of the Donchian Channel, filled in such a way that their color darkens as a historical
high/low becomes older and older.

• A way to appreciate the state of our volatility measure, which we will do by painting the background with one color
whose intensity increases when volatility increases.

4.7. Colors 209

https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}from_gradient
https://www.tradingview.com/pine-script-reference/v5/#fun_nz
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}barssince
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}barssince
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_nz

Pine Script™ v5 User Manual

This is what our indicator looks like using the light theme:

And with the dark theme:

1 //@version=5
2 indicator("CCI DC", precision = 6)
3 color GOLD_COLOR = #CCCC00ff
4 color VIOLET_COLOR = #AA00FFff
5 int lengthInput = input.int(20, "Length", minval = 5)
6 color bullColorInput = input.color(GOLD_COLOR, "Bull")
7 color bearColorInput = input.color(VIOLET_COLOR, "Bear")
8

9 // ————— Function clamps `val` between `min` and `max`.
10 clamp(val, min, max) =>
11 math.max(min, math.min(max, val))
12

13 // ————— Volatility expressed as 0-100 value.
14 float v = ta.atr(lengthInput / 5) / ta.atr(lengthInput * 5)
15 float vPct = ta.percentrank(v, lengthInput * 5)
16

17 // ————— Calculate dynamic lookback for DC. It increases/decreases on low/high␣
↪→volatility.

18 bool highVolatility = vPct > 50
19 var int lookBackMin = lengthInput * 2
20 var int lookBackMax = lengthInput * 10
21 var float lookBack = math.avg(lookBackMin, lookBackMax)
22 lookBack += highVolatility ? -2 : 2
23 lookBack := clamp(lookBack, lookBackMin, lookBackMax)
24

25 // ————— Dynamic lookback length Donchian channel of signal.
26 float signal = ta.cci(close, lengthInput)
27 // `lookBack` is a float; need to cast it to int to be used a length.
28 float hiTop = ta.highest(signal, int(lookBack))
29 float loBot = ta.lowest(signal, int(lookBack))
30 // Get margin of 25% of the DC height to build high and low bands.
31 float margin = (hiTop - loBot) / 4
32 float hiBot = hiTop - margin
33 float loTop = loBot + margin
34 // Center of DC.
35 float center = math.avg(hiTop, loBot)
36

37 // ————— Create colors.
38 color signalColor = color.from_gradient(signal, -200, 200, bearColorInput,␣

↪→bullColorInput)
39 // Bands: Calculate transparencies so the longer since the hi/lo has changed,
40 // the darker the color becomes. Cap highest transparency to 90.
41 float hiTransp = clamp(100 - (100 * math.max(1, nz(ta.barssince(ta.change(hiTop)) +␣

↪→1)) / 255), 60, 90)

(continues on next page)

210 Chapter 4. Concepts

Pine Script™ v5 User Manual

(continued from previous page)
42 float loTransp = clamp(100 - (100 * math.max(1, nz(ta.barssince(ta.change(loBot)) +␣

↪→1)) / 255), 60, 90)
43 color hiColor = color.new(bullColorInput, hiTransp)
44 color loColor = color.new(bearColorInput, loTransp)
45 // Background: Rescale the 0-100 range of `vPct` to 0-25 to create 75-100␣

↪→transparencies.
46 color bgColor = color.new(color.gray, 100 - (vPct / 4))
47

48 // ————— Plots
49 // Invisible lines for band fills.
50 hiTopPlotID = plot(hiTop, color = na)
51 hiBotPlotID = plot(hiBot, color = na)
52 loTopPlotID = plot(loTop, color = na)
53 loBotPlotID = plot(loBot, color = na)
54 // Plot signal and centerline.
55 p_signal = plot(signal, "CCI", signalColor, 2)
56 plot(center, "Centerline", color.silver, 1)
57

58 // Fill the bands.
59 fill(hiTopPlotID, hiBotPlotID, hiColor)
60 fill(loTopPlotID, loBotPlotID, loColor)
61

62 // ————— Background.
63 bgcolor(bgColor)

Note that:
• We clamp the transparency of the background to a 100-75 range so that it doesn’t overwhelm. We also use a neutral
color that will not distract too much. The darker the background is, the higher our measure of volatility.

• We also clamp the transparency values for the band fills between 60 and 90. We use 90 so that when a new
high/low is found and the gradient resets, the starting transparency makes the color somewhat visible. We do not
use a transparency lower than 60 because we don’t want those bands to hide the signal line.

• We use the very handy ta.percentrank() function to generate a 0-100 value from our ATR ratio measuring volatility.
It is useful to convert values whose scale is unknown into known values that can be used to produce transparencies.

• Because we must clamp values three times in our script, we wrote an f_clamp() function, instead of explicitly
coding the logic three times.

4.7.6 Tips

Designing usable colors schemes

If you write scripts intended for other traders, try to avoid colors that will not work well in some environments, whether it
be for plots, labels, tables or fills. At a minimum, test your visuals to ensure they perform satisfactorily with both the light
and dark TradingView themes; they are the most commonly used. Colors such as black and white, for example, should
be avoided.
Build the appropriate inputs to provide script users the flexibility to adapt your script’s visuals to their particular environ-
ments.
Take care to build a visual hierarchy of the colors you use that matches the relative importance of your script’s visual
components. Good designers understand how to achieve the optimal balance of color and weight so the eye is naturally
drawn to the most important elements of the design. When you make everything stand out, nothing does. Make room for
some elements to stand out by toning down the visuals surrounding it.

4.7. Colors 211

https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}percentrank

Pine Script™ v5 User Manual

Providing a selection of color presets in your inputs — rather than a single color that can be changed — can help color-
challenged users. Our Technical Ratings demonstrates one way of achieving this.

Plot crisp lines

It is best to use zero transparency to plot the important lines in your visuals, to keep them crisp. This way, they will show
through fills more precisely. Keep in mind that fills have a higher z-index than plots, so they are placed on top of them.
A slight increase of a line’s width can also go a long way in making it stand out.
If you want a special plot to stand out, you can also give it more importance by using multiple plots for the same line.
These are examples where we modulate the successive width and transparency of plots to achieve this:

1 //@version=5
2 indicator("")
3 plot(high, "", color.new(color.orange, 80), 8)
4 plot(high, "", color.new(color.orange, 60), 4)
5 plot(high, "", color.new(color.orange, 00), 1)
6

7 plot(hl2, "", color.new(color.orange, 60), 4)
8 plot(hl2, "", color.new(color.orange, 00), 1)
9

10 plot(low, "", color.new(color.orange, 0), 1)

Customize gradients

When building gradients, adapt them to the visuals they apply to. If you are using a gradient to color candles, for example,
it is usually best to limit the number of steps in the gradient to ten or less, as it is more difficult for the eye to perceive
intensity variations of discrete objects. As we did in our examples, cap minimum and maximum transparency levels so
your visual elements remain visible and do not overwhelm when it’s not necessary.

Color selection through script settings

The type of color you use in your scripts has an impact on how users of your script will be able to change the colors of
your script’s visuals. As long as you don’t use colors whose RGBA components have to be calculated at runtime, script
users will be able to modify the colors you use by going to your script’s “Settings/Style” tab. Our first example script on
this page meets that criteria, and the following screenshot shows how we used the script’s “Settings/Style” tab to change
the color of the first moving average:

212 Chapter 4. Concepts

https://www.tradingview.com/script/Jdw7wW2g-Technical-Ratings/

Pine Script™ v5 User Manual

If your script uses a calculated color, i.e., a color where at least one of its RGBA components can only be known at
runtime, then the “Settings/Style” tab will NOT offer users the usual color widgets they can use to modify your plot
colors. Plots of the same script not using calculated colors will also be affected. In this script, for example, our first plot()
call uses a calculated color, and the second one doesn’t:

1 //@version=5
2 indicator("Calculated colors", "", true)
3 float ma = ta.sma(close, 20)
4 float maHeight = ta.percentrank(ma, 100)
5 float transparency = math.min(80, 100 - maHeight)
6 // This plot uses a calculated color.
7 plot(ma, "MA1", color.rgb(156, 39, 176, transparency), 2)
8 // This plot does not use a calculated color.
9 plot(close, "Close", color.blue)

The color used in the first plot is a calculated color because its transparency can only be known at runtime. It is calculated
using the relative position of the moving average in relation to its past 100 values. The greater percentage of past values
are below the current value, the higher the 0-100 value of maHeight will be. Since we want the color to be the darkest
when maHeight is 100, we subtract 100 from it to obtain the zero transparency then. We also cap the calculated
transparency value to a maximum of 80 so that it always remains visible.
Because that calculated color is used in our script, the “Settings/Style” tab will not show any color widgets:

4.7. Colors 213

https://www.tradingview.com/pine-script-reference/v5/#fun_plot

Pine Script™ v5 User Manual

The solution to enable script users to control the colors used is to supply them with custom inputs, as we do here:

1 //@version=5
2 indicator("Calculated colors", "", true)
3 color maInput = input.color(color.purple, "MA")
4 color closeInput = input.color(color.blue, "Close")
5 float ma = ta.sma(close, 20)
6 float maHeight = ta.percentrank(ma, 100)
7 float transparency = math.min(80, 100 - maHeight)
8 // This plot uses a calculated color.
9 plot(ma, "MA1", color.new(maInput, transparency), 2)
10 // This plot does not use a calculated color.
11 plot(close, "Close", closeInput)

Notice how our script’s “Settings” now show an “Inputs” tab, where we have created two color inputs. The first one uses
color.purple as its default value. Whether the script user changes that color or not, it will then be used in a color.new() call
to generate a calculated transparency in the plot() call. The second input uses as its default the built-in color.blue color
we previously used in the plot() call, and simply use it as is in the second plot() call.

4.8 Fills

• Introduction

• `plot()` and `hline()` fills

• Line fills

214 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#var_color\{dot\}purple
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#var_color\{dot\}blue
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

4.8.1 Introduction

There are two different mechanisms dedicated to filling the space between Pine visuals:
• The fill() function lets you color the background between either two plots plotted using plot() or two horizontal lines
plotted using hline().

• The linefill.new() function fills the space between lines created with line.new().

4.8.2 `plot()` and `hline()` fills

The fill() function has two signatures:

fill(plot1, plot2, color, title, editable, show_last, fillgaps) → void
fill(hline1, hline2, color, title, editable, fillgaps) → void

The arguments used for the plot1, plot2, hline1 and hline2 parameters must be the IDs returned by the plot()
and hline() calls. The fill() function is the only built-in function where these IDs are used.
See in this first example how the IDs returned by the plot() and hline() calls are captured in the p1, p2, p3, and h1, h2,
h3 and h4 variables for reuse as fill() arguments:

1 //@version=5
2 indicator("Example 1")
3 p1 = plot(math.sin(high))
4 p2 = plot(math.cos(low))
5 p3 = plot(math.sin(close))
6 fill(p1, p3, color.new(color.red, 90))
7 fill(p2, p3, color.new(color.blue, 90))
8 h1 = hline(0)
9 h2 = hline(1.0)
10 h3 = hline(0.5)
11 h4 = hline(1.5)
12 fill(h1, h2, color.new(color.yellow, 90))
13 fill(h3, h4, color.new(color.lime, 90))

4.8. Fills 215

https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_linefill\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_line\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_fill

Pine Script™ v5 User Manual

Because fill() requires two IDs from the same function, we sometimes need to use a plot() call where we would have
otherwise used an hline() call, as in this example:

1 //@version=5
2 indicator("Example 2")
3 src = close
4 ma = ta.sma(src, 10)
5 osc = 100 * (ma - src) / ma
6 oscPlotID = plot(osc)
7 // An `hline()` would not work here because two `plot()` calls are needed.
8 zeroPlotID = plot(0, "Zero", color.silver, 1, plot.style_circles)
9 fill(oscPlotID, zeroPlotID, color.new(color.blue, 90))

Because a “series color” can be used as an argument for the color parameter in fill(), you can use constants like color.
red or #FF001A, as well as expressions calculating the color on each bar, as in this example:

216 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_fill

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Example 3", "", true)
3 line1 = ta.sma(close, 5)
4 line2 = ta.sma(close, 20)
5 p1PlotID = plot(line1)
6 p2PlotID = plot(line2)
7 fill(p1PlotID, p2PlotID, line1 > line2 ? color.new(color.green, 90) : color.new(color.

↪→red, 90))

4.8.3 Line fills

Linefills are objects that allow you to fill the space between two line drawings created via the line.new() function. A linefill
object is displayed on the chart when the linefill.new() function is called. The function has the following signature:

linefill.new(line1, line2, color) → series linefill

The line1 and line2 arguments are the line IDs of the two lines to fill between. The color argument is the color
of the fill. Any two-line pair can only have one linefill between them, so successive calls to linefill.new() on the same pair
of lines will replace the previous linefill with a new one. The function returns the ID of the linefill object it created,
which can be saved in a variable for use in linefill.set_color() call that will change the color of an existing linefill.
The behavior of linefills is dependent on the lines they are attached to. Linefills cannot be moved directly; their coordinates
follow those of the lines they are tied to. If both lines extend in the same direction, the linefill will also extend.
Note that for line extensions to work correctly, a line’s x1 coordinate must be less than its x2 coordinate. If a line’s x1
argument is greater than its x2 argument and extend.left is used, the line will actually extend to the right because
x2 is assumed to be the rightmost x coordinate.
In the example below, our indicator draws two lines connecting the last two high and low pivot points of the chart. We
extend the lines to the right to project the short-term movement of the chart, and fill the space between them to enhance
the visibility of the channel the lines create:

4.8. Fills 217

https://www.tradingview.com/pine-script-reference/v5/#fun_line\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_linefill\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_linefill\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_linefill\{dot\}set_color

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Channel", overlay = true)
3

4 LEN_LEFT = 15
5 LEN_RIGHT = 5
6 pH = ta.pivothigh(LEN_LEFT, LEN_RIGHT)
7 pL = ta.pivotlow(LEN_LEFT, LEN_RIGHT)
8

9 // Bar indices of pivot points
10 pH_x1 = ta.valuewhen(pH, bar_index, 1) - LEN_RIGHT
11 pH_x2 = ta.valuewhen(pH, bar_index, 0) - LEN_RIGHT
12 pL_x1 = ta.valuewhen(pL, bar_index, 1) - LEN_RIGHT
13 pL_x2 = ta.valuewhen(pL, bar_index, 0) - LEN_RIGHT
14 // Price values of pivot points
15 pH_y1 = ta.valuewhen(pH, pH, 1)
16 pH_y2 = ta.valuewhen(pH, pH, 0)
17 pL_y1 = ta.valuewhen(pL, pL, 1)
18 pL_y2 = ta.valuewhen(pL, pL, 0)
19

20 if barstate.islastconfirmedhistory
21 // Lines
22 lH = line.new(pH_x1, pH_y1, pH_x2, pH_y2, extend = extend.right)
23 lL = line.new(pL_x1, pL_y1, pL_x2, pL_y2, extend = extend.right)
24 // Fill
25 fillColor = switch
26 pH_y2 > pH_y1 and pL_y2 > pL_y1 => color.green
27 pH_y2 < pH_y1 and pL_y2 < pL_y1 => color.red
28 => color.silver
29 linefill.new(lH, lL, color.new(fillColor, 90))

4.9 Inputs

• Introduction

• Input functions

• Input function parameters

• Input types

• Other features affecting Inputs

• Tips

218 Chapter 4. Concepts

https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

4.9.1 Introduction

Inputs allow scripts to receive values that users can change. Using them for key values will make your scripts more
adaptable to user preferences.
The following script plots a 20-period simple moving average (SMA) using ta.sma(close, 20). While it is simple
to write, it is not very flexible because that specific MA is all it will ever plot:

1 //@version=5
2 indicator("MA", "", true)
3 plot(ta.sma(close, 20))

If instead we write our script this way, it becomes much more flexible because its users will be able to select the source
and the length they want to use for the MA’s calculation:

1 //@version=5
2 indicator("MA", "", true)
3 sourceInput = input(close, "Source")
4 lengthInput = input(20, "Length")
5 plot(ta.sma(sourceInput, lengthInput))

Inputs can only be accessed when a script is running on the chart. Script users access them through the script’s “Settings”
dialog box, which can be reached by either:

• Double-clicking on the name of an on-chart indicator
• Right-clicking on the script’s name and choosing the “Settings” item from the dropdown menu
• Choosing the “Settings” item from the “More” menu icon (three dots) that appears when one hovers over the
indicator’s name on the chart

• Double-clicking on the indicator’s name from the Data Window (fourth icon down to the right of the chart)
The “Settings” dialog box always contains the “Style” and “Visibility” tabs, which allow users to specify their preferences
about the script’s visuals and the chart timeframes where it should be visible.
When a script contains calls to input.*() functions, an “Inputs” tab appears in the “Settings” dialog box.

In the flow of a script’s execution, inputs are processed when the script is already on a chart and a user changes values in
the “Inputs” tab. The changes trigger a re-execution of the script on all the chart bars, so when a user changes an input
value, your script recalculates using that new value.

4.9. Inputs 219

https://www.tradingview.com/support/solutions/43000502589

Pine Script™ v5 User Manual

4.9.2 Input functions

The following input functions are available:
• input()
• input.int()
• input.float()
• input.bool()
• input.color()
• input.string()
• input.timeframe()
• input.symbol()
• input.price()
• input.source()
• input.session()
• input.time()

A specific input widget is created in the “Inputs” tab to accept each type of input. Unless otherwise specified in the
input.*() call, each input appears on a new line of the “Inputs” tab, in the order the input.*() calls appear in the
script.
Our Style guide recommends placing input.*() calls at the beginning of the script.
Input function definitions typically contain many parameters, which allow you to control the default value of inputs, their
limits, and their organization in the “Inputs” tab.
An input*.() call being just another function call in Pine Script™, its result can be combined with arithmetic, com-
parison, logical or ternary operators to form an expression to be assigned to the variable. Here, we compare the result of
our call to input.string() to the string "On". The expression’s result is then stored in the plotDisplayInput variable.
Since that variable holds a true or false value, it is a of “input bool” type:

1 //@version=5
2 indicator("Input in an expression`", "", true)
3 bool plotDisplayInput = input.string("On", "Plot Display", options = ["On", "Off"])␣

↪→== "On"
4 plot(plotDisplayInput ? close : na)

All values returned by input.*() functions except “source” ones are “input” qualified values. See our User Manual’s
section on type qualifiers for more information.

4.9.3 Input function parameters

The parameters common to all input functions are: defval, title, tooltip, inline and group. Some param-
eters are used by the other input functions: options, minval, maxval, step and confirm.
All these parameters expect “const” arguments (except if it’s an input used for a “source”, which returns a “series float”
result). This means they must be known at compile time and cannot change during the script’s execution. Because the
result of an input.*() function is always qualified as “input” or “series”, it follows that the result of one input.*()
function call cannot be used as an argument in a subsequent input.*() call because the “input” qualifier is stronger
than “const”.
Let’s go over each parameter:

220 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_input
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}int
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}float
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}bool
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}color
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}string
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}timeframe
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}symbol
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}price
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}source
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}session
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}time
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}string

Pine Script™ v5 User Manual

• defval is the first parameter of all input functions. It is the default value that will appear in the input widget. It
requires an argument of the type of input value the function is used for.

• title requires a “const string” argument. It is the field’s label.
• tooltip requires a “const string” argument. When the parameter is used, a question mark icon will appear to
the right of the field. When users hover over it, the tooltip’s text will appear. Note that if multiple input fields are
grouped on one line using inline, the tooltip will always appear to the right of the rightmost field, and display
the text of the last tooltip argument used in the line. Newlines (\n) are supported in the argument string.

• inline requires a “const string” argument. Using the same argument for the parameter in multiple input.*()
calls will group their input widgets on the same line. There is a limit to the width the “Inputs” tab will expand, so
a limited quantity of input fields can be fitted on one line. Using one input.*() call with a unique argument
for inline has the effect of bringing the input field left, immediately after the label, foregoing the default left-
alignment of all input fields used when no inline argument is used.

• group requires a “const string” argument. It used to group any number of inputs in the same section. The string
used as the group argument becomes the section’s heading. All input.*() calls to be grouped together must
use the same string for their group argument.

• options requires a comma-separated list of elements enclosed in square brackets (e.g., ["ON", "OFF"]. It
is used to create a dropdown menu offering the list’s elements in the form of menu selections. Only one menu
item can be selected. When an options list is used, the defval value must be one of the list’s elements.
When options is used in input functions allowing minval, maxval or step, those parameters cannot be
used simultaneously.

• minval requires a “const int/float” argument, depending on the type of the defval value. It is the minimum
valid value for the input field.

• maxval requires a “const int/float” argument, depending on the type of the defval value. It is the maximum
valid value for the input field.

• step is the increment by which the field’s value will move when the widget’s up/down arrows are used.
• confirm requires a “const bool” (true or false) argument. This parameter affect the behavior of the script
when it is added to a chart. input.*() calls using confirm = true will cause the “Settings/Inputs” tab to
popup when the script is added to the chart. confirm is useful to ensure that users configure a particular field.

The minval, maxval and step parameters are only present in the signature of the input.int() and input.float() func-
tions.

4.9.4 Input types

The next sections explain what each input function does. As we proceed, we will explore the different ways you can use
input functions and organize their display.

Simple input

input() is a simple, generic function that supports the fundamental Pine Script™ types: “int”, “float”, “bool”, “color” and
“string”. It also supports “source” inputs, which are price-related values such as close, hl2, hlc3, and hlcc4, or which can
be used to receive the output value of another script.
Its signature is:

input(defval, title, tooltip, inline, group) → input int/float/bool/color/string |␣
↪→series float

4.9. Inputs 221

https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}int
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}float
https://www.tradingview.com/pine-script-reference/v5/#fun_input
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#hl2
https://www.tradingview.com/pine-script-reference/v5/#var_hlc3
https://www.tradingview.com/pine-script-reference/v5/#var_hlcc4

Pine Script™ v5 User Manual

The function automatically detects the type of input by analyzing the type of the defval argument used in the function
call. This script shows all the supported types and the qualified type returned by the function when used with defval
arguments of different types:

1 //@version=5
2 indicator("`input()`", "", true)
3 a = input(1, "input int")
4 b = input(1.0, "input float")
5 c = input(true, "input bool")
6 d = input(color.orange, "input color")
7 e = input("1", "input string")
8 f = input(close, "series float")
9 plot(na)

Integer input

Two signatures exist for the input.int() function; one when options is not used, the other when it is:

input.int(defval, title, minval, maxval, step, tooltip, inline, group, confirm) →␣
↪→input int
input.int(defval, title, options, tooltip, inline, group, confirm) → input int

This call uses the options parameter to propose a pre-defined list of lengths for the MA:

1 //@version=5
2 indicator("MA", "", true)
3 maLengthInput = input.int(10, options = [3, 5, 7, 10, 14, 20, 50, 100, 200])
4 ma = ta.sma(close, maLengthInput)
5 plot(ma)

This one uses the minval parameter to limit the length:

1 //@version=5
2 indicator("MA", "", true)
3 maLengthInput = input.int(10, minval = 2)
4 ma = ta.sma(close, maLengthInput)
5 plot(ma)

The version with the options list uses a dropdown menu for its widget. When the options parameter is not used, a
simple input widget is used to enter the value.

222 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}int

Pine Script™ v5 User Manual

Float input

Two signatures exist for the input.float() function; one when options is not used, the other when it is:

input.int(defval, title, minval, maxval, step, tooltip, inline, group, confirm) →␣
↪→input int
input.int(defval, title, options, tooltip, inline, group, confirm) → input int

Here, we use a “float” input for the factor used to multiple the standard deviation, to calculate Bollinger Bands:

1 //@version=5
2 indicator("MA", "", true)
3 maLengthInput = input.int(10, minval = 1)
4 bbFactorInput = input.float(1.5, minval = 0, step = 0.5)
5 ma = ta.sma(close, maLengthInput)
6 bbWidth = ta.stdev(ma, maLengthInput) * bbFactorInput
7 bbHi = ma + bbWidth
8 bbLo = ma - bbWidth
9 plot(ma)
10 plot(bbHi, "BB Hi", color.gray)
11 plot(bbLo, "BB Lo", color.gray)

The input widgets for floats are similar to the ones used for integer inputs.

4.9. Inputs 223

https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}float

Pine Script™ v5 User Manual

Boolean input

Let’s continue to develop our script further, this time by adding a boolean input to allow users to toggle the display of the
BBs:

1 //@version=5
2 indicator("MA", "", true)
3 maLengthInput = input.int(10, "MA length", minval = 1)
4 bbFactorInput = input.float(1.5, "BB factor", inline = "01", minval = 0, step = 0.5)
5 showBBInput = input.bool(true, "Show BB", inline = "01")
6 ma = ta.sma(close, maLengthInput)
7 bbWidth = ta.stdev(ma, maLengthInput) * bbFactorInput
8 bbHi = ma + bbWidth
9 bbLo = ma - bbWidth
10 plot(ma, "MA", color.aqua)
11 plot(showBBInput ? bbHi : na, "BB Hi", color.gray)
12 plot(showBBInput ? bbLo : na, "BB Lo", color.gray)

Note that:
• We have added an input using input.bool() to set the value of showBBInput.
• We use the inline parameter in that input and in the one for bbFactorInput to bring them on the same line.
We use "01" for its argument in both cases. That is how the Pine Script™ compiler recognizes that they belong
on the same line. The particular string used as an argument is unimportant and does not appear anywhere in the
“Inputs” tab; it is only used to identify which inputs go on the same line.

• We have vertically aligned the title arguments of our input.*() calls to make them easier to read.
• We use the showBBInput variable in our two plot() calls to plot conditionally. When the user unchecks the
checkbox of the showBBInput input, the variable’s value becomes false. When that happens, our plot() calls
plot the na value, which displays nothing. We use true as the default value of the input, so the BBs plot by default.

• Because we use the inline parameter for the bbFactorInput variable, its input field in the “Inputs” tab does
not align vertically with that of maLengthInput, which doesn’t use inline.

224 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}bool
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#var_na

Pine Script™ v5 User Manual

Color input

As is explained in the Color selection through script settings section of the “Colors” page, the color selections that usually
appear in the “Settings/Style” tab are not always available. When that is the case, script users will have no means to change
the colors your script uses. For those cases, it is essential to provide color inputs if you want your script’s colors to be
modifiable through the script’s “Settings”. Instead of using the “Settings/Style” tab to change colors, you will then allow
your script users to change the colors using calls to input.color().
Suppose we wanted to plot our BBs in a ligther shade when the high and low values are higher/lower than the BBs. You
could use code like this to create your colors:

bbHiColor = color.new(color.gray, high > bbHi ? 60 : 0)
bbLoColor = color.new(color.gray, low < bbLo ? 60 : 0)

When using dynamic (or “series”) color components like the transparency here, the color widgets in the “Settings/Style”
will no longer appear. Let’s create our own, which will appear in our “Inputs” tab:

1 //@version=5
2 indicator("MA", "", true)
3 maLengthInput = input.int(10, "MA length", inline = "01", minval = 1)
4 maColorInput = input.color(color.aqua, "", inline = "01")
5 bbFactorInput = input.float(1.5, "BB factor", inline = "02", minval = 0, step␣

↪→= 0.5)
6 bbColorInput = input.color(color.gray, "", inline = "02")
7 showBBInput = input.bool(true, "Show BB", inline = "02")
8 ma = ta.sma(close, maLengthInput)
9 bbWidth = ta.stdev(ma, maLengthInput) * bbFactorInput
10 bbHi = ma + bbWidth
11 bbLo = ma - bbWidth
12 bbHiColor = color.new(bbColorInput, high > bbHi ? 60 : 0)
13 bbLoColor = color.new(bbColorInput, low < bbLo ? 60 : 0)
14 plot(ma, "MA", maColorInput)
15 plot(showBBInput ? bbHi : na, "BB Hi", bbHiColor, 2)
16 plot(showBBInput ? bbLo : na, "BB Lo", bbLoColor, 2)

Note that:
• We have added two calls to input.color() to gather the values of the maColorInput and bbColorInput
variables. We use maColorInput directly in the plot(ma, "MA", maColorInput) call, and we use
bbColorInput to build the bbHiColor and bbLoColor variables, which modulate the transparency using

4.9. Inputs 225

https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}color
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}color

Pine Script™ v5 User Manual

the position of price relative to the BBs. We use a conditional value for the transp value we call color.new()
with, to generate different transparencies of the same base color.

• We do not use a title argument for our new color inputs because they are on the same line as other inputs
allowing users to understand to which plots they apply.

• We have reorganized our inline arguments so they reflect the fact we have inputs grouped on two distinct lines.

Timeframe input

Timeframe inputs can be useful when you want to be able to change the timeframe used to calculate values in your scripts.
Let’s do away with our BBs from the previous sections and add a timeframe input to a simple MA script:

1 //@version=5
2 indicator("MA", "", true)
3 tfInput = input.timeframe("D", "Timeframe")
4 ma = ta.sma(close, 20)
5 securityNoRepaint(sym, tf, src) =>
6 request.security(sym, tf, src[barstate.isrealtime ? 1 : 0])[barstate.isrealtime ?␣

↪→0 : 1]
7 maHTF = securityNoRepaint(syminfo.tickerid, tfInput, ma)
8 plot(maHTF, "MA", color.aqua)

Note that:
• We use the input.timeframe() function to receive the timeframe input.
• The function creates a dropdown widget where some standard timeframes are proposed. The list of timeframes
also includes any you have favorated in the chart user interface.

• We use the tfInput in our request.security() call. We also use gaps = barmerge.gaps_on in the call, so
the function only returns data when the higher timeframe has completed.

226 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}timeframe
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security

Pine Script™ v5 User Manual

Symbol input

The input.symbol() function creates a widget that allows users to search and select symbols like they would from the
chart’s user interface.
Let’s add a symbol input to our script:

1 //@version=5
2 indicator("MA", "", true)
3 tfInput = input.timeframe("D", "Timeframe")
4 symbolInput = input.symbol("", "Symbol")
5 ma = ta.sma(close, 20)
6 securityNoRepaint(sym, tf, src) =>
7 request.security(sym, tf, src[barstate.isrealtime ? 1 : 0])[barstate.isrealtime ?␣

↪→0 : 1]
8 maHTF = securityNoRepaint(symbolInput, tfInput, ma)
9 plot(maHTF, "MA", color.aqua)

Note that:
• Thedefval argument we use is an empty string. This causes request.security(), where we use thesymbolInput
variable containing that input, to use the chart’s symbol by default. If the user selects another symbol and wants
to return to the default value using the chart’s symbol, he will need to use the “Reset Settings” selection from the
“Inputs” tab’s “Defaults” menu.

• We use the securityNoRepaint() user-defined function to use request.security() in such a way that it does
not repaint; it only returns values when the higher timeframe has completed.

4.9. Inputs 227

https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}symbol
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security

Pine Script™ v5 User Manual

Session input

Session inputs are useful to gather start-stop values for periods of time. The input.session() built-in function creates an
input widget allowing users to specify the beginning and end time of a session. Selections can be made using a dropdown
menu, or by entering time values in “hh:mm” format.
The value returned by input.session() is a valid string in session format. See the manual’s page on sessions for more
information.
Session information can also contain information on the days where the session is valid. We use an input.string() function
call here to input that day information:

1 //@version=5
2 indicator("Session input", "", true)
3 string sessionInput = input.session("0600-1700", "Session")
4 string daysInput = input.string("1234567", tooltip = "1 = Sunday, 7 = Saturday")
5 sessionString = sessionInput + ":" + daysInput
6 inSession = not na(time(timeframe.period, sessionString))
7 bgcolor(inSession ? color.silver : na)

Note that:
• This script proposes a default session of “0600-1700”.
• The input.string() call uses a tooltip to provide users with help on the format to use to enter day information.
• A complete session string is built by concatenating the two strings the script receives as inputs.
• We explicitly declare the type of our two inputs with the string keyword to make it clear those variables will contain
a string.

• We detect if the chart bar is in the user-defined session by calling time() with the session string. If the current
bar’s time value (the time at the bar’s open) is not in the session, time() returns na, so inSession will be true
whenever time() returns a value that is not na.

228 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}session
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}session
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}string
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}string
https://www.tradingview.com/pine-script-reference/v5/#op_string
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#var_na

Pine Script™ v5 User Manual

Source input

Source inputs are useful to provide a selection of two types of sources:
• Price values, namely: open, high, low, close, hl2, hlc3, and ohlc4.
• The values plotted by other scripts on the chart. This can be useful to “link” two or more scripts together by sending
the output of one as an input to another script.

This script simply plots the user’s selection of source. We propose the high as the default value:

1 //@version=5
2 indicator("Source input", "", true)
3 srcInput = input.source(high, "Source")
4 plot(srcInput, "Src", color.new(color.purple, 70), 6)

This shows a chart where, in addition to our script, we have loaded an “Arnaud Legoux Moving Average” indicator. See
here how we use our script’s source input widget to select the output of the ALMA script as an input into our script.
Because our script plots that source in a light-purple thick line, you see the plots from the two scripts overlap because
they plot the same value:

Time input

Time inputs use the input.time() function. The function returns a Unix time in milliseconds (see the Time page for more
information). This type of data also contains date information, so the input.time() function returns a time and a date.
That is the reason why its widget allows for the selection of both.
Here, we test the bar’s time against an input value, and we plot an arrow when it is greater:

1 //@version=5
2 indicator("Time input", "T", true)
3 timeAndDateInput = input.time(timestamp("1 Aug 2021 00:00 +0300"), "Date and time")
4 barIsLater = time > timeAndDateInput
5 plotchar(barIsLater, "barIsLater", " ", location.top, size = size.tiny)

Note that the defval value we use is a call to the timestamp() function.

4.9. Inputs 229

https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_hl2
https://www.tradingview.com/pine-script-reference/v5/#var_hlc3
https://www.tradingview.com/pine-script-reference/v5/#var_ohlc4
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}time
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}time
https://www.tradingview.com/pine-script-reference/v5/#fun_timestamp

Pine Script™ v5 User Manual

4.9.5 Other features affecting Inputs

Some parameters of the indicator() function, when used, will populate the script’s “Inputs” tab with a field. The parameters
are timeframe and timeframe_gaps. An example:

1 //@version=5
2 indicator("MA", "", true, timeframe = "D", timeframe_gaps = false)
3 plot(ta.vwma(close, 10))

4.9.6 Tips

The design of your script’s inputs has an important impact on the usability of your scripts. Well-designed inputs are more
intuitively usable and make for a better user experience:

• Choose clear and concise labels (your input’s title argument).
• Choose your default values carefully.
• Provide minval and maxval values that will prevent your code from producing unexpected results, e.g., limit
the minimal value of lengths to 1 or 2, depending on the type of MA you are using.

• Provide a step value that is congruent with the value you are capturing. Steps of 5 can be more useful on a 0-200
range, for example, or steps of 0.05 on a 0.0-1.0 scale.

• Group related inputs on the same line using inline; bull and bear colors for example, or the width and color of
a line.

• When you have many inputs, group them into meaningful sections using group. Place the most important sections
at the top.

• Do the same for individual inputs within sections.
It can be advantageous to vertically align different arguments of multliple input.*() calls in your code. When you
need to make global changes, this will allow you to use the Editor’s multi-cursor feature to operate on all the lines at once.
Because It is sometimes necessary to use Unicode spaces to In order to achieve optimal alignment in inputs. This is an
example:

1 //@version=5
2 indicator("Aligned inputs", "", true)
3

4 var GRP1 = "Not aligned"

(continues on next page)

230 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_indicator

Pine Script™ v5 User Manual

(continued from previous page)
5 ma1SourceInput = input(close, "MA source", inline = "11", group = GRP1)
6 ma1LengthInput = input(close, "Length", inline = "11", group = GRP1)
7 long1SourceInput = input(close, "Signal source", inline = "12", group = GRP1)
8 long1LengthInput = input(close, "Length", inline = "12", group = GRP1)
9

10 var GRP2 = "Aligned"
11 // The three spaces after "MA source" are Unicode EN spaces (U+2002).
12 ma2SourceInput = input(close, "MA source   ", inline = "21", group = GRP2)
13 ma2LengthInput = input(close, "Length", inline = "21", group = GRP2)
14 long2SourceInput = input(close, "Signal source", inline = "22", group = GRP2)
15 long2LengthInput = input(close, "Length", inline = "22", group = GRP2)
16

17 plot(ta.vwma(close, 10))

Note that:
• We use the group parameter to distinguish between the two sections of inputs. We use a constant to hold the
name of the groups. This way, if we decide to change the name of the group, we only need to change it in one
place.

• The first sections inputs widgets do not align vertically. We are using inline, which places the input widgets
immediately to the right of the label. Because the labels for the ma1SourceInput and long1SourceInput
inputs are of different lengths the labels are in different y positions.

• Tomake up for the misalignment, we pad the title argument in the ma2SourceInput line with three Unicode
EN spaces (U+2002). Unicode spaces are necessary because ordinary spaces would be stripped from the label. You
can achieve precise alignment by combining different quantities and types of Unicode spaces. See here for a list of
Unicode spaces of different widths.

4.9. Inputs 231

https://jkorpela.fi/chars/spaces.html
https://www.tradingview.com/

Pine Script™ v5 User Manual

4.10 Levels

• `hline()` levels

• Fills between levels

4.10.1 `hline()` levels

Levels are lines plotted using the hline() function. It is designed to plot horizontal levels using a single color, i.e., it does
not change on different bars. See the Levels section of the page on plot() for alternative ways to plot levels when hline()
won’t do what you need.
The function has the following signature:

hline(price, title, color, linestyle, linewidth, editable) → hline

hline() has a few constraints when compared to plot():
• Since the function’s objective is to plot horizontal lines, its price parameter requires an “input int/float” argument,
which means that “series float” values such as close or dynamically-calculated values cannot be used.

• Its color parameter requires an “input int” argument, which precludes the use of dynamic colors, i.e., colors
calculated on each bar — or “series color” values.

• Three different line styles are supported through the linestyle parameter: hline.style_solid, hline.
style_dotted and hline.style_dashed.

Let’s see hline() in action in the “True Strength Index” indicator:

1 //@version=5
2 indicator("TSI")
3 myTSI = 100 * ta.tsi(close, 25, 13)
4

5 hline(50, "+50", color.lime)
6 hline(25, "+25", color.green)
7 hline(0, "Zero", color.gray, linestyle = hline.style_dotted)
8 hline(-25, "-25", color.maroon)
9 hline(-50, "-50", color.red)
10

11 plot(myTSI)

232 Chapter 4. Concepts

https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#plot
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#fun_hline

Pine Script™ v5 User Manual

Note that:
• We display 5 levels, each of a different color.
• We use a different line style for the zero centerline.
• We choose colors that will work well on both light and dark themes.
• The usual range for the indicator’s values is +100 to -100. Since the ta.tsi() built-in returns values in the +1 to -1
range, we make the adjustment in our code.

4.10.2 Fills between levels

The space between two levels plotted with hline() can be colored using fill(). Keep in mind that both plots must have
been plotted with hline().
Let’s put some background colors in our TSI indicator:

1 //@version=5
2 indicator("TSI")
3 myTSI = 100 * ta.tsi(close, 25, 13)
4

5 plus50Hline = hline(50, "+50", color.lime)
6 plus25Hline = hline(25, "+25", color.green)
7 zeroHline = hline(0, "Zero", color.gray, linestyle = hline.style_dotted)
8 minus25Hline = hline(-25, "-25", color.maroon)
9 minus50Hline = hline(-50, "-50", color.red)
10

11 // ————— Function returns a color in a light shade for use as a background.
12 fillColor(color col) =>
13 color.new(col, 90)
14

15 fill(plus50Hline, plus25Hline, fillColor(color.lime))
16 fill(plus25Hline, zeroHline, fillColor(color.teal))
17 fill(zeroHline, minus25Hline, fillColor(color.maroon))
18 fill(minus25Hline, minus50Hline, fillColor(color.red))
19

20 plot(myTSI)

4.10. Levels 233

https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}tsi
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_hline

Pine Script™ v5 User Manual

Note that:
• We have now used the return value of our hline() function calls, which is of the hline special type. We use the
plus50Hline, plus25Hline, zeroHline, minus25Hline and minus50Hline variables to store
those “hline” IDs because we will need them in our fill() calls later.

• To generate lighter color shades for the background colors, we declare a fillColor() function that accepts a
color and returns its 90 transparency. We use calls to that function for the color arguments in our fill() calls.

• We make our fill() calls for each of the four different fills we want, between four different pairs of levels.
• We use color.teal in our second fill because it produces a green that fits the color scheme better than the
color.green used for the 25 level.

4.11 Libraries

• Introduction

• Creating a library

• Publishing a library

• Using a library

234 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

4.11.1 Introduction

Pine Script™ libraries are publications containing functions that can be reused in indicators, strategies, or in other li-
braries. They are useful to define frequently-used functions so their source code does not have to be included in every
script where they are needed.
A library must be published (privately or publicly) before it can be used in another script. All libraries are published
open-source. Public scripts can only use public libraries and they must be open-source. Private scripts or personal scripts
saved in the Pine Script™ Editor can use public or private libraries. A library can use other libraries, or even previous
versions of itself.
Library programmers should be familiar with Pine Script™’s typing nomenclature, scopes and user-defined functions.
If you need to brush up on qualified types, see the User Manual’s page on the Type system. For more information on
user-defined functions and scopes, see the User-defined functions page.
You can browse the library scripts published publicly by members in TradingView’s Community Scripts.

4.11.2 Creating a library

A library is a special kind of script that begins with the library() declaration statement, rather than indicator() or strategy().
A library contains exportable function definitions, which constitute the only visible part of the library when it is used by
another script. Libraries can also use other Pine Script™ code in their global scope, like a normal indicator. This code
will typically serve to demonstrate how to use the library’s functions.
A library script has the following structure, where one or more exportable functions must be defined:

1 //@version=5
2

3 // @description <library_description>
4 library(title, overlay)
5

6 <script_code>
7

8 // @function <function_description>
9 // @param <parameter> <parameter_description>
10 // @returns <return_value_description>
11 export <function_name>([simple/series] <parameter_type> <parameter_name> [= <default_

↪→value>] [, ...]) =>
12 <function_code>
13

14 <script_code>

Note that:
• The // @description, // @function, // @param and // @returns compiler annotations are
optional but we highly recommend you use them. They serve a double purpose: document the library’s code and
populate the default library description which authors can use when publishing the library.

• The export keyword is mandatory.
• <parameter_type> is mandatory, contrary to user-defined function parameter definitions in indicators or strategies,
which are typeless.

• <script_code> can be any code you would normally use in an indicator, including inputs or plots.
This is an example library:

4.11. Libraries 235

https://www.tradingview.com/scripts/?script_type=libraries
https://www.tradingview.com/pine-script-reference/v5/#fun_library
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#op_export

Pine Script™ v5 User Manual

1 //@version=5
2

3 // @description Provides functions calculating the all-time high/low of values.
4 library("AllTimeHighLow", true)
5

6 // @function Calculates the all-time high of a series.
7 // @param val Series to use (`high` is used if no argument is supplied).
8 // @returns The all-time high for the series.
9 export hi(float val = high) =>
10 var float ath = val
11 ath := math.max(ath, val)
12

13 // @function Calculates the all-time low of a series.
14 // @param val Series to use (`low` is used if no argument is supplied).
15 // @returns The all-time low for the series.
16 export lo(float val = low) =>
17 var float atl = val
18 atl := math.min(atl, val)
19

20 plot(hi())
21 plot(lo())

Library functions

Function definitions in libraries are slightly different than those of user-defined functions in indicators and strategies.
There are constraints as to what can be included in the body of library functions.
In library function signatures (their first line):

• The export keyword is mandatory.
• The type of argument expected for each parameter must be explicitly mentioned.
• A simple or series keyword can restrict the allowable qualified types of arguments (the next section explains their
use).

These are the constraints imposed on library functions:
• They cannot use variables from the library’s global scope unless they are qualified as “const”. This means you
cannot use global variables initialized from script inputs, for example, or globally declared arrays.

• request.*() calls are not allowed.
• input.*() calls are not allowed.
• plot*(), fill() and bgcolor() calls are not allowed.

Library functions always return a result that is qualified as “simple” or “series”. You cannot use them where “const” or
“input” qualified values are required, as is the case with some built-in functions. For example, a library function cannot
be used to calculate an argument for the show_last parameter in a plot() call because it requires an “input int” value.

236 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#op_export
https://www.tradingview.com/pine-script-reference/v5/#op_simple
https://www.tradingview.com/pine-script-reference/v5/#op_series
https://www.tradingview.com/pine-script-reference/v5/#fun_plot

Pine Script™ v5 User Manual

Qualified type control

The qualified types of arguments supplied in calls to library functions are autodetected based on how each argument is
used inside the function. If the argument can be used as a “series”, it is qualified as such. If it cannot, an attempt is made
with the “simple” type qualifier. This explains why this code:

export myEma(int x) =>
ta.ema(close, x)

will work when called using myCustomLibrary.myEma(20), even though ta.ema()’s length parameter requires
a “simple int” argument. When the Pine Script™ compiler detects that a “series” length cannot be used with ta.ema(), it
tries the “simple” qualifier, which in this case is allowed.
While library functions cannot return “const” or “input” values, they can be written to produce “simple” results. This
makes them useful in more contexts than functions returning “series” results, as some built-in functions do not allow
“series” arguments. For example, request.security() requires a “simple string” for its symbol parameter. If we wrote a
library function to assemble the argument to symbol in the following way, the function’s result would not work because
it is of the “series string” qualified type:

export makeTickerid(string prefix, string ticker) =>
prefix + ":" + ticker

However, by restricting the parameter qualifiers to “simple”, we can force the function to yield a “simple” result. We can
achieve this by prefixing the parameters’ type with the simple keyword:

export makeTickerid(simple string prefix, simple string ticker) =>
prefix + ":" + ticker

Note that for the function to return a “simple” value, no “series” values can be used in its calculation; otherwise the result
will be a “series” value.
One can also use the series keyword to prefix the type of a library function parameter. However, because arguments are
qualified as “series” by default, using the series modifier is redundant.

User-defined types and objects

You can export user-defined types (UDTs) from libraries, and library functions can return objects.
To export a UDT, prefix its definition with the export keyword just as you would export a function:

1 //@version=5
2 library("Point")
3

4 export type point
5 int x
6 float y
7 bool isHi
8 bool wasBreached = false

A script importing that library and creating an object from its point UDT would look somewhat like this:
Note that:

• This code won’t compile because no “Point” library is published, and the script doesn’t display anything.
• userName would need to be replaced by the TradingView user name of the library’s publisher.
• We use the built-in new() method to create an object from the point UDT.

4.11. Libraries 237

https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}ema
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}ema
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#op_simple
https://www.tradingview.com/pine-script-reference/v5/#op_simple
https://www.tradingview.com/pine-script-reference/v5/#op_simple
https://www.tradingview.com/pine-script-reference/v5/#op_export

Pine Script™ v5 User Manual

• We prefix the reference to the library’s point UDT with the pt alias defined in the import statement, just like we
would when using a function from an imported library.

UDTs used in a library must be exported if any of its exported functions use a parameter or returns a result of that
user-defined type.
When a library only uses a UDT internally, it does not have to be exported. The following library uses the point UDT
internally, but only its drawPivots() function is exported, which does not use a parameter nor return a result of
point type:

1 //@version=5
2 library("PivotLabels", true)
3

4 // We use this `point` UDT in the library, but it does NOT require exporting because:
5 // 1. The exported function's parameters do not use the UDT.
6 // 2. The exported function does not return a UDT result.
7 type point
8 int x
9 float y
10 bool isHi
11 bool wasBreached = false
12

13

14 fillPivotsArray(qtyLabels, leftLegs, rightLegs) =>
15 // Create an array of the specified qty of pivots to maintain.
16 var pivotsArray = array.new<point>(math.max(qtyLabels, 0))
17

18 // Detect pivots.
19 float pivotHi = ta.pivothigh(leftLegs, rightLegs)
20 float pivotLo = ta.pivotlow(leftLegs, rightLegs)
21

22 // Create a new `point` object when a pivot is found.
23 point foundPoint = switch
24 pivotHi => point.new(time[rightLegs], pivotHi, true)
25 pivotLo => point.new(time[rightLegs], pivotLo, false)
26 => na
27

28 // Add new pivot info to the array and remove the oldest pivot.
29 if not na(foundPoint)
30 array.push(pivotsArray, foundPoint)
31 array.shift(pivotsArray)
32

33 array<point> result = pivotsArray
34

35

36 detectBreaches(pivotsArray) =>
37 // Detect breaches.
38 for [i, eachPoint] in pivotsArray
39 if not na(eachPoint)
40 if not eachPoint.wasBreached
41 bool hiWasBreached = eachPoint.isHi and high[1] <= eachPoint.y␣

↪→and high > eachPoint.y
42 bool loWasBreached = not eachPoint.isHi and low[1] >= eachPoint.y␣

↪→and low < eachPoint.y
43 if hiWasBreached or loWasBreached
44 // This pivot was breached; change its `wasBreached` field.
45 point p = array.get(pivotsArray, i)
46 p.wasBreached := true

(continues on next page)

238 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#op_import

Pine Script™ v5 User Manual

(continued from previous page)
47 array.set(pivotsArray, i, p)
48

49

50 drawLabels(pivotsArray) =>
51 for eachPoint in pivotsArray
52 if not na(eachPoint)
53 label.new(
54 eachPoint.x,
55 eachPoint.y,
56 str.tostring(eachPoint.y, format.mintick),
57 xloc.bar_time,
58 color = eachPoint.wasBreached ? color.gray : eachPoint.isHi ? color.

↪→teal : color.red,
59 style = eachPoint.isHi ? label.style_label_down: label.style_label_up,
60 textcolor = eachPoint.wasBreached ? color.silver : color.white)
61

62

63 // @function Displays a label for each of the last `qtyLabels` pivots.
64 // Colors high pivots in green, low pivots in red, and breached␣

↪→pivots in gray.
65 // @param qtyLabels (simple int) Quantity of last labels to display.
66 // @param leftLegs (simple int) Left pivot legs.
67 // @param rightLegs (simple int) Right pivot legs.
68 // @returns Nothing.
69 export drawPivots(int qtyLabels, int leftLegs, int rightLegs) =>
70 // Gather pivots as they occur.
71 pointsArray = fillPivotsArray(qtyLabels, leftLegs, rightLegs)
72

73 // Mark breached pivots.
74 detectBreaches(pointsArray)
75

76 // Draw labels once.
77 if barstate.islastconfirmedhistory
78 drawLabels(pointsArray)
79

80

81 // Example use of the function.
82 drawPivots(20, 10, 5)

If the TradingView user published the above library, it could be used like this:

4.11.3 Publishing a library

Before you or other Pine Script™ programmers can reuse any library, it must be published. If you want to share your
library with all TradingViewers, publish it publicly. To use it privately, use a private publication. As with indicators
or strategies, the active chart when you publish a library will appear in both its widget (the small placeholder denoting
libraries in the TradingView scripts stream) and script page (the page users see when they click on the widget).
Private libraries can be used in public Protected or Invite-only scripts.
After adding our example library to the chart and setting up a clean chart showing our library plots the way we want them,
we use the Pine Editor’s “Publish Script” button. The “Publish Library” window comes up:

4.11. Libraries 239

Pine Script™ v5 User Manual

Note that:
• We leave the library’s title as is (the title argument in our library() declaration statement is used as the default).
While you can change the publication’s title, it is preferable to keep its default value because the title argument
is used to reference imported libraries in the import statement. It makes life easier for library users when your
publication’s title matches the actual name of the library.

• A default description is built from the compiler annotations we used in our library. We will publish the library
wihout retouching it.

• We chose to publish our library publicly, so it will be visible to all TradingViewers.
• We do not have the possibility of selecting a visibility type other than “Open” because libraries are always open-
source.

• The list of categories for libraries is different than for indicators and strategies. We have selected the “Statistics and
Metrics” category.

• We have added some custom tags: “all-time”, “high” and “low”.
The intended users of public libraries being other Pine programmers; the better you explain and document your library’s
functions, the more chances others will use them. Providing examples demonstrating how to use your library’s functions
in your publication’s code will also help.

240 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_library
https://www.tradingview.com/pine-script-reference/v5/#op_import

Pine Script™ v5 User Manual

House Rules

Pine libraries are considered “public domain” code in our House Rules on Script Publishing, which entails that permission
is not required from their author if you call their functions or reuse their code in your open-source scripts. However, if
you intend to reuse code from a Pine Script™ library’s functions in a public protected or invite-only publication, explicit
permission for reuse in that form is required from its author.
Whether using a library’s functions or reusing its code, you must credit the author in your publication’s description. It is
also good form to credit in open-source comments.

4.11.4 Using a library

Using a library from another script (which can be an indicator, a strategy or another library), is done through the import
statement:

import <username>/<libraryName>/<libraryVersion> [as <alias>]

where:
• The <username>/<libraryName>/<libraryVersion> path will uniquely identify the library.
• The <libraryVersion> must be specified explicitly. To ensure the reliability of scripts using libraries, there is no
way to automatically use the latest version of a library. Every time a library update is published by its author, the
library’s version number increases. If you intend to use the latest version of the library, the <libraryVersion> value
will require updating in the import statement.

• The as <alias> part is optional. When used, it defines the namespace that will refer to the library’s functions.
For example, if you import a library using the allTime alias as we do in the example below, you will refer to that
library’s functions as allTime.<function_mame>(). When no alias is defined, the library’s name becomes
its namespace.

To use the library we published in the previous section, our next script will require an import statement:

import PineCoders/AllTimeHighLow/1 as allTime

As you type the user name of the library’s author, you can use the Editor’s ctrl + space / cmd + space “Auto-
complete” command to display a popup providing selections that match the available libraries:

This is an indicator that reuses our library:

1 //@version=5
2 indicator("Using AllTimeHighLow library", "", true)
3 import PineCoders/AllTimeHighLow/1 as allTime
4

5 plot(allTime.hi())
6 plot(allTime.lo())
7 plot(allTime.hi(close))

Note that:

4.11. Libraries 241

https://www.tradingview.com/support/solutions/43000590599
https://www.tradingview.com/pine-script-reference/v5/#op_import
https://www.tradingview.com/pine-script-reference/v5/#op_import
https://www.tradingview.com/pine-script-reference/v5/#op_import

Pine Script™ v5 User Manual

• We have chosen to use the “allTime” alias for the library’s instance in our script. When typing that alias in the
Editor, a popup will appear to help you select the particular function you want to use from the library.

• We use the library’s hi() and lo() functions without an argument, so the default high and low built-in variables
will be used for their series, respectively.

• We use a second call to allTime.hi(), but this time using close as its argument, to plot the highest close in the
chart’s history.

4.12 Lines and boxes

• Introduction

• Lines

• Boxes

• Polylines

• Realtime behavior

• Limitations

4.12.1 Introduction

Pine Script™ facilitates drawing lines, boxes, and other geometric formations from code using the line, box, and polyline
types. These types provide utility for programmatically drawing support and resistance levels, trend lines, price ranges,
and other custom formations on a chart.
Unlike plots, the flexibility of these types makes them particularly well-suited for visualizing current calculated data at
virtually any available point on the chart, irrespective of the chart bar the script executes on.
Lines, boxes, and polylines are objects, like labels, tables, and other special types. Scripts reference objects of these types
using IDs, which act like pointers. As with other objects, line, box, and polyline IDs are qualified as “series” values, and
all functions that manage these objects accept “series” arguments.

Note: Using the types we discuss on this page often involves arrays, especially when working with polylines, which
require an array of chart.point instances. We therefore recommend you become familiar with arrays to make the most of
these drawing types in your scripts.

Lines drawn by a script may be vertical, horizontal, or angled. Boxes are always rectangular. Polylines sequentially
connect multiple vertical, horizontal, angled, or curved line segments. Although all of these drawing types have different
characteristics, they do have some things in common:

242 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html
https://www.tradingview.com/pine-script-reference/v5/#type_line
https://www.tradingview.com/pine-script-reference/v5/#type_box
https://www.tradingview.com/pine-script-reference/v5/#type_polyline
https://www.tradingview.com/pine-script-reference/v5/#type_line
https://www.tradingview.com/pine-script-reference/v5/#type_box
https://www.tradingview.com/pine-script-reference/v5/#type_polyline
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point

Pine Script™ v5 User Manual

• Lines, boxes, and polylines can have coordinates at any available location on the chart, including ones at future times
beyond the last chart bar.

• Objects of these types can use chart.point instances to set their coordinates.
• The x-coordinates of each object can be bar index or time values, depending on their specified xloc property.
• Each object can have one of multiple predefined line styles.
• Scripts can call the functions that manage these objects from within the scopes of loops and conditional structures,
allowing iterative and conditional control of their drawings.

• There are limits on the number of these objects that a script can reference and display on the chart. A single script
instance can display up to 500 lines, 500 boxes, and 100 polylines. Users can specify the maximum number allowed
for each type via the max_lines_count, max_boxes_count, and max_polylines_count parameters
of the script’s indicator() or strategy() declaration statement. If unspecified, the default is ~50. As with label and
table types, lines, boxes, and polylines utilize a garbage collection mechanism that deletes the oldest objects on the
chart when the total number of drawings exceeds the script’s limit.

Note: On TradingView charts, a complete set of Drawing Tools allows users to create and modify drawings using mouse
actions. While they may sometimes resemble drawing objects created with Pine Script™ code, they are unrelated
entities. Pine scripts cannot interact with drawing tools from the chart user interface, and mouse actions do not directly
affect Pine drawing objects.

4.12.2 Lines

The built-ins in the line.* namespace control the creation and management of line objects:
• The line.new() function creates a new line.
• The line.set_*() functions modify line properties.
• The line.get_*() functions retrieve values from a line instance.
• The line.copy() function clones a line instance.
• The line.delete() function deletes an existing line instance.
• The line.all variable references a read-only array containing the IDs of all lines displayed by the script. The array’s
size depends on the max_lines_count of the indicator() or strategy() declaration statement and the number of
lines the script has drawn.

Scripts can call line.set_*(), line.get_*(), line.copy(), and line.delete() built-ins as functions or methods.

Creating lines

The line.new() function creates a new line instance to display on the chart. It has the following signatures:

line.new(first_point, second_point, xloc, extend, color, style, width) → series line

line.new(x1, y1, x2, y2, xloc, extend, color, style, width) → series line

The first overload of this function contains the first_point and second_point parameters. The first_point
is a chart.point representing the start of the line, and the second_point is a chart.point representing the line’s end. The
function copies the information from these chart points to determine the line’s coordinates. Whether it uses the index
or time fields from the first_point and second_point as x-coordinates depends on the function’s xloc value.

4.12. Lines and boxes 243

https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#type_label
https://www.tradingview.com/pine-script-reference/v5/#type_table
https://www.tradingview.com/pine-script-reference/v5/#type_line
https://www.tradingview.com/pine-script-reference/v5/#fun_line.new
https://www.tradingview.com/pine-script-reference/v5/#fun_line.copy
https://www.tradingview.com/pine-script-reference/v5/#fun_line.delete
https://www.tradingview.com/pine-script-reference/v5/#var_line.all
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#fun_array.size
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_line.copy
https://www.tradingview.com/pine-script-reference/v5/#fun_line.delete
https://www.tradingview.com/pine-script-reference/v5/#fun_line.new
https://www.tradingview.com/pine-script-reference/v5/#type_line
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point

Pine Script™ v5 User Manual

The second overload specifies x1, y1, x2, and y2 values independently, where x1 and x2 are int values representing
the starting and ending x-coordinates of the line, and y1 and y2 are float values representing the y-coordinates. Whether
the line considers the x values as bar indices or timestamps depends on the xloc value in the function call.
Both overloads share the same additional parameters:
xloc

Controls whether the x-coordinates of the new line use bar index or time values. Its default value is xloc.bar_index.
When calling the first overload, using an xloc value of xloc.bar_index tells the function to use the index fields
of the first_point and second_point, and a value of xloc.bar_time tells the function to use the time
fields of the points.
When calling the second overload, an xloc value of xloc.bar_index prompts the function to treat the x1 and x2
arguments as bar index values. When using xloc.bar_time, the function will treat x1 and x2 as time values.
When the specified x-coordinates represent bar index values, it’s important to note that the minimum x-coordinate
allowed is bar_index - 9999. For larger offsets, one can use xloc.bar_time.

extend
Determines whether the drawn line will infinitely extend beyond its defined start and end coordinates. It accepts
one of the following values: extend.left, extend.right, extend.both, or extend.none (default).

color
Specifies the color of the line drawing. The default is color.blue.

style
Specifies the line’s style, which can be any of the options listed in this page’s Line styles section. The default value
is line.style_solid.

width
Controls the width of the line, in pixels. The default value is 1.

The example below demonstrates how one can draw lines in their simplest form. This script draws a new vertical line
connecting the open and close prices at the horizontal center of each chart bar:

1 //@version=5
2 indicator("Creating lines demo", overlay = true)
3

4 //@variable The `chart.point` for the start of the line. Contains `index` and `time`␣
↪→information.

5 firstPoint = chart.point.now(open)

(continues on next page)

244 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#type_int
https://www.tradingview.com/pine-script-reference/v5/#type_float
https://www.tradingview.com/pine-script-reference/v5/#var_xloc.bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_xloc.bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_xloc.bar_time
https://www.tradingview.com/pine-script-reference/v5/#var_xloc.bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_xloc.bar_time
https://www.tradingview.com/pine-script-reference/v5/#var_xloc.bar_time
https://www.tradingview.com/pine-script-reference/v5/#var_extend.left
https://www.tradingview.com/pine-script-reference/v5/#var_extend.right
https://www.tradingview.com/pine-script-reference/v5/#var_extend.both
https://www.tradingview.com/pine-script-reference/v5/#var_extend.none
https://www.tradingview.com/pine-script-reference/v5/#var_color.blue
https://www.tradingview.com/pine-script-reference/v5/#var_line.style_solid
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_close

Pine Script™ v5 User Manual

(continued from previous page)
6 //@variable The `chart.point` for the end of the line. Contains `index` and `time`␣

↪→information.
7 secondPoint = chart.point.now(close)
8

9 // Draw a basic line with a `width` of 5 connecting the `firstPoint` to the␣
↪→`secondPoint`.

10 // This line uses the `index` field from each point for its x-coordinates.
11 line.new(firstPoint, secondPoint, width = 5)
12

13 // Color the background on the unconfirmed bar.
14 bgcolor(barstate.isconfirmed ? na : color.new(color.orange, 70), title = "Unconfirmed␣

↪→bar highlight")

Note that:
• If the firstPoint and secondPoint reference identical coordinates, the script will not display a line
since there is no distance between them to draw. However, the line ID will still exist.

• The script will only display approximately the last 50 lines on the chart, as it does not have a specified
max_lines_count in the indicator() function call. Line drawings persist on the chart until deleted using
line.delete() or removed by the garbage collector.

• The script redraws the line on the open chart bar (i.e., the bar with an orange background highlight) until it
closes. After the bar closes, it will no longer update the drawing.

Let’s look at a more involved example. This script uses the previous bar’s hl2 price and the current bar’s high and low
prices to draw a fan with a user-specified number of lines projecting a range of hypothetical price values for the following
chart bar. It calls line.new() within a for loop to create linesPerBar lines on each bar:

1 //@version=5
2 indicator("Creating lines demo", "Simple projection fan", true, max_lines_count = 500)
3

4 //@variable The number of fan lines drawn on each chart bar.
5 int linesPerBar = input.int(20, "Line drawings per bar", 2, 100)
6

7 //@variable The distance between each y point on the current bar.
8 float step = (high - low) / (linesPerBar - 1)

(continues on next page)

4.12. Lines and boxes 245

https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_line.delete
https://www.tradingview.com/pine-script-reference/v5/#var_hl2
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#fun_line.new

Pine Script™ v5 User Manual

(continued from previous page)
9

10 //@variable The `chart.point` for the start of each line. Does not contain `time`␣
↪→information.

11 firstPoint = chart.point.from_index(bar_index - 1, hl2[1])
12 //@variable The `chart.point` for the end of each line. Does not contain `time`␣

↪→information.
13 secondPoint = chart.point.from_index(bar_index + 1, float(na))
14

15 //@variable The stepped y value on the current bar for `secondPoint.price`␣
↪→calculation, starting from the `low`.

16 float barValue = low
17 // Loop to draw the fan.
18 for i = 1 to linesPerBar
19 // Update the `price` of the `secondPoint` using the difference between the␣

↪→`barValue` and `firstPoint.price`.
20 secondPoint.price := 2.0 * barValue - firstPoint.price
21 //@variable Is `color.aqua` when the line's slope is positive, `color.fuchsia`␣

↪→otherwise.
22 color lineColor = secondPoint.price > firstPoint.price ? color.aqua : color.

↪→fuchsia
23 // Draw a new `lineColor` line connecting the `firstPoint` and `secondPoint`␣

↪→coordinates.
24 // This line uses the `index` field from each point for its x-coordinates.
25 line.new(firstPoint, secondPoint, color = lineColor)
26 // Add the `step` to the `barValue`.
27 barValue += step
28

29 // Color the background on the unconfirmed bar.
30 bgcolor(barstate.isconfirmed ? na : color.new(color.orange, 70), title = "Unconfirmed␣

↪→bar highlight")

Note that:
• We’ve included max_lines_count = 500 in the indicator() function call, meaning the script preserves
up to 500 lines on the chart.

• Each line.new() call copies the information from the chart.point referenced by the firstPoint and sec-
ondPoint variables. As such, the script can change the price field of the secondPoint on each loop
iteration without affecting the y-coordinates in other lines.

Modifying lines

The line.* namespace contains multiple setter functions that modify the properties of line instances:
• line.set_first_point() and line.set_second_point() respectively update the start and end points of the id line using
information from the specified point.

• line.set_x1() and line.set_x2() set one of the x-coordinates of the id line to a new x value, which can represent a
bar index or time value depending on the line’s xloc property.

• line.set_y1() and line.set_y2() set one of the y-coordinates of the id line to a new y value.
• line.set_xy1() and line.set_xy2() update one of the id line’s points with new x and y values.
• line.set_xloc() sets the xloc of the id line and updates both of its x-coordinates with new x1 and x2 values.
• line.set_extend() sets the extend property of the id line.
• line.set_color() updates the id line’s color value.

246 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_line.new
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#type_line
https://www.tradingview.com/pine-script-reference/v5/#fun_line.set_first_point
https://www.tradingview.com/pine-script-reference/v5/#fun_line.set_second_point
https://www.tradingview.com/pine-script-reference/v5/#fun_line.set_x1
https://www.tradingview.com/pine-script-reference/v5/#fun_line.set_x2
https://www.tradingview.com/pine-script-reference/v5/#fun_line.set_y1
https://www.tradingview.com/pine-script-reference/v5/#fun_line.set_y2
https://www.tradingview.com/pine-script-reference/v5/#fun_line.set_xy1
https://www.tradingview.com/pine-script-reference/v5/#fun_line.set_xy2
https://www.tradingview.com/pine-script-reference/v5/#fun_line.set_xloc
https://www.tradingview.com/pine-script-reference/v5/#fun_line.set_extend
https://www.tradingview.com/pine-script-reference/v5/#fun_line.set_color

Pine Script™ v5 User Manual

• line.set_style() changes the style of the id line.
• line.set_width() sets the width of the id line.

All setter functions directly modify the id line passed into the call and do not return any value. Each setter function
accepts “series” arguments, as a script can change a line’s properties throughout its execution.
The following example draws lines connecting the opening price of a timeframe to its closing price. The script uses
the var keyword to declare the periodLine and the variables that reference chart.point values (openPoint and
closePoint) only on the first chart bar, and it assigns new values to these variables over its execution. After detect-
ing a change on the timeframe, it sets the color of the existing periodLine using line.set_color(), creates new
values for the openPoint and closePoint using chart.point.now(), then assigns a new line using those points to the
periodLine.
On other bars where the periodLine value is not na, the script assigns a new chart.point to the closePoint, then
uses line.set_second_point() and line.set_color() as methods to update the line’s properties:

1 //@version=5
2 indicator("Modifying lines demo", overlay = true)
3

4 //@variable The size of each period.
5 string timeframe = input.timeframe("D", "Timeframe")
6

7 //@variable A line connecting the period's opening and closing prices.
8 var line periodLine = na
9

10 //@variable The first point of the line. Contains `time` and `index` information.
11 var chart.point openPoint = chart.point.now(open)
12 //@variable The closing point of the line. Contains `time` and `index` information.
13 var chart.point closePoint = chart.point.now(close)
14

15 if timeframe.change(timeframe)
16 //@variable The final color of the `periodLine`.
17 color finalColor = switch
18 closePoint.price > openPoint.price => color.green
19 closePoint.price < openPoint.price => color.red
20 => color.gray
21

22 // Update the color of the current `periodLine` to the `finalColor`.
(continues on next page)

4.12. Lines and boxes 247

https://www.tradingview.com/pine-script-reference/v5/#fun_line.set_style
https://www.tradingview.com/pine-script-reference/v5/#fun_line.set_width
https://www.tradingview.com/pine-script-reference/v5/#kw_var
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#fun_timeframe.change
https://www.tradingview.com/pine-script-reference/v5/#fun_line.set_color
https://www.tradingview.com/pine-script-reference/v5/#fun_chart.point.now
https://www.tradingview.com/pine-script-reference/v5/#fun_line.new
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#fun_line.set_second_point
https://www.tradingview.com/pine-script-reference/v5/#fun_line.set_color

Pine Script™ v5 User Manual

(continued from previous page)
23 line.set_color(periodLine, finalColor)
24

25 // Assign new points to the `openPoint` and `closePoint`.
26 openPoint := chart.point.now(open)
27 closePoint := chart.point.now(close)
28 // Assign a new line to the `periodLine`. Uses `time` fields from the `openPoint`␣

↪→and `closePoint` as x-coordinates.
29 periodLine := line.new(openPoint, closePoint, xloc.bar_time, style = line.style_

↪→arrow_right, width = 3)
30

31 else if not na(periodLine)
32 // Assign a new point to the `closePoint`.
33 closePoint := chart.point.now(close)
34

35 //@variable The color of the developing `periodLine`.
36 color developingColor = switch
37 closePoint.price > openPoint.price => color.aqua
38 closePoint.price < openPoint.price => color.fuchsia
39 => color.gray
40

41 // Update the coordinates of the line's second point using the new `closePoint`.
42 // It uses the `time` field from the point for its new x-coordinate.
43 periodLine.set_second_point(closePoint)
44 // Update the color of the line using the `developingColor`.
45 periodLine.set_color(developingColor)

Note that:
• Each line drawing in this example uses the line.style_arrow_right style. See the Line styles section below for
an overview of all available style settings.

Line styles

Users can control the style of their scripts’ line drawings by passing one of the following variables as the style argument
in their line.new() or line.set_style() function calls:

248 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#var_line.style_arrow_right
https://www.tradingview.com/pine-script-reference/v5/#fun_line.new
https://www.tradingview.com/pine-script-reference/v5/#fun_line.set_style

Pine Script™ v5 User Manual

Argument Line Argument Line

line.
style_solid

line.
style_arrow_left

line.
style_dotted

line.
style_arrow_right

line.
style_dashed

line.
style_arrow_both

Note that:
• Polylines can also use any of these variables as their line_style value. See the Creating polylines section
of this page.

Reading line values

The line.* namespace includes getter functions, which allow a script to retrieve values from a line object for further
use:

• line.get_x1() and line.get_x2() respectively get the first and second x-coordinate from the id line. Whether the
value returned represents a bar index or time value depends on the line’s xloc property.

• line.get_y1() and line.get_y2() respectively get the id line’s first and second y-coordinate.
• line.get_price() retrieves the price (y-coordinate) from a line id at a specified x value, including at bar indices
outside the line’s start and end points. This function is only compatible with lines that use xloc.bar_index as the
xloc value.

The script below draws a new line upon the onset of a rising or falling price pattern forming over length bars. It uses the
var keyword to declare the directionLine variable on the first chart bar. The ID assigned to the directionLine
persists over subsequent bars until the newDirection condition occurs, in which case the script assigns a new line to
the variable.
On every bar, the script calls the line.get_y2(), line.get_y1(), line.get_x2(), and line.get_x1() getters asmethods to retrieve
values from the current directionLine and calculate its slope, which it uses to determine the color of each drawing
and plot. It retrieves extended values of the directionLine from beyond its second point using line.get_price() and
plots them on the chart:

4.12. Lines and boxes 249

https://www.tradingview.com/pine-script-reference/v5/#type_line
https://www.tradingview.com/pine-script-reference/v5/#fun_line.get_x1
https://www.tradingview.com/pine-script-reference/v5/#fun_line.get_x2
https://www.tradingview.com/pine-script-reference/v5/#fun_line.get_y1
https://www.tradingview.com/pine-script-reference/v5/#fun_line.get_y2
https://www.tradingview.com/pine-script-reference/v5/#fun_line.get_price
https://www.tradingview.com/pine-script-reference/v5/#var_xloc.bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.rising
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.falling
https://www.tradingview.com/pine-script-reference/v5/#kw_var
https://www.tradingview.com/pine-script-reference/v5/#fun_line.get_y2
https://www.tradingview.com/pine-script-reference/v5/#fun_line.get_y1
https://www.tradingview.com/pine-script-reference/v5/#fun_line.get_x2
https://www.tradingview.com/pine-script-reference/v5/#fun_line.get_x1
https://www.tradingview.com/pine-script-reference/v5/#fun_line.get_price

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Reading line values demo", overlay = true)
3

4 //@variable The number of bars for rising and falling calculations.
5 int length = input.int(2, "Length", 2)
6

7 //@variable A line that's drawn whenever `hlc3` starts rising or falling over␣
↪→`length` bars.

8 var line directionLine = na
9

10 //@variable Is `true` when `hlc3` is rising over `length` bars, `false` otherwise.
11 bool rising = ta.rising(hlc3, length)
12 //@variable Is `true` when `hlc3` is falling over `length` bars, `false` otherwise.
13 bool falling = ta.falling(hlc3, length)
14 //@variable Is `true` when a rising or falling pattern begins, `false` otherwise.
15 bool newDirection = (rising and not rising[1]) or (falling and not falling[1])
16

17 // Update the `directionLine` when `newDirection` is `true`. The line uses the␣
↪→default `xloc.bar_index`.

18 if newDirection
19 directionLine := line.new(bar_index - length, hlc3[length], bar_index, hlc3,␣

↪→width = 3)
20

21 //@variable The slope of the `directionLine`.
22 float slope = (directionLine.get_y2() - directionLine.get_y1()) / (directionLine.get_

↪→x2() - directionLine.get_x1())
23 //@variable The value extrapolated from the `directionLine` at the `bar_index`.
24 float lineValue = line.get_price(directionLine, bar_index)
25

26 //@variable Is `color.green` when the `slope` is positive, `color.red` otherwise.
27 color slopeColor = slope > 0 ? color.green : color.red
28

29 // Update the color of the `directionLine`.
30 directionLine.set_color(slopeColor)
31 // Plot the `lineValue`.
32 plot(lineValue, "Extrapolated value", slopeColor, 3, plot.style_circles)

Note that:

250 Chapter 4. Concepts

Pine Script™ v5 User Manual

• This example calls the second overload of the line.new() function, which uses x1, y1, x2, and y2 parameters
to define the start and end points of the line. The x1 value is length bars behind the current bar_index,
and the y1 value is the hlc3 value at that index. The x2 and y2 in the function call use the current bar’s
bar_index and hlc3 values.

• The line.get_price() function call treats the directionLine as though it extends infinitely, regardless of
its extend property.

• The script only displays approximately the last 50 lines on the chart, but the plot of extrapolated values spans
throughout the chart’s history.

Cloning lines

Scripts can clone a line id and all its properties with the line.copy() function. Any changes to the copied line instance do
not affect the original.
For example, this script creates a horizontal line at the the bar’s open price once every length bars, which it assigns
to a mainLine variable. On all other bars, it creates a copiedLine using line.copy() and calls line.set_*()
functions to modify its properties. As we see below, altering the copiedLine does not affect the mainLine in any
way:

1 //@version=5
2 indicator("Cloning lines demo", overlay = true, max_lines_count = 500)
3

4 //@variable The number of bars between each new mainLine assignment.
5 int length = input.int(20, "Length", 2, 500)
6

7 //@variable The first `chart.point` used by the `mainLine`. Contains `index` and␣
↪→`time` information.

8 firstPoint = chart.point.now(open)
9 //@variable The second `chart.point` used by the `mainLine`. Does not contain `time`␣

↪→information.
10 secondPoint = chart.point.from_index(bar_index + length, open)
11

12 //@variable A horizontal line drawn at the `open` price once every `length` bars.
13 var line mainLine = na
14

15 if bar_index % length == 0
(continues on next page)

4.12. Lines and boxes 251

https://www.tradingview.com/pine-script-reference/v5/#fun_line.new
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_hlc3
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_hlc3
https://www.tradingview.com/pine-script-reference/v5/#fun_line.get_price
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_line.copy
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#fun_line.copy

Pine Script™ v5 User Manual

(continued from previous page)
16 // Assign a new line to the `mainLine` that connects the `firstPoint` to the␣

↪→`secondPoint`.
17 // This line uses the `index` fields from both points as x-coordinates.
18 mainLine := line.new(firstPoint, secondPoint, color = color.purple, width = 2)
19

20 //@variable A copy of the `mainLine`. Changes to this line do not affect the original.
21 line copiedLine = line.copy(mainLine)
22

23 // Update the color, style, and second point of the `copiedLine`.
24 line.set_color(copiedLine, color.orange)
25 line.set_style(copiedLine, line.style_dotted)
26 line.set_second_point(copiedLine, chart.point.now(close))

Note that:
• The index field of the secondPoint is length bars beyond the current bar_index. Since the maximum
x-coordinate allowed with xloc.bar_index is bar_index + 500, we’ve set the maxval of the length
input to 500.

Deleting lines

To delete a line id drawn by a script, use the line.delete() function. This function removes the line instance from the
script and its drawing on the chart.
Deleting line instances is often handy when one wants to only keep a specific number of lines on the chart at any given
time or conditionally remove drawings as a chart progresses.
For example, this script draws a horizontal line with the extend.right property whenever an RSI crosses its EMA.
The script stores all line IDs in a lines array that it uses as a queue to only display the last numberOfLines on the
chart. When the size of the array exceeds the specified numberOfLines, the script removes the array’s oldest line ID
using array.shift() and deletes it with line.delete():

1 //@version=5
2

3 //@variable The maximum number of lines allowed on the chart.
4 const int MAX_LINES_COUNT = 500

(continues on next page)

252 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_xloc.bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_line.delete
https://www.tradingview.com/pine-script-reference/v5/#var_extend.right
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.rsi
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.ema
https://www.tradingview.com/pine-script-reference/v5/#fun_array.size
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#fun_array.shift
https://www.tradingview.com/pine-script-reference/v5/#fun_line.delete

Pine Script™ v5 User Manual

(continued from previous page)
5

6 indicator("Deleting lines demo", "RSI cross levels", max_lines_count = MAX_LINES_
↪→COUNT)

7

8 //@variable The length of the RSI.
9 int rsiLength = input.int(14, "RSI length", 2)
10 //@variable The length of the RSI's EMA.
11 int emaLength = input.int(28, "RSI average length", 2)
12 //@variable The maximum number of lines to keep on the chart.
13 int numberOfLines = input.int(20, "Lines on the chart", 0, MAX_LINES_COUNT)
14

15 //@variable An array containing the IDs of lines on the chart.
16 var array<line> lines = array.new<line>()
17

18 //@variable An `rsiLength` RSI of `close`.
19 float rsi = ta.rsi(close, rsiLength)
20 //@variable A `maLength` EMA of the `rsi`.
21 float rsiMA = ta.ema(rsi, emaLength)
22

23 if ta.cross(rsi, rsiMA)
24 //@variable The color of the horizontal line.
25 color lineColor = rsi > rsiMA ? color.green : color.red
26 // Draw a new horizontal line. Uses the default `xloc.bar_index`.
27 newLine = line.new(bar_index, rsiMA, bar_index + 1, rsiMA, extend = extend.right,␣

↪→color = lineColor, width = 2)
28 // Push the `newLine` into the `lines` array.
29 lines.push(newLine)
30 // Delete the oldest line when the size of the array exceeds the specified␣

↪→`numberOfLines`.
31 if array.size(lines) > numberOfLines
32 line.delete(lines.shift())
33

34 // Plot the `rsi` and `rsiMA`.
35 plot(rsi, "RSI", color.new(color.blue, 40))
36 plot(rsiMA, "EMA of RSI", color.new(color.gray, 30))

Note that:
• We declared a MAX_LINES_COUNT variable with the “const int” qualified type, which the script uses as
the max_lines_count in the indicator() function and the maxval of the input.int() assigned to the
numberOfLines variable.

• This example uses the second overload of the line.new() function, which specifies x1, y1, x2, and y2 coor-
dinates independently.

4.12.3 Boxes

The built-ins in the box.* namespace create and manage box objects:
• The box.new() function creates a new box.
• The box.set_*() functions modify box properties.
• The box.get_*() functions retrieve values from a box instance.
• The box.copy() function clones a box instance.
• The box.delete() function deletes a box instance.

4.12. Lines and boxes 253

https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_input.int
https://www.tradingview.com/pine-script-reference/v5/#fun_line.new
https://www.tradingview.com/pine-script-reference/v5/#type_box
https://www.tradingview.com/pine-script-reference/v5/#fun_box.new
https://www.tradingview.com/pine-script-reference/v5/#fun_box.copy
https://www.tradingview.com/pine-script-reference/v5/#fun_box.delete

Pine Script™ v5 User Manual

• The box.all variable references a read-only array containing the IDs of all boxes displayed by the script. The array’s
size depends on the max_boxes_count of the indicator() or strategy() declaration statement and the number of
boxes the script has drawn.

As with lines, users can call box.set_*(), box.get_*(), box.copy(), and box.delete() built-ins as functions or
methods.

Creating boxes

The box.new() function creates a new box object to display on the chart. It has the following signatures:

box.new(top_left, bottom_right, border_color, border_width, border_style, extend,␣
↪→xloc, bgcolor, text, text_size, text_color, text_halign, text_valign, text_wrap,␣
↪→text_font_family) → series box

box.new(left, top, right, bottom, border_color, border_width, border_style, extend,␣
↪→xloc, bgcolor, text, text_size, text_color, text_halign, text_valign, text_wrap,␣
↪→text_font_family) → series box

This function’s first overload includes thetop_left andbottom_right parameters, which accept chart.point objects
representing the top-left and bottom-right corners of the box, respectively. The function copies the information from these
chart points to set the coordinates of the box’s corners. Whether it uses the index or time fields of the top_left
and bottom_right points as x-coordinates depends on the function’s xloc value.
The second overload specifies left, top, right, and bottom edges of the box. The left and right parameters
accept int values specifying the box’s left and right x-coordinates, which can be bar index or time values depending on
the xloc value in the function call. The top and bottom parameters accept float values representing the box’s top and
bottom y-coordinates.
The function’s additional parameters are identical in both overloads:
border_color

Specifies the color of all four of the box’s borders. The default is color.blue.
border_width

Specifies the width of the borders, in pixels. Its default value is 1.
border_style

Specifies the style of the borders, which can be any of the options in the Box styles section of this page.
extend

Determines whether the box’s borders extend infinitely beyond the left or right x-coordinates. It accepts one of the
following values: extend.left, extend.right, extend.both, or extend.none (default).

xloc
Determines whether the left and right edges of the box use bar index or time values as x-coordinates. The default
is xloc.bar_index.
In the first overload, an xloc value of xloc.bar_index means that the function will use the index fields of the
top_left and bottom_right chart points, and an xloc value of xloc.bar_time means that it will use their
time fields.
In the second overload, using an xloc value of xloc.bar_index means the function treats the left and right
values as bar indices, and xloc.bar_time means it will treat them as timestamps.
When the specified x-coordinates represent bar index values, it’s important to note that the minimum x-coordinate
allowed is bar_index - 9999. For larger offsets, one can use xloc.bar_time.

bgcolor
Specifies the background color of the space inside the box. The default value is color.blue.

254 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#var_box.all
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#fun_array.size
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_box.copy
https://www.tradingview.com/pine-script-reference/v5/#fun_box.delete
https://www.tradingview.com/pine-script-reference/v5/#fun_box.new
https://www.tradingview.com/pine-script-reference/v5/#type_box
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#type_int
https://www.tradingview.com/pine-script-reference/v5/#type_float
https://www.tradingview.com/pine-script-reference/v5/#var_color.blue
https://www.tradingview.com/pine-script-reference/v5/#var_extend.left
https://www.tradingview.com/pine-script-reference/v5/#var_extend.right
https://www.tradingview.com/pine-script-reference/v5/#var_extend.both
https://www.tradingview.com/pine-script-reference/v5/#var_extend.none
https://www.tradingview.com/pine-script-reference/v5/#var_xloc.bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_xloc.bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_xloc.bar_time
https://www.tradingview.com/pine-script-reference/v5/#var_xloc.bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_xloc.bar_time
https://www.tradingview.com/pine-script-reference/v5/#var_xloc.bar_time
https://www.tradingview.com/pine-script-reference/v5/#var_color.blue

Pine Script™ v5 User Manual

text
The text to display inside the box. By default, its value is an empty string.

text_size
Specifies the size of the text within the box. It accepts one of the following values: size.tiny, size.small, size.normal,
size.large, size.huge, or size.auto (default).

text_color
Controls the color of the text. Its default is color.black.

text_halign
Specifies the horizontal alignment of the text within the box’s boundaries. It accepts one of the following:
text.align_left, text.align_right, or text.align_center (default).

text_valign
Specifies the vertical alignment of the text within the box’s boundaries. It accepts one of the following:
text.align_top, text.align_bottom, or text.align_center (default).

text_wrap
Determines whether the box will wrap the text within it. If its value is text.wrap_auto, the box wraps the text to
ensure it does not span past its vertical borders. It also clips the wrapped text when it extends past the bottom.
If the value is text.wrap_none, the box displays the text on a single line that can extend beyond its borders. The
default is text.wrap_none.

text_font_family
Defines the font family of the box’s text. Using font.family_default displays the box’s text with the system’s default
font. The font.family_monospace displays the text in a monospace format. The default value is font.family_default.

Let’s write a simple script to display boxes on a chart. The example below draws a box projecting each bar’s high and low
values from the horizontal center of the current bar to the center of the next available bar.
On each bar, the script creates topLeft and bottomRight points via chart.point.now() and
chart.point_from_index(), then calls box.new() to construct a new box and display it on the chart. It also high-
lights the background on the unconfirmed chart bar using bgcolor() to indicate that it redraws that box until the bar’s last
update:

1 //@version=5
2 indicator("Creating boxes demo", overlay = true)
3

(continues on next page)

4.12. Lines and boxes 255

https://www.tradingview.com/pine-script-reference/v5/#var_size.tiny
https://www.tradingview.com/pine-script-reference/v5/#var_size.small
https://www.tradingview.com/pine-script-reference/v5/#var_size.normal
https://www.tradingview.com/pine-script-reference/v5/#var_size.large
https://www.tradingview.com/pine-script-reference/v5/#var_size.huge
https://www.tradingview.com/pine-script-reference/v5/#var_size.auto
https://www.tradingview.com/pine-script-reference/v5/#var_color.black
https://www.tradingview.com/pine-script-reference/v5/#var_text.align_left
https://www.tradingview.com/pine-script-reference/v5/#var_text.align_right
https://www.tradingview.com/pine-script-reference/v5/#var_text.align_center
https://www.tradingview.com/pine-script-reference/v5/#var_text.align_top
https://www.tradingview.com/pine-script-reference/v5/#var_text.align_bottom
https://www.tradingview.com/pine-script-reference/v5/#var_text.align_center
https://www.tradingview.com/pine-script-reference/v5/#var_text.wrap_auto
https://www.tradingview.com/pine-script-reference/v5/#var_text.wrap_none
https://www.tradingview.com/pine-script-reference/v5/#var_text.wrap_none
https://www.tradingview.com/pine-script-reference/v5/#var_font.family_default
https://www.tradingview.com/pine-script-reference/v5/#var_font.family_monospace
https://www.tradingview.com/pine-script-reference/v5/#var_font.family_default
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#fun_chart.point.now
https://www.tradingview.com/pine-script-reference/v5/#fun_chart.point.from_index
https://www.tradingview.com/pine-script-reference/v5/#fun_box.new
https://www.tradingview.com/pine-script-reference/v5/#fun_bgcolor

Pine Script™ v5 User Manual

(continued from previous page)
4 //@variable The `chart.point` for the top-left corner of the box. Contains `index`␣

↪→and `time` information.
5 topLeft = chart.point.now(high)
6 //@variable The `chart.point` for the bottom-right corner of the box. Does not␣

↪→contain `time` information.
7 bottomRight = chart.point.from_index(bar_index + 1, low)
8

9 // Draw a box using the `topLeft` and `bottomRight` corner points. Uses the `index`␣
↪→fields as x-coordinates.

10 box.new(topLeft, bottomRight, color.purple, 2, bgcolor = color.new(color.gray, 70))
11

12 // Color the background on the unconfirmed bar.
13 bgcolor(barstate.isconfirmed ? na : color.new(color.orange, 70), title = "Unconfirmed␣

↪→bar highlight")

Note that:
• The bottomRight point’s index field is one bar greater than the index in the topLeft. If the x-
coordinates of the corners were equal, the script would draw a vertical line at the horizontal center of each
bar, resembling the example in this page’s Creating lines section.

• Similar to lines, if the topLeft and bottomRight contained identical coordinates, the box wouldn’t
display on the chart since there would be no space between them to draw. However, its ID would still exist.

• This script only displays approximately the last 50 boxes on the chart, as we have not specified a
max_boxes_count in the indicator() function call.

Modifying boxes

Multiple setter functions exist in the box.* namespace, allowing scripts to modify the properties of box objects:
• box.set_top_left_point() and box.set_bottom_right_point() respectively update the top-left and bottom-right coor-
dinates of the id box using information from the specified point.

• box.set_left() and box.set_right() set the left or right x-coordinate of the id box to a new left/right value,
which can be a bar index or time value depending on the box’s xloc property.

• box.set_top() and box.set_bottom() set the top or bottom y-coordinate of the id box to a new top/bottom
value.

• box.set_lefttop() sets the left and top coordinates of the id box, and box.set_rightbottom() sets its right and
bottom coordinates.

• box.set_border_color(), box.set_border_width() and box.set_border_style() respectively update the color,
width, and style of the id box’s border.

• box.set_extend() sets the horizontal extend property of the id box.
• box.set_bgcolor() sets the color of the space inside the id box to a new color.
• box.set_text(), box.set_text_size(), box.set_text_color(), box.set_text_halign(), box.set_text_valign(),
box.set_text_wrap(), and box.set_text_font_family() update the id box’s text-related properties.

As with setter functions in the line.* namespace, all box setters modify the id box directly without returning a value,
and each setter function accepts “series” arguments.
Note that, unlike lines, the box.* namespace does not contain a setter function to modify a box’s xloc. Users must
create a new box with the desired xloc setting for such cases.

256 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#type_box
https://www.tradingview.com/pine-script-reference/v5/#fun_box.set_top_left_point
https://www.tradingview.com/pine-script-reference/v5/#fun_box.set_bottom_right_point
https://www.tradingview.com/pine-script-reference/v5/#fun_box.set_left
https://www.tradingview.com/pine-script-reference/v5/#fun_box.set_right
https://www.tradingview.com/pine-script-reference/v5/#fun_box.set_top
https://www.tradingview.com/pine-script-reference/v5/#fun_box.set_bottom
https://www.tradingview.com/pine-script-reference/v5/#fun_box.set_lefttop
https://www.tradingview.com/pine-script-reference/v5/#fun_box.set_rightbottom
https://www.tradingview.com/pine-script-reference/v5/#fun_box.set_border_color
https://www.tradingview.com/pine-script-reference/v5/#fun_box.set_border_width
https://www.tradingview.com/pine-script-reference/v5/#fun_box.set_border_style
https://www.tradingview.com/pine-script-reference/v5/#fun_box.set_extend
https://www.tradingview.com/pine-script-reference/v5/#fun_box.set_bgcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_box.set_text
https://www.tradingview.com/pine-script-reference/v5/#fun_box.set_text_size
https://www.tradingview.com/pine-script-reference/v5/#fun_box.set_text_color
https://www.tradingview.com/pine-script-reference/v5/#fun_box.set_text_halign
https://www.tradingview.com/pine-script-reference/v5/#fun_box.set_text_valign
https://www.tradingview.com/pine-script-reference/v5/#fun_box.set_text_wrap
https://www.tradingview.com/pine-script-reference/v5/#fun_box.set_text_font_family

Pine Script™ v5 User Manual

This example uses boxes to visualize the ranges of upward and downward bars with the highest volume over a user-defined
timeframe. When the script detects a change in the timeframe, it assigns new boxes to its upBox and downBox
variables, resets its upVolume and downVolume values, and highlights the chart background.
When an upward or downward bar’s volume exceeds the upVolume or downVolume, the script updates the
volume-tracking variables and calls box.set_top_left_point() and box.set_bottom_right_point() to update the upBox
or downBox coordinates. The setters use the information from the chart points created with chart.point.now() and
chart.point.from_time() to project that bar’s high and low values from the current time to the closing time of the time-
frame:

1 //@version=5
2 indicator("Modifying boxes demo", "High volume boxes", true, max_boxes_count = 100)
3

4 //@variable The timeframe of the calculation.
5 string timeframe = input.timeframe("D", "Timeframe")
6

7 //@variable A box projecting the range of the upward bar with the highest `volume`␣
↪→over the `timeframe`.

8 var box upBox = na
9 //@variable A box projecting the range of the downward bar with the lowest `volume`␣

↪→over the `timeframe`.
10 var box downBox = na
11 //@variable The highest volume of upward bars over the `timeframe`.
12 var float upVolume = na
13 //@variable The highest volume of downward bars over the `timeframe`.
14 var float downVolume = na
15

16 // Color variables.
17 var color upBorder = color.teal
18 var color upFill = color.new(color.teal, 90)
19 var color downBorder = color.maroon
20 var color downFill = color.new(color.maroon, 90)
21

22 //@variable The closing time of the `timeframe`.
23 int closeTime = time_close(timeframe)
24 //@variable Is `true` when a new bar starts on the `timeframe`.
25 bool changeTF = timeframe.change(timeframe)
26

(continues on next page)

4.12. Lines and boxes 257

https://www.tradingview.com/pine-script-reference/v5/#var_volume
https://www.tradingview.com/pine-script-reference/v5/#fun_timeframe.change
https://www.tradingview.com/pine-script-reference/v5/#fun_box.new
https://www.tradingview.com/pine-script-reference/v5/#var_volume
https://www.tradingview.com/pine-script-reference/v5/#fun_box.set_top_left_point
https://www.tradingview.com/pine-script-reference/v5/#fun_box.set_bottom_right_point
https://www.tradingview.com/pine-script-reference/v5/#fun_chart.point.now
https://www.tradingview.com/pine-script-reference/v5/#fun_chart.point.from_time
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#fun_time_close

Pine Script™ v5 User Manual

(continued from previous page)
27 //@variable The `chart.point` for the top-left corner of the boxes. Contains `index`␣

↪→and `time` information.
28 topLeft = chart.point.now(high)
29 //@variable The `chart.point` for the bottom-right corner of the boxes. Does not␣

↪→contain `index` information.
30 bottomRight = chart.point.from_time(closeTime, low)
31

32 if changeTF and not na(volume)
33 if close > open
34 // Update `upVolume` and `downVolume` values.
35 upVolume := volume
36 downVolume := 0.0
37 // Draw a new `upBox` using `time` and `price` info from the `topLeft` and␣

↪→`bottomRight` points.
38 upBox := box.new(topLeft, bottomRight, upBorder, 3, xloc = xloc.bar_time,␣

↪→bgcolor = upFill)
39 // Draw a new `downBox` with `na` coordinates.
40 downBox := box.new(na, na, na, na, downBorder, 3, xloc = xloc.bar_time,␣

↪→bgcolor = downFill)
41 else
42 // Update `upVolume` and `downVolume` values.
43 upVolume := 0.0
44 downVolume := volume
45 // Draw a new `upBox` with `na` coordinates.
46 upBox := box.new(na, na, na, na, upBorder, 3, xloc = xloc.bar_time, bgcolor =␣

↪→upFill)
47 // Draw a new `downBox` using `time` and `price` info from the `topLeft` and␣

↪→`bottomRight` points.
48 downBox := box.new(topLeft, bottomRight, downBorder, 3, xloc = xloc.bar_time,␣

↪→bgcolor = downFill)
49 // Update the ``upVolume`` and change the ``upBox`` coordinates when volume increases␣

↪→on an upward bar.
50 else if close > open and volume > upVolume
51 upVolume := volume
52 box.set_top_left_point(upBox, topLeft)
53 box.set_bottom_right_point(upBox, bottomRight)
54 // Update the ``downVolume`` and change the ``downBox`` coordinates when volume␣

↪→increases on a downward bar.
55 else if close <= open and volume > downVolume
56 downVolume := volume
57 box.set_top_left_point(downBox, topLeft)
58 box.set_bottom_right_point(downBox, bottomRight)
59

60 // Highlight the background when a new `timeframe` bar starts.
61 bgcolor(changeTF ? color.new(color.orange, 70) : na, title = "Timeframe change␣

↪→highlight")

Note that:
• The indicator() function call contains max_boxes_count = 100, meaning the script will preserve the
last 100 boxes on the chart.

• We utilized both overloads of box.new() in this example. On the first bar of the timeframe, the script calls
the first overload for the upBox when the bar is rising, and it calls that overload for the downBox when the
bar is falling. It uses the second overload to assign a new box with na values to the other box variable on that
bar.

258 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_box.new
https://www.tradingview.com/pine-script-reference/v5/#var_na

Pine Script™ v5 User Manual

Box styles

Users can include one of the following line.style_* variables in their box.new() or box.set_border_style() function
calls to set the border styles of boxes drawn by their scripts:

Argument Box

line.style_solid

line.style_dotted

line.style_dashed

Reading box values

The box.* namespace features getter functions that allow scripts to retrieve coordinate values from a box instance:
• box.get_left() and box.get_right() respectively get the x-coordinates of the left and right edges of the id box.
Whether the value returned represents a bar index or time value depends on the box’s xloc property.

• box.get_top() and box.get_bottom() respectively get the top and bottom y-coordinates of the id box.
The example below draws boxes to visualize hypothetical price ranges over a period of length bars. At the start of each
new period, it uses the average candle range multiplied by the scaleFactor input to calculate the corner points of a
box centered at the hl2 price with an initialRange height. After drawing the first box, it creates numberOfBoxes
- 1 new boxes inside a for loop.
Within each loop iteration, the script gets the lastBoxDrawn by retrieving the last element from the read-only box.all
array, then calls box.get_top() and box.get_bottom() to get its y-coordinates. It uses these values to calculate the coordi-
nates for a new box that’s scaleFactor times taller than the previous:

4.12. Lines and boxes 259

https://www.tradingview.com/pine-script-reference/v5/#fun_box.new
https://www.tradingview.com/pine-script-reference/v5/#fun_box.set_border_style
https://www.tradingview.com/pine-script-reference/v5/#fun_box.get_left
https://www.tradingview.com/pine-script-reference/v5/#fun_box.get_right
https://www.tradingview.com/pine-script-reference/v5/#fun_box.get_top
https://www.tradingview.com/pine-script-reference/v5/#fun_box.get_bottom
https://www.tradingview.com/pine-script-reference/v5/#var_hl2
https://www.tradingview.com/pine-script-reference/v5/#kw_for
https://www.tradingview.com/pine-script-reference/v5/#fun_array.last
https://www.tradingview.com/pine-script-reference/v5/#var_box.all
https://www.tradingview.com/pine-script-reference/v5/#fun_box.get_top
https://www.tradingview.com/pine-script-reference/v5/#fun_box.get_bottom

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Reading box values demo", "Nested boxes", overlay = true, max_boxes_count␣

↪→= 500)
3

4 //@variable The number of bars in the range calculation.
5 int length = input.int(10, "Length", 2, 500)
6 //@variable The number of nested boxes drawn on each period.
7 int numberOfBoxes = input.int(5, "Nested box count", 1)
8 //@variable The scale factor applied to each box.
9 float scaleFactor = input.float(1.6, "Scale factor", 1)
10

11 //@variable The initial box range.
12 float initialRange = scaleFactor * ta.sma(high - low, length)
13

14 if bar_index % length == 0
15 //@variable The top-left `chart.point` for the initial box. Does not contain␣

↪→`time` information.
16 topLeft = chart.point.from_index(bar_index, hl2 + initialRange / 2)
17 //@variable The bottom-right `chart.point` for the initial box. Does not contain␣

↪→`time` information.
18 bottomRight = chart.point.from_index(bar_index + length, hl2 - initialRange / 2)
19

20 // Calculate border and fill colors of the boxes.
21 borderColor = color.rgb(math.random(100, 255), math.random(0, 100), math.

↪→random(100, 255))
22 bgColor = color.new(borderColor, math.max(100 * (1 - 1/numberOfBoxes), 90))
23

24 // Draw a new box using the `topLeft` and `bottomRight` points. Uses their␣
↪→`index` fields as x-coordinates.

25 box.new(topLeft, bottomRight, borderColor, 2, bgcolor = bgColor)
26

27 if numberOfBoxes > 1
28 // Loop to create additional boxes.
29 for i = 1 to numberOfBoxes - 1
30 //@variable The last box drawn by the script.
31 box lastBoxDrawn = box.all.last()
32

(continues on next page)

260 Chapter 4. Concepts

Pine Script™ v5 User Manual

(continued from previous page)
33 //@variable The top price of the last box.
34 float top = box.get_top(lastBoxDrawn)
35 //@variable The bottom price of the last box.
36 float bottom = box.get_bottom(lastBoxDrawn)
37

38 //@variable The scaled range of the new box.
39 float newRange = scaleFactor * (top - bottom) * 0.5
40 //@variable The midpoint between the `bottom` and `top`.
41 float middle = 0.5 * (top + bottom)
42

43 // Update the `price` fields of the `topLeft` and `bottomRight` points.
44 // This does not affect the coordinates of previous boxes.
45 topLeft.price := hl2 + newRange
46 bottomRight.price := hl2 - newRange
47

48 // Draw a new box using the updated `topLeft` and `bottomRight` points.
49 box.new(topLeft, bottomRight, borderColor, 2, bgcolor = bgColor)

Note that:
• The indicator() function call uses max_boxes_count = 500, meaning the script can display up to 500
boxes on the chart.

• Each drawing has a right index length bars beyond the left index. Since the x-coordinates of these
drawings can be up to 500 bars into the future, we’ve set the maxval of the length input to 500.

• On each new period, the script uses randomized color.rgb() values for the border_color and bgcolor
of the boxes.

• Each box.new() call copies the coordinates from the chart.point objects assigned to the topLeft and bot-
tomRight variables, which is why the script can modify their price fields on each loop iteration without
affecting the other boxes.

Cloning boxes

To clone a specific box id, use box.copy(). This function copies the box and its properties. Any changes to the copied
box do not affect the original.
For example, this script declares an originalBox variable on the first bar and assigns a new box to it once every
length bars. On other bars, it uses box.copy() to create a copiedBox and calls box.set_*() functions to modify
its properties. As shown on the chart below, these changes do not modify the originalBox:

4.12. Lines and boxes 261

https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_color.rgb
https://www.tradingview.com/pine-script-reference/v5/#fun_box.new
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#fun_box.copy
https://www.tradingview.com/pine-script-reference/v5/#fun_box.new
https://www.tradingview.com/pine-script-reference/v5/#fun_box.copy

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Cloning boxes demo", overlay = true, max_boxes_count = 500)
3

4 //@variable The number of bars between each new mainLine assignment.
5 int length = input.int(20, "Length", 2)
6

7 //@variable The `chart.point` for the top-left of the `originalBox`. Contains `time`␣
↪→and `index` information.

8 topLeft = chart.point.now(high)
9 //@variable The `chart.point` for the bottom-right of the `originalBox`. Does not␣

↪→contain `time` information.
10 bottomRight = chart.point.from_index(bar_index + 1, low)
11

12 //@variable A new box with `topLeft` and `bottomRight` corners on every `length` bars.
13 var box originalBox = na
14

15 //@variable Is teal when the bar is rising, maroon when it's falling.
16 color originalColor = close > open ? color.teal : color.maroon
17

18 if bar_index % length == 0
19 // Assign a new box using the `topLeft` and `bottomRight` info to the␣

↪→`originalBox`.
20 // This box uses the `index` fields from the points as x-coordinates.
21 originalBox := box.new(topLeft, bottomRight, originalColor, 2, bgcolor = color.

↪→new(originalColor, 60))
22 else
23 //@variable A clone of the `originalBox`.
24 box copiedBox = box.copy(originalBox)
25 // Modify the `copiedBox`. These changes do not affect the `originalBox`.
26 box.set_top(copiedBox, high)
27 box.set_bottom_right_point(copiedBox, bottomRight)
28 box.set_border_color(copiedBox, color.gray)
29 box.set_border_width(copiedBox, 1)
30 box.set_bgcolor(copiedBox, na)

262 Chapter 4. Concepts

Pine Script™ v5 User Manual

Deleting boxes

To delete boxes drawn by a script, use box.delete(). As with *.delete() functions in other drawing namespaces, this
function is handy for conditionally removing boxes or maintaining a specific number of boxes on the chart.
This example displays boxes representing periodic cumulative volume values. The script creates a new box ID and stores
it in a boxes array once every length bars. If the array’s size exceeds the specified numberOfBoxes, the script
removes the oldest box from the array using array.shift() and deletes it using box.delete().
On other bars, it accumulates volume over each period by modifying the top of the last box in the boxes array. The
script then uses for loops to find the highestTop of all the array’s boxes and set the bgcolor of each box with a
gradient color based on its box.get_top() value relative to the highestTop:

1 //@version=5
2

3 //@variable The maximum number of boxes to show on the chart.
4 const int MAX_BOXES_COUNT = 500
5

6 indicator("Deleting boxes demo", "Cumulative volume boxes", format = format.volume,␣
↪→max_boxes_count = MAX_BOXES_COUNT)

7

8 //@variable The number of bars in each period.
9 int length = input.int(20, "Length", 1)
10 //@variable The maximum number of volume boxes in the calculation.
11 int numberOfBoxes = input.int(10, "Number of boxes", 1, MAX_BOXES_COUNT)
12

13 //@variable An array containing the ID of each box displayed by the script.
14 var boxes = array.new<box>()
15

16 if bar_index % length == 0
17 // Push a new box into the `boxes` array. The box has the default `xloc.bar_

↪→index` property.
18 boxes.push(box.new(bar_index, 0, bar_index + 1, 0, #000000, 2, text_color =

↪→#000000))
19 // Shift the oldest box out of the array and delete it when the array's size␣

↪→exceeds the `numberOfBoxes`.
20 if boxes.size() > numberOfBoxes
21 box.delete(boxes.shift())

(continues on next page)

4.12. Lines and boxes 263

https://www.tradingview.com/pine-script-reference/v5/#fun_box.delete
https://www.tradingview.com/pine-script-reference/v5/#fun_array.size
https://www.tradingview.com/pine-script-reference/v5/#fun_array.shift
https://www.tradingview.com/pine-script-reference/v5/#fun_box.delete
https://www.tradingview.com/pine-script-reference/v5/#var_volume
https://www.tradingview.com/pine-script-reference/v5/#fun_array.last
https://www.tradingview.com/pine-script-reference/v5/#fun_color.from_gradient
https://www.tradingview.com/pine-script-reference/v5/#fun_box.get_top

Pine Script™ v5 User Manual

(continued from previous page)
22

23 //@variable The last box drawn by the script as of the current chart bar.
24 box lastBox = boxes.last()
25 // Add the current bar's volume to the top of the `lastBox` and update the `right`␣

↪→index.
26 lastBox.set_top(lastBox.get_top() + volume)
27 lastBox.set_right(bar_index + 1)
28 // Display the top of the `lastBox` as volume-formatted text.
29 lastBox.set_text(str.tostring(lastBox.get_top(), format.volume))
30

31 //@variable The highest `top` of all boxes in the `boxes` array.
32 float highestTop = 0.0
33 for id in boxes
34 highestTop := math.max(id.get_top(), highestTop)
35

36 // Set the `bgcolor` of each `id` in `boxes` with a gradient based on the ratio of␣
↪→its `top` to the `highestTop`.

37 for id in boxes
38 id.set_bgcolor(color.from_gradient(id.get_top() / highestTop, 0, 1, color.purple,␣

↪→color.orange))

Note that:
• At the top of the code, we’ve declared a MAX_BOXES_COUNT variable with the “const int” qualified type.
We use this value as the max_boxes_count in the indicator() function and the maximum possible value
of the numberOfBoxes input.

• This script uses the second overload of the box.new() function, which specifies the box’s left, top, right,
and bottom coordinates separately.

• We’ve included format.volume as the format argument in the indicator() call, which tells the script that the
y-axis of the chart pane represents volume values. Each box also displays its top value as volume-formatted
text.

4.12.4 Polylines

Pine Script™ polylines are advanced drawings that sequentially connect the coordinates from an array of chart.point
instances using straight or curved line segments.
These powerful drawings can connect up to 10,000 points at any available location on the chart, allowing scripts to draw
custom series, polygons, and other complex geometric formations that are otherwise difficult or impossible to draw using
line or box objects.
The polyline.* namespace features the following built-ins for creating and managing polyline objects:

• The polyline.new() function creates a new polyline instance.
• The polyline.delete() function deletes an existing polyline instance.
• The polyline.all variable references a read-only array containing the IDs of all polylines displayed by the script. The
array’s size depends on the max_polylines_count of the indicator() or strategy() declaration statement and
the number of polylines drawn by the script.

Unlike lines or boxes, polylines do not have functions for modification or reading their properties. To redraw a polyline
on the chart, one can delete the existing instance and create a new polyline with the desired changes.

264 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_box.new
https://www.tradingview.com/pine-script-reference/v5/#var_format.volume
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_box.get_top
https://www.tradingview.com/pine-script-reference/v5/#var_format.volume
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#type_line
https://www.tradingview.com/pine-script-reference/v5/#type_box
https://www.tradingview.com/pine-script-reference/v5/#type_polyline
https://www.tradingview.com/pine-script-reference/v5/#fun_polyline.new
https://www.tradingview.com/pine-script-reference/v5/#fun_polyline.delete
https://www.tradingview.com/pine-script-reference/v5/#var_polyline.all
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#fun_array.size
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy

Pine Script™ v5 User Manual

Creating polylines

The polyline.new() function creates a new polyline instance to display on the chart. It has the following signature:

polyline.new(points, curved, closed, xloc, line_color, fill_color, line_style, line_
↪→width) → series polyline

The following eight parameters affect the behavior of a polyline drawing:
points

Accepts an array of chart.point objects that determine the coordinates of each point in the polyline. The drawing
connects the coordinates from each element in the array sequentially, starting from the first. Whether the polyline
uses the index or time field from each chart point for its x-coordinates depends on the xloc value in the function
call.

curved
Specifies whether the drawing uses curved line segments to connect each chart.point in the points array. The
default value is false, meaning it uses straight line segments.

closed
Controls whether the polyline will connect the last chart.point in the points array to the first, forming a closed
polyline. The default value is false.

xloc
Specifies which field from each chart.point in the points array the polyline uses for its x-coordinates. When its
value is xloc.bar_index, the function uses the index fields to create the polyline. When its value is xloc.bar_time,
the function uses the time fields. The default value is xloc.bar_index.

line_color
Specifies the color of all line segments in the polyline drawing. The default is color.blue.

fill_color
Controls the color of the closed space filled by the polyline drawing. Its default value is na.

line_style
Specifies the style of the polyline, which can be any of the available options in the Line styles section of this page.
The default is line.style_solid.

line_width
Specifies the width of the polyline, in pixels. The default value is 1.

This script demonstrates a simple example of drawing a polyline on the chart. It pushes a new chart.point with an alter-
nating price value into a points array and colors the background with bgcolor() once every length bars.
On the last confirmed historical bar, the script draws a new polyline on the chart, connecting the coordinates from each
chart point in the array, starting from the first:

4.12. Lines and boxes 265

https://www.tradingview.com/pine-script-reference/v5/#fun_polyline.new
https://www.tradingview.com/pine-script-reference/v5/#type_polyline
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#var_xloc.bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_xloc.bar_time
https://www.tradingview.com/pine-script-reference/v5/#var_xloc.bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_line.style_solid
https://www.tradingview.com/pine-script-reference/v5/#fun_array.push
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#fun_bgcolor
https://www.tradingview.com/pine-script-reference/v5/#var_barstate.islastconfirmedhistory
https://www.tradingview.com/pine-script-reference/v5/#type_array

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Creating polylines demo", "Oscillating polyline")
3

4 //@variable The number of bars between each point in the drawing.
5 int length = input.int(20, "Length between points", 2)
6

7 //@variable An array of `chart.point` objects to sequentially connect with a polyline.
8 var points = array.new<chart.point>()
9

10 //@variable The y-coordinate of each point in the `points`. Alternates between 1 and -
↪→1 on each `newPoint`.

11 var int yValue = 1
12

13 //@variable Is `true` once every `length` bars, `false` otherwise.
14 bool newPoint = bar_index % length == 0
15

16 if newPoint
17 // Push a new `chart.point` into the `points`. The new point contains `time` and␣

↪→`index` info.
18 points.push(chart.point.now(yValue))
19 // Change the sign of the `yValue`.
20 yValue *= -1
21

22 // Draw a new `polyline` on the last confirmed historical chart bar.
23 // The polyline uses the `time` field from each `chart.point` in the `points` array␣

↪→as x-coordinates.
24 if barstate.islastconfirmedhistory
25 polyline.new(points, xloc = xloc.bar_time, line_color = #9151A6, line_width = 3)
26

27 // Highlight the chart background on every `newPoint` condition.
28 bgcolor(newPoint ? color.new(color.gray, 70) : na, title = "New point highlight")

Note that:
• This script uses only one polyline to connect each chart point from the array with straight line segments, and
this drawing spans throughout the available chart data, starting from the first bar.

• While one can achieve a similar effect using lines, doing so would require a new line instance on each occur-
rence of the newPoint condition, and such a drawing would be limited to a maximum of 500 line segments.
This single unclosed polyline drawing, on the other hand, can contain up to 9,999 line segments.

266 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#type_line

Pine Script™ v5 User Manual

Curved drawings

Polylines can draw curves that are otherwise impossible to produce with lines or boxes. When enabling the curved
parameter of the polyline.new() function, the resulting polyline interpolates nonlinear values between the coordinates
from each chart.point in its array of points to generate a curvy effect.
For instance, the “Oscillating polyline” script in our previous example uses straight line segments to produce a drawing
resembling a triangle wave, meaning a waveform that zig-zags between its peaks and valleys. If we set the curved
parameter in the polyline.new() call from that example to true, the resulting drawing would connect the points using
curved segments, producing a smooth, nonlinear shape similar to a sine wave:

1 //@version=5
2 indicator("Curved drawings demo", "Smooth oscillating polyline")
3

4 //@variable The number of bars between each point in the drawing.
5 int length = input.int(20, "Length between points", 2)
6

7 //@variable An array of `chart.point` objects to sequentially connect with a polyline.
8 var points = array.new<chart.point>()
9

10 //@variable The y-coordinate of each point in the `points`. Alternates between 1 and -
↪→1 on each `newPoint`.

11 var int yValue = 1
12

13 //@variable Is `true` once every `length` bars, `false` otherwise.
14 bool newPoint = bar_index % length == 0
15

16 if newPoint
17 // Push a new `chart.point` into the `points`. The new point contains `time` and␣

↪→`index` info.
18 points.push(chart.point.now(yValue))
19 // Change the sign of the `yValue`.
20 yValue *= -1
21

22 // Draw a new curved `polyline` on the last confirmed historical chart bar.
23 // The polyline uses the `time` field from each `chart.point` in the `points` array␣

↪→as x-coordinates.
24 if barstate.islastconfirmedhistory
25 polyline.new(points, curved = true, xloc = xloc.bar_time, line_color = #9151A6,␣

(continues on next page)

4.12. Lines and boxes 267

https://www.tradingview.com/pine-script-reference/v5/#fun_polyline.new
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#fun_polyline.new

Pine Script™ v5 User Manual

(continued from previous page)
↪→line_width = 3)

26

27 // Highlight the chart background on every `newPoint` condition.
28 bgcolor(newPoint ? color.new(color.gray, 70) : na, title = "New point highlight")

Notice that in this example, the smooth curves have relatively consistent behavior, and no portion of the drawing extends
past its defined coordinates, which is not always the case when drawing curved polylines. The data used to construct a
polyline heavily impacts the smooth, piecewise function it interpolates between its points. In some cases, the interpolated
curve can reach beyond its actual coordinates.
Let’s add some variation to the chart points in our example’s points array to demonstrate this behavior. In the version
below, the script multiplies the yValue by a random value in the chart.point.now() calls.
To visualize the behavior, this script also creates a horizontal line at theprice value from each chart.point in thepoints
array, and it displays another polyline connecting the same points with straight line segments. As we see on the chart,
both polylines pass through all coordinates from the points array. However, the curvy polyline occasionally reaches
beyond the vertical boundaries indicated by the horizontal lines, whereas the polyline drawn using straight segments does
not:

1 //@version=5
2 indicator("Curved drawings demo", "Random oscillating polylines")
3

4 //@variable The number of bars between each point in the drawing.
5 int length = input.int(20, "Length between points", 2)
6

7 //@variable An array of `chart.point` objects to sequentially connect with a polyline.
8 var points = array.new<chart.point>()
9

10 //@variable The sign of each `price` in the `points`. Alternates between 1 and -1 on␣
↪→each `newPoint`.

11 var int yValue = 1
12

13 //@variable Is `true` once every `length` bars.
14 bool newPoint = bar_index % length == 0
15

16 if newPoint
17 // Push a new `chart.point` with a randomized `price` into the `points`.
18 // The new point contains `time` and `index` info.

(continues on next page)

268 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_math.random
https://www.tradingview.com/pine-script-reference/v5/#fun_chart.point.now
https://www.tradingview.com/pine-script-reference/v5/#type_line
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point

Pine Script™ v5 User Manual

(continued from previous page)
19 points.push(chart.point.now(yValue * math.random()))
20 // Change the sign of the `yValue`.
21 yValue *= -1
22

23 //@variable The newest `chart.point`.
24 lastPoint = points.last()
25 // Draw a horizontal line at the `lastPoint.price`. This line uses the default␣

↪→`xloc.bar_index`.
26 line.new(lastPoint.index - length, lastPoint.price, lastPoint.index + length,␣

↪→lastPoint.price, color = color.red)
27

28 // Draw two `polyline` instances on the last confirmed chart bar.
29 // Both polylines use the `time` field from each `chart.point` in the `points` array␣

↪→as x-coordinates.
30 if barstate.islastconfirmedhistory
31 polyline.new(points, curved = false, xloc = xloc.bar_time, line_color = #EB8A3B,␣

↪→line_width = 2)
32 polyline.new(points, curved = true, xloc = xloc.bar_time, line_color = #9151A6,␣

↪→line_width = 3)
33

34 // Highlight the chart background on every `newPoint` condition.
35 bgcolor(newPoint ? color.new(color.gray, 70) : na, title = "New point highlight")

Closed shapes

Since a single polyline can contain numerous straight or curved line segments, and the closed parameter allows the
drawing to connect the coordinates from the first and last chart.point in its array of points, we can use polylines to
draw many different types of closed polygonal shapes.
Let’s draw some polygons in Pine. The following script periodically draws randomized polygons centered at hl2 price
values.
On each occurrence of the newPolygon condition, it clears the points array, calculates the numberOfSides
and rotationOffset of the new polygon drawing based on math.random() values, then uses a for loop to push
numberOfSides new chart points into the array that contain stepped coordinates from an elliptical path with xScale
and yScale semi-axes. The script draws the polygon by connecting each chart.point from the points array using a
closed polyline with straight line segments:

4.12. Lines and boxes 269

https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#var_hl2
https://www.tradingview.com/pine-script-reference/v5/#fun_array.clear
https://www.tradingview.com/pine-script-reference/v5/#fun_math.random
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Closed shapes demo", "N-sided polygons", true)
3

4 //@variable The size of the horizontal semi-axis.
5 float xScale = input.float(3.0, "X scale", 1.0)
6 //@variable The size of the vertical semi-axis.
7 float yScale = input.float(1.0, "Y scale") * ta.atr(2)
8

9 //@variable An array of `chart.point` objects containing vertex coordinates.
10 var points = array.new<chart.point>()
11

12 //@variable The condition that triggers a new polygon drawing. Based on the␣
↪→horizontal axis to prevent overlaps.

13 bool newPolygon = bar_index % int(math.round(2 * xScale)) == 0 and barstate.
↪→isconfirmed

14

15 if newPolygon
16 // Clear the `points` array.
17 points.clear()
18

19 //@variable The number of sides and vertices in the new polygon.
20 int numberOfSides = int(math.random(3, 7))
21 //@variable A random rotation offset applied to the new polygon, in radians.
22 float rotationOffset = math.random(0.0, 2.0) * math.pi
23 //@variable The size of the angle between each vertex, in radians.
24 float step = 2 * math.pi / numberOfSides
25

26 //@variable The counter-clockwise rotation angle of each vertex.
27 float angle = rotationOffset
28

29 for i = 1 to numberOfSides
30 //@variable The approximate x-coordinate from an ellipse at the `angle`,␣

↪→rounded to the nearest integer.
31 int xValue = int(math.round(xScale * math.cos(angle))) + bar_index
32 //@variable The y-coordinate from an ellipse at the `angle`.
33 float yValue = yScale * math.sin(angle) + hl2
34

(continues on next page)

270 Chapter 4. Concepts

Pine Script™ v5 User Manual

(continued from previous page)
35 // Push a new `chart.point` containing the `xValue` and `yValue` into the␣

↪→`points` array.
36 // The new point does not contain `time` information.
37 points.push(chart.point.from_index(xValue, yValue))
38 // Add the `step` to the `angle`.
39 angle += step
40

41 // Draw a closed polyline connecting the `points`.
42 // The polyline uses the `index` field from each `chart.point` in the `points`␣

↪→array.
43 polyline.new(
44 points, closed = true, line_color = color.navy, fill_color = color.new(color.

↪→orange, 50), line_width = 3
45)

Note that:
• This example shows the last ~50 polylines on the chart, as we have not specified amax_polylines_count
value in the indicator() function call.

• The yScale calculation multiplies an input.float() by ta.atr(2) to adapt the vertical scale of the drawings to
recent price ranges.

• The resulting polygons have a maximum width of twice the horizontal semi-axis (2 * xScale), rounded
to the nearest integer. The newPolygon condition uses this value to prevent the polygon drawings from
overlapping.

• The script rounds the xValue calculation to the nearest integer because the index field of a chart.point
only accepts an int value, as the x-axis of the chart does not include fractional bar indices.

Deleting polylines

To delete a specific polyline id, use polyline.delete(). This function removes the polyline object from the script and its
drawing on the chart.
As with other drawing objects, we can use polyline.delete() to maintain a specific number of polyline drawings or condi-
tionally remove drawings from a chart.
For example, the script below periodically draws approximate arithmetic spirals and stores their polyline IDs in an array,
which it uses as a queue to manage the number of drawings it displays.
When the newSpiral condition occurs, the script creates a points array and adds chart points within a for loop. On
each loop iteration, it calls the spiralPoint() user-defined function to create a new chart.point containing stepped
values from an elliptical path that grows with respect to the angle. The script then creates a randomly colored curved
polyline connecting the coordinates from the points and pushes its ID into the polylines array.
When the array’s size exceeds the specified numberOfSpirals, the script removes the oldest polyline using ar-
ray.shift() and deletes the object using polyline.delete():

4.12. Lines and boxes 271

https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_input.float
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.atr
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#type_int
https://www.tradingview.com/pine-script-reference/v5/#fun_polyline.delete
https://www.tradingview.com/pine-script-reference/v5/#type_polyline
https://www.tradingview.com/pine-script-reference/v5/#fun_polyline.delete
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#fun_array.push
https://www.tradingview.com/pine-script-reference/v5/#fun_array.size
https://www.tradingview.com/pine-script-reference/v5/#fun_array.shift
https://www.tradingview.com/pine-script-reference/v5/#fun_array.shift
https://www.tradingview.com/pine-script-reference/v5/#fun_polyline.delete

Pine Script™ v5 User Manual

1 //@version=5
2

3 //@variable The maximum number of polylines allowed on the chart.
4 const int MAX_POLYLINES_COUNT = 100
5

6 indicator("Deleting polylines example", "Spirals", true, max_polylines_count = MAX_
↪→POLYLINES_COUNT)

7

8 //@variable The number of spiral drawings on the chart.
9 int numberOfSpirals = input.int(10, "Spirals shown", 1, MAX_POLYLINES_COUNT)
10 //@variable The number of full spiral rotations to draw.
11 int rotations = input.int(5, "Rotations", 1)
12 //@variable The scale of the horizontal semi-axis.
13 float xScale = input.float(1.0, "X scale")
14 //@variable The scale of the vertical semi-axis.
15 float yScale = input.float(0.2, "Y scale") * ta.atr(2)
16

17 //@function Calculates an approximate point from an elliptically-scaled arithmetic␣
↪→spiral.

18 //@returns A `chart.point` with `index` and `price` information.
19 spiralPoint(float angle, int xOffset, float yOffset) =>
20 result = chart.point.from_index(
21 int(math.round(angle * xScale * math.cos(angle))) + xOffset,
22 angle * yScale * math.sin(angle) + yOffset
23)
24

25 //@variable An array of polylines.
26 var polylines = array.new<polyline>()
27

28 //@variable The condition to create a new spiral.
29 bool newSpiral = bar_index % int(math.round(4 * math.pi * rotations * xScale)) == 0
30

31 if newSpiral
32 //@variable An array of `chart.point` objects for the `spiral` drawing.
33 points = array.new<chart.point>()
34 //@variable The counter-clockwise angle between calculated points, in radians.
35 float step = math.pi / 2

(continues on next page)

272 Chapter 4. Concepts

Pine Script™ v5 User Manual

(continued from previous page)
36 //@variable The rotation angle of each calculated point on the spiral, in radians.
37 float theta = 0.0
38 // Loop to create the spiral's points. Creates 4 points per full rotation.
39 for i = 0 to rotations * 4
40 //@variable A new point on the calculated spiral.
41 chart.point newPoint = spiralPoint(theta, bar_index, ohlc4)
42 // Add the `newPoint` to the `points` array.
43 points.push(newPoint)
44 // Add the `step` to the `theta` angle.
45 theta += step
46

47 //@variable A random color for the new `spiral` drawing.
48 color spiralColor = color.rgb(math.random(150, 255), math.random(0, 100), math.

↪→random(150, 255))
49 //@variable A new polyline connecting the spiral points. Uses the `index` field␣

↪→from each point as x-coordinates.
50 polyline spiral = polyline.new(points, true, line_color = spiralColor, line_width␣

↪→= 3)
51

52 // Push the new `spiral` into the `polylines` array.
53 polylines.push(spiral)
54 // Shift the first polyline out of the array and delete it when the array's size␣

↪→exceeds the `numberOfSpirals`.
55 if polylines.size() > numberOfSpirals
56 polyline.delete(polylines.shift())
57

58 // Highlight the background when `newSpiral` is `true`.
59 bgcolor(newSpiral ? color.new(color.blue, 70) : na, title = "New drawing highlight")

Note that:
• We declared a MAX_POLYLINES_COUNT global variable with a constant value of 100. The script uses
this constant as the max_polylines_count value in the indicator() function and the maxval of the
numberOfSpirals input.

• As with our “N-sided polygons” example in the previous section, we round the calculation of x-coordinates to
the nearest integer since the index field of a chart.point can only accept an int value.

• Despite the smooth appearance of the drawings, each polyline’s points array only contains four chart.point
objects per spiral rotation. Since the polyline.new() call includes curved = true, each polyline uses
smooth curves to connect their points, producing a visual approximation of the spiral’s actual curvature.

• The width of each spiral is approximately 4 * math.pi * rotations * xScale, rounded to the
nearest integer. We use this value in the newSpiral condition to space each drawing and prevent overlaps.

Redrawing polylines

It may be desirable in some cases to change a polyline drawing throughout a script’s execution. While the polyline.*
namespace does not contain built-in setter functions, we can redraw polylines referenced by variables or collections by
deleting the existing polylines and assigning new instances with the desired changes.
The following example uses polyline.delete() and polyline.new() calls to update the value of a polyline variable.
This script draws closed polylines that connect the open, high, low, and close points of periods containing length bars.
It creates a currentDrawing variable on the first bar and assigns a polyline ID to it on every chart bar. It uses the
openPoint, highPoint, lowPoint, and closePoint variables to reference chart points that track the period’s
developing OHLC values. As new values emerge, the script assigns new chart.point objects to the variables, collects them

4.12. Lines and boxes 273

https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#type_int
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#fun_polyline.new
https://www.tradingview.com/pine-script-reference/v5/#fun_polyline.delete
https://www.tradingview.com/pine-script-reference/v5/#fun_polyline.new
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point

Pine Script™ v5 User Manual

in an array using array.from, then creates a new polyline connecting the coordinates from the array’s points and assigns it
to the currentDrawing.
When the newPeriod condition is false (i.e., the current period is not complete), the script deletes the polyline
referenced by the currentDrawing before creating a new one, resulting in a dynamic drawing that changes over the
developing period:

1 //@version=5
2 indicator("Redrawing polylines demo", "OHLC polygons", true, max_polylines_count =␣

↪→100)
3

4 //@variable The length of the period.
5 int length = input.int(100, "Length", 1)
6

7 //@variable A `chart.point` representing the start of each period.
8 var chart.point openPoint = na
9 //@variable A `chart.point` representing the highest point of each period.
10 var chart.point highPoint = na
11 //@variable A `chart.point` representing the lowest point of each period.
12 var chart.point lowPoint = na
13 //@variable A `chart.point` representing the current bar's closing point.
14 closePoint = chart.point.now(close)
15

16 //@variable The current period's polyline drawing.
17 var polyline currentDrawing = na
18

19 //@variable Is `true` once every `length` bars.
20 bool newPeriod = bar_index % length == 0
21

22 if newPeriod
23 // Assign new chart points to the `openPoint`, `highPoint`, and `closePoint`.
24 openPoint := chart.point.now(open)
25 highPoint := chart.point.now(high)
26 lowPoint := chart.point.now(low)
27 else
28 // Assign a new `chart.point` to the `highPoint` when the `high` is greater than␣

↪→its `price`.
29 if high > highPoint.price
30 highPoint := chart.point.now(high)

(continues on next page)

274 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#fun_array.from
https://www.tradingview.com/pine-script-reference/v5/#fun_polyline.new

Pine Script™ v5 User Manual

(continued from previous page)
31 // Assign a new `chart.point` to the `lowPoint` when the `low` is less than its␣

↪→`price`.
32 if low < lowPoint.price
33 lowPoint := chart.point.now(low)
34

35 //@variable Is teal when the `closePoint.price` is greater than the `openPoint.price`,
↪→ maroon otherwise.

36 color drawingColor = closePoint.price > openPoint.price ? color.teal : color.maroon
37

38 // Delete the polyline assigned to the `currentDrawing` if it's not a `newPeriod`.
39 if not newPeriod
40 polyline.delete(currentDrawing)
41 // Assign a new polyline to the `currentDrawing`.
42 // Uses the `index` field from each `chart.point` in its array as x-coordinates.
43 currentDrawing := polyline.new(
44 array.from(openPoint, highPoint, closePoint, lowPoint), closed = true,
45 line_color = drawingColor, fill_color = color.new(drawingColor, 60)
46)

4.12.5 Realtime behavior

Lines, boxes, and polylines are subject to both commit and rollback actions, which affect the behavior of a script when it
executes on a realtime bar. See the page on Pine Script™’s Execution model.
This script demonstrates the effect of rollback when it executes on the realtime, unconfirmed chart bar:

The line.new() call in this example creates a new line ID on each iteration when values change on the unconfirmed bar. The
script automatically deletes the objects created on each change in that bar because of the rollback before each iteration.
It only commits the last line created before the bar closes, and that line instance is the one that persists on the confirmed
bar.

4.12. Lines and boxes 275

https://www.tradingview.com/pine-script-reference/v5/#fun_line.new
https://www.tradingview.com/pine-script-reference/v5/#type_line
https://www.tradingview.com/pine-script-reference/v5/#type_line

Pine Script™ v5 User Manual

4.12.6 Limitations

Total number of objects

Lines, boxes, and polylines consume server resources, which is why there are limits on the total number of drawings per
script. When a script creates more drawing objects than the allowed limit, the Pine Script™ runtime automatically deletes
the oldest ones in a process referred to as garbage collection.
A single script can contain up to 500 lines, 500 boxes, and 100 polylines. Users can control the garbage collection limits by
specifying the max_lines_count, max_boxes_count, and max_polylines_count values in their script’s
indicator() or strategy() declaration statement.
This script demonstrates how garbage collection works in Pine. It creates a new line, box, and polyline on each chart
bar. We haven’t specified values for the max_lines_count, max_boxes_count, or max_polylines_count
parameters in the indicator() function call, so the script will maintain the most recent ~50 lines, boxes, and polylines on
the chart, as this is the default setting for each parameter:

1 //@version=5
2 indicator("Garbage collection demo", overlay = true)
3

4 //@variable A new `chart.point` at the current `bar_index` and `high`.
5 firstPoint = chart.point.now(high)
6 //@variable A new `chart.point` one bar into the future at the current `low`.
7 secondPoint = chart.point.from_index(bar_index + 1, low)
8 //@variable A new `chart.point` one bar into the future at the current `high`.
9 thirdPoint = chart.point.from_index(bar_index + 1, high)
10

11 // Draw a new `line` connecting the `firstPoint` to the `secondPoint`.
12 line.new(firstPoint, secondPoint, color = color.red, width = 2)
13 // Draw a new `box` with the `firstPoint` top-left corner and `secondPoint` bottom-

↪→right corner.
14 box.new(firstPoint, secondPoint, color.purple, 2, bgcolor = na)
15 // Draw a new `polyline` connecting the `firstPoint`, `secondPoint`, and `thirdPoint`␣

↪→sequentially.
16 polyline.new(array.from(firstPoint, secondPoint, thirdPoint), true, line_width = 2)

Note that:

276 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator

Pine Script™ v5 User Manual

• We’ve used TradingView’s “Measure” drawing tool to measure the number of bars covered by the script’s
drawing objects.

Future references with `xloc.bar_index`

Objects positioned using xloc.bar_index can contain x-coordinates no further than 500 bars into the future.

Other contexts

Scripts cannot use lines, boxes, or polylines in request.*() functions. Instances of these types can use the values from
request.*() calls, but scripts can only create and draw them in the chart’s context.
This limitation is also why drawing objects will not work when using the timeframe parameter in the indicator()
declaration statement.

Historical buffer and `max_bars_back`

Using barstate.isrealtime in combination with drawings may sometimes produce unexpected results. For example, the
intention of this script is to ignore all historical bars and draw horizontal lines spanning 300 bars back on realtime bars:

1 //@version=5
2 indicator("Historical buffer demo", overlay = true)
3

4 //@variable A `chart.point` at the `bar_index` from 300 bars ago and current `close`.
5 firstPoint = chart.point.from_index(bar_index[300], close)
6 //@variable The current bar's `chart.point` containing the current `close`.
7 secondPoint = chart.point.now(close)
8

9 // Draw a new line on realtime bars.
10 if barstate.isrealtime
11 line.new(firstPoint, secondPoint)

However, it will fail at runtime and raise an error. The script fails because it cannot determine the buffer size for historical
values of the underlying time series. Although the code doesn’t contain the built-in time variable, the built-in bar_index
uses the time series in its inner workings. Therefore, accessing the value of the bar_index from 300 bars back requires
the history buffer of the time series to be at least 300 bars.
Pine Script™ includes a mechanism that detects the required historical buffer size automatically in most cases. It works
by letting the script access historical values any number of bars back for a limited duration. In this script’s case, using
barstate.isrealtime to control the drawing of lines prevents it from accessing the historical series, so it cannot infer the
required historical buffer size, and the script fails.
The simple solution to this issue is to use the max_bars_back() function to explicitly define the historical buffer of the time
series before evaluating the conditional structure:
Such issues can be confusing, but they’re quite rare. The Pine Script™ team hopes to eliminate them over time.

4.12. Lines and boxes 277

https://www.tradingview.com/pine-script-reference/v5/#var_xloc.bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#var_barstate.isrealtime
https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/pine-script-reference/v5/#var_barstate.isrealtime
https://www.tradingview.com/pine-script-reference/v5/#fun_max_bars_back
https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/

Pine Script™ v5 User Manual

4.13 Non-standard charts data

• Introduction

• `ticker.heikinashi()`

• `ticker.renko()`

• `ticker.linebreak()`

• `ticker.kagi()`

• `ticker.pointfigure()`

4.13.1 Introduction

These functions allow scripts to fetch information from non-standard bars or chart types, regardless of the type of chart the
script is running on. They are: ticker.heikinashi(), ticker.renko(), ticker.linebreak(), ticker.kagi() and ticker.pointfigure().
All of them work in the same manner; they create a special ticker identifier to be used as the first argument in a re-
quest.security() function call.

4.13.2 `ticker.heikinashi()`

Heikin-Ashi means average bar in Japanese. The open/high/low/close values of Heikin-Ashi candlesticks are synthetic;
they are not actual market prices. They are calculated by averaging combinations of real OHLC values from the current
and previous bar. The calculations used make Heikin-Ashi bars less noisy than normal candlesticks. They can be useful
to make visual assessments, but are unsuited to backtesting or automated trading, as orders execute on market prices —
not Heikin-Ashi prices.
The ticker.heikinashi() function creates a special ticker identifier for requesting Heikin-Ashi data with the re-
quest.security() function.
This script requests the close value of Heikin-Ashi bars and plots them on top of the normal candlesticks:

278 Chapter 4. Concepts

https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker\{dot\}heikinashi
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker\{dot\}renko
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker\{dot\}linebreak
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker\{dot\}kagi
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker\{dot\}pointfigure
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker\{dot\}heikinashi
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("HA Close", "", true)
3 haTicker = ticker.heikinashi(syminfo.tickerid)
4 haClose = request.security(haTicker, timeframe.period, close)
5 plot(haClose, "HA Close", color.black, 3)

Note that:
• The close values for Heikin-Ashi bars plotted as the black line are very different from those of real candles using
market prices. They act more like a moving average.

• The black line appears over the chart bars because we have selected “Visual Order/Bring to Front” from the script’s
“More” menu.

If you wanted to omit values for extended hours in the last example, an intermediary ticker without extended session
information would need to be created first:

4.13. Non-standard charts data 279

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("HA Close", "", true)
3 regularSessionTicker = ticker.new(syminfo.prefix, syminfo.ticker, session.regular)
4 haTicker = ticker.heikinashi(regularSessionTicker)
5 haClose = request.security(haTicker, timeframe.period, close, gaps = barmerge.gaps_on)
6 plot(haClose, "HA Close", color.black, 3, plot.style_linebr)

Note that:
• We use the ticker.new() function first, to create a ticker without extended session information.
• We use that ticker instead of syminfo.tickerid in our ticker.heikinashi() call.
• In our request.security() call, we set the gaps parameter’s value to barmerge.gaps_on. This instructs the
function not to use previous values to fill slots where data is absent. This makes it possible for it to return na values
outside of regular sessions.

• To be able to see this on the chart, we also need to use a special plot.style_linebr style, which breaks the
plots on na values.

This script plots Heikin-Ashi candles under the chart:

1 //@version=5
2 indicator("Heikin-Ashi candles")
3 CANDLE_GREEN = #26A69A
4 CANDLE_RED = #EF5350
5

6 haTicker = ticker.heikinashi(syminfo.tickerid)
7 [haO, haH, haL, haC] = request.security(haTicker, timeframe.period, [open, high, low,␣

↪→close])
8 candleColor = haC >= haO ? CANDLE_GREEN : CANDLE_RED
9 plotcandle(haO, haH, haL, haC, color = candleColor)

Note that:
• We use a tuple with request.security() to fetch four values with the same call.
• We use plotcandle() to plot our candles. See the Bar plotting page for more information.

280 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_ticker\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}tickerid
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker\{dot\}heikinashi
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#fun_plotcandle

Pine Script™ v5 User Manual

4.13.3 `ticker.renko()`

Renko bars only plot price movements, without taking time or volume into consideration. They look like bricks stacked
in adjacent columns1. A new brick is only drawn after the price passes the top or bottom by a predetermined amount.
The ticker.renko() function creates a ticker id which can be used with request.security() to fetch Renko values, but there
is no Pine Script™ function to draw Renko bars on the chart:

1 //@version=5
2 indicator("", "", true)
3 renkoTicker = ticker.renko(syminfo.tickerid, "ATR", 10)
4 renkoLow = request.security(renkoTicker, timeframe.period, low)
5 plot(renkoLow)

4.13.4 `ticker.linebreak()`

The Line Break chart type displays a series of vertical boxes that are based on price changes1. The ticker.linebreak()
function creates a ticker id which can be used with request.security() to fetch “Line Break” values, but there is no Pine
Script™ function to draw such bars on the chart:

1 //@version=5
2 indicator("", "", true)
3 lineBreakTicker = ticker.linebreak(syminfo.tickerid, 3)
4 lineBreakClose = request.security(lineBreakTicker, timeframe.period, close)
5 plot(lineBreakClose)

4.13.5 `ticker.kagi()`

Kagi charts are made of a continuous line that changes directions. The direction changes when the price changes1 beyond
a predetermined amount. The ticker.kagi() function creates a ticker id which can be used with request.security() to fetch
“Kagi” values, but there is no Pine Script™ function to draw such bars on the chart:

1 //@version=5
2 indicator("", "", true)
3 kagiBreakTicker = ticker.linebreak(syminfo.tickerid, 3)
4 kagiBreakClose = request.security(kagiBreakTicker, timeframe.period, close)
5 plot(kagiBreakClose)

4.13.6 `ticker.pointfigure()`

Point and Figure (PnF) charts only plot price movements1, without taking time into consideration. A column of X’s is
plotted as the price rises, and O’s are plotted when price drops. The ticker.pointfigure() function creates a ticker id which
can be used with request.security() to fetch “PnF” values, but there is no Pine Script™ function to draw such bars on the
chart. Every column of X’s or O’s is represented with four numbers. You may think of them as synthetic OHLC PnF
values:

1 //@version=5
2 indicator("", "", true)
3 pnfTicker = ticker.pointfigure(syminfo.tickerid, "hl", "ATR", 14, 3)

(continues on next page)
1 On TradingView, Renko, Line Break, Kagi and PnF chart types are generated from OHLC values from a lower timeframe. These chart types thus

represent only an approximation of what they would be like if they were generated from tick data.

4.13. Non-standard charts data 281

https://www.tradingview.com/pine-script-reference/v5/#fun_ticker\{dot\}renko
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker\{dot\}linebreak
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker\{dot\}kagi
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker\{dot\}pointfigure
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security

Pine Script™ v5 User Manual

(continued from previous page)
4 [pnfO, pnfC] = request.security(pnfTicker, timeframe.period, [open, close], barmerge.

↪→gaps_on)
5 plot(pnfO, "PnF Open", color.green, 4, plot.style_linebr)
6 plot(pnfC, "PnF Close", color.red, 4, plot.style_linebr)

4.14 Other timeframes and data

• Introduction

• Common characteristics

• Data feeds

• `request.security()`

• `request.security_lower_tf()`

• Custom contexts

• Historical and realtime behavior

• `request.currency_rate()`

• `request.dividends()`, `request.splits()`, and `request.earnings()`

• `request.quandl()`

• `request.financial()`

• `request.economic()`

• `request.seed()`

4.14.1 Introduction

Pine Script™ allows users to request data from sources and contexts other than those their charts use. The functions we
present on this page can fetch data from a variety of alternative sources:

• request.security() retrieves data from another symbol, timeframe, or other context.
• request.security_lower_tf() retrieves intrabar data, i.e., data from a timeframe lower than the chart timeframe.
• request.currency_rate() requests a daily rate to convert a value expressed in one currency to another.
• request.dividends(), request.splits(), and request.earnings() respectively retrieve information about an issuing com-
pany’s dividends, splits, and earnings.

282 Chapter 4. Concepts

https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

• request.quandl() retrieves information from NASDAQ Data Link (formerly Quandl).
• request.financial() retrieves financial data from FactSet.
• request.economic() retrieves economic and industry data.
• request.seed() retrieves data from a user-maintained GitHub repository.

Note: Throughout this page, and in other parts of our documentation that discuss request.*() functions, we often
use the term “context” to describe the ticker ID, timeframe, and any modifications (price adjustments, session settings,
non-standard chart types, etc.) that apply to a chart or the data retrieved by a script.

These are the signatures of the functions in the request.* namespace:

request.security(symbol, timeframe, expression, gaps, lookahead, ignore_invalid_
↪→symbol, currency) → series <type>

request.security_lower_tf(symbol, timeframe, expression, ignore_invalid_symbol,␣
↪→currency, ignore_invalid_timeframe) → array<type>

request.currency_rate(from, to, ignore_invalid_currency) → series float

request.dividends(ticker, field, gaps, lookahead, ignore_invalid_symbol, currency) →␣
↪→series float

request.splits(ticker, field, gaps, lookahead, ignore_invalid_symbol) → series float

request.earnings(ticker, field, gaps, lookahead, ignore_invalid_symbol, currency) →␣
↪→series float

request.quandl(ticker, gaps, index, ignore_invalid_symbol) → series float

request.financial(symbol, financial_id, period, gaps, ignore_invalid_symbol,␣
↪→currency) → series float

request.economic(country_code, field, gaps, ignore_invalid_symbol) → series float

request.seed(source, symbol, expression, ignore_invalid_symbol) → series <type>

The request.*() family of functions has numerous potential applications. Throughout this page, we will discuss in
detail these functions and some of their typical use cases.

Note: Users can also allow compatible scripts to evaluate their scopes in other contexts without requiring request.
*() functions by using the timeframe parameter of the indicator() declaration statement.

4.14. Other timeframes and data 283

https://data.nasdaq.com/
https://www.factset.com/
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator

Pine Script™ v5 User Manual

4.14.2 Common characteristics

Many functions in the request.*() namespace share some common properties and parameters. Before we explore
each function in depth, let’s familiarize ourselves with these characteristics.

Usage

All request.*() functions return “series” results, which means they can produce different values on every bar. How-
ever, most request.*() function parameters require “const”, “input”, or “simple” arguments.
In essence, Pine Script™ must determine the values of most arguments passed into a request.*() function upon
compilation of the script or on the first chart bar, depending on the qualified type that each parameter accepts, and these
values cannot change throughout the execution of the script. The only exception is the expression parameter in
request.security(), request.security_lower_tf(), and request.seed(), which accepts “series” arguments.
Calls to request.*() functions execute on every chart bar, and scripts cannot selectively deactivate them throughout
their execution. Scripts cannot call request.*() functions within the local scopes of conditional structures, loops,
or functions and methods exported by Libraries, but they can use such function calls within the bodies of non-exported
user-defined functions and methods.
When using any request.*() functions within a script, runtime performance is an important consideration. These
functions can have a sizable impact on script performance. While scripts can contain a maximum of 40 calls to the
request.*() namespace, users should strive to minimize the number of calls in their scripts to keep resource con-
sumption as low as possible. For more information on the limitations of these functions, see this section of our User
Manual’s page on Pine’s limitations.

`gaps`

When using a request.*() function to retrieve data from another context, the data may not come in on each new bar
as it would with the current chart. The gaps parameter of a request.*() function allows users to control how the
function responds to nonexistent values in the requested series.

Note: When using the indicator() function to evaluate a script in another context, the timeframe_gaps parame-
ter specifies how it handles nonexistent values. The parameter is similar to the gaps parameter for request.*()
functions.

Suppose we have a script that requests hourly data for the chart’s symbol with request.security() executing on an 1-minute
chart. In this case, the function call will only return new values on the 1-minute bars that cover the opening/closing times
of the symbol’s hourly bars. On other chart bars, we can decide whether the function will return na values or the last
available values via the gaps parameter.
When the gaps parameter uses barmerge.gaps_on, the function will return na results on all chart bars where new data
isn’t yet confirmed from the requested context. Otherwise, when the parameter uses barmerge.gaps_off, the function will
fill the gaps in the requested data with the last confirmed values on historical bars and the most recent developing values
on realtime bars.
The script below demonstrates the difference in behavior by plotting the results from two request.security() calls that
fetch the close price of the current symbol from the hourly timeframe on a 1-minute chart. The first call uses gaps =
barmerge.gaps_off and the second uses gaps = barmerge.gaps_on:

284 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_request.seed
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.gaps_on
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.gaps_off
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#var_close

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("gaps demo", overlay = true)
3

4 //@variable The `close` requested from the hourly timeframe without gaps.
5 float dataWithoutGaps = request.security(syminfo.tickerid, "60", close, gaps =␣

↪→barmerge.gaps_off)
6 //@variable The `close` requested from the hourly timeframe with gaps.
7 float dataWithGaps = request.security(syminfo.tickerid, "60", close, gaps = barmerge.

↪→gaps_on)
8

9 // Plot the requested data.
10 plot(dataWithoutGaps, "Data without gaps", color.blue, 3, plot.style_linebr)
11 plot(dataWithGaps, "Data with gaps", color.purple, 15, plot.style_linebr)
12

13 // Highlight the background for realtime bars.
14 bgcolor(barstate.isrealtime ? color.new(color.aqua, 70) : na, title = "Realtime bar␣

↪→highlight")

Note that:
• barmerge.gaps_off is the default value for the gaps parameter in all applicable request.*() functions.
• The script plots the requested series as lines with breaks (plot.style_linebr), which don’t bridge over na values
as the default style (plot.style_line) does.

• When using barmerge.gaps_off, the request.security() function returns the last confirmed close from the
hourly timeframe on all historical bars. When running on realtime bars (the bars with the color.aqua back-
ground in this example), it returns the symbol’s current close value, regardless of confirmation. For more
information, see the Historical and realtime behavior section of this page.

4.14. Other timeframes and data 285

https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.gaps_off
https://www.tradingview.com/pine-script-reference/v5/#var_plot.style_linebr
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_plot.style_line
https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.gaps_off
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_color.aqua
https://www.tradingview.com/pine-script-reference/v5/#var_close

Pine Script™ v5 User Manual

`ignore_invalid_symbol`

The ignore_invalid_symbol parameter of request.*() functions determines how a function will handle in-
valid data requests, e.g.:

• Using a request.*() function with a nonexistent ticker ID as the symbol/ticker parameter.
• Using request.financial() to retrieve information that does not exist for the specified symbol or period.
• Using request.economic() to request a field that doesn’t exist for a country_code.

A request.*() function call will produce a runtime error and halt the execution of the script when making an er-
roneous request if its ignore_invalid_symbol parameter is false. When this parameter’s value is true, the
function will return na values in such a case instead of raising an error.
This example uses request.*() calls within a user-defined function to retrieve data for estimating an instrument’s
market capitalization (market cap). The user-defined calcMarketCap() function calls request.financial() to retrieve
the total shares outstanding for a symbol and request.security() to retrieve a tuple containing the symbol’s close price and
currency. We’ve included ignore_invalid_symbol = true in both of these request.*() calls to prevent
runtime errors for invalid requests.
The script displays a formatted string representing the symbol’s estimated market cap value and currency in a table on the
chart and uses a plot to visualize the marketCap history:

1 //@version=5
2 indicator("ignore_invalid_symbol demo", "Market cap estimate", format = format.volume)
3

4 //@variable The symbol to request data from.
5 string symbol = input.symbol("TSX:SHOP", "Symbol")
6

7 //@function Estimates the market capitalization of the specified `tickerID` if the␣
↪→data exists.

8 calcMarketCap(simple string tickerID) =>
9 //@variable The quarterly total shares outstanding for the `tickerID`. Returns␣

↪→`na` when the data isn't available.
10 float tso = request.financial(tickerID, "TOTAL_SHARES_OUTSTANDING", "FQ", ignore_

↪→invalid_symbol = true)
11 //@variable The `close` price and currency for the `tickerID`. Returns `[na, na]`␣

↪→when the `tickerID` is invalid.

(continues on next page)

286 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_request.financial
https://www.tradingview.com/pine-script-reference/v5/#fun_request.economic
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_request.financial
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo.currency
https://www.tradingview.com/pine-script-reference/v5/#fun_str.format
https://www.tradingview.com/pine-script-reference/v5/#type_table
https://www.tradingview.com/pine-script-reference/v5/#fun_plot

Pine Script™ v5 User Manual

(continued from previous page)
12 [price, currency] = request.security(
13 tickerID, timeframe.period, [close, syminfo.currency], ignore_invalid_symbol␣

↪→= true
14)
15 // Return a tuple containing the market cap estimate and the quote currency.
16 [tso * price, currency]
17

18 //@variable A `table` object with a single cell that displays the `marketCap` and␣
↪→`quoteCurrency`.

19 var table infoTable = table.new(position.top_right, 1, 1)
20 // Initialize the table's cell on the first bar.
21 if barstate.isfirst
22 table.cell(infoTable, 0, 0, "", text_color = color.white, text_size = size.huge,␣

↪→bgcolor = color.teal)
23

24 // Get the market cap estimate and quote currency for the `symbol`.
25 [marketCap, quoteCurrency] = calcMarketCap(symbol)
26

27 //@variable The formatted text displayed inside the `infoTable`.
28 string tableText = str.format("Market cap:\n{0} {1}", str.tostring(marketCap, format.

↪→volume), quoteCurrency)
29 // Update the `infoTable`.
30 table.cell_set_text(infoTable, 0, 0, tableText)
31

32 // Plot the `marketCap` value.
33 plot(marketCap, "Market cap", color.new(color.purple, 60), style = plot.style_area)

Note that:
• The calcMarketCap() function will only return values on valid instruments with total shares outstanding
data, such as the one we’ve selected for this example. It will return a market cap value of na on others that
don’t have financial data, including forex, crypto, and derivatives.

• Not all issuing companies publish quarterly financial reports. If the symbol’s issuing company doesn’t report
on a quarterly basis, change the “FQ” value in this script to the company’s minimum reporting period. See
the request.financial() section for more information.

• We’ve used format.volume in the indicator() and str.tostring() calls, which specify that the y-axis of the chart
pane represents volume-formatted values and the “string” representation of the marketCap value shows as
volume-formatted text.

• This script creates a table and initializes its cell on the first chart bar, then updates the cell’s text on subsequent
bars. To learn more about working with tables, see the Tables page of our User Manual.

`currency`

The currency parameter of a request.*() function allows users to specify the currency of the requested data.
When this parameter’s value differs from the syminfo.currency of the requested context, the function will convert the
requested values to express them in the specified currency. This parameter can accept a built-in variable from the
currency.* namespace, such as currency.JPY, or a “string” representing the ISO 4217 currency code (e.g., “JPY”).
The conversion rate between the syminfo.currency of the requested data and the specified currency depends on the
corresponding “FX_IDC” daily rate from the previous day. If no available instrument provides the conversion rate directly,
the function will use the value from a spread symbol to derive the rate.

Note: Not all request.*() function calls return values expressed as a currency amount. Therefore, currency con-

4.14. Other timeframes and data 287

https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_format.volume
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_str.tostring
https://www.tradingview.com/pine-script-reference/v5/#type_table
https://www.tradingview.com/pine-script-reference/v5/#var_barstate.isfirst
https://www.tradingview.com/pine-script-reference/v5/#fun_table.cell_set_text
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo.currency
https://www.tradingview.com/pine-script-reference/v5/#var_currency.JPY
https://en.wikipedia.org/wiki/ISO_4217#Active_codes
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo.currency
https://www.tradingview.com/support/solutions/43000502298/

Pine Script™ v5 User Manual

version is not always necessary. For example, some series returned by request.financial() are expressed in units other than
currency, such as the “PIOTROSKI_F_SCORE” and “NUMBER_OF_EMPLOYEES” metrics. It is up to programmers
to determine when currency conversion is appropriate in their data requests.

`lookahead`

The lookahead parameter in request.security(), request.dividends(), request.splits(), and request.earnings() specifies
the lookahead behavior of the function call. Its default value is barmerge.lookahead_off.
When requesting data from a higher-timeframe (HTF) context, the lookahead value determines whether the function
can request values from times beyond those of the historical bars it executes on. In other words, the lookahead value
determines whether the requested data may contain lookahead bias on historical bars.
When requesting data from a lower-timeframe (LTF) context, the lookahead parameter determines whether the func-
tion requests values from the first or last intrabar (LTF bar) on each chart bar.
Programmers should exercise extreme caution when using lookahead in their scripts, namely when requesting
data from higher timeframes. When using barmerge.lookahead_on as the lookahead value, ensure that it does not
compromise the integrity of the script’s logic by leaking future data into historical chart bars.
The following scenarios are cases where enabling lookahead is acceptable in a request.*() call:

• The expression in request.security() references a series with a historical offset (e.g., close[1]), which pre-
vents the function from requesting future values that it would not have access to on a realtime basis.

• The specified timeframe in the call is the same as the chart the script executes on, i.e., timeframe.period.
• The function call requests data from an intrabar timeframe, i.e., a timeframe smaller than the timeframe.period.
See this section for more information.

Note: Using request.security() to leak future data into the past is misleading and not allowed in script publications.
While your script’s results on historical bars may look great due to its seemingly “magical” acquisition of prescience
(which it will not be able to reproduce on realtime bars), you will be misleading yourself and the users of your script.
If you publish your script to share it with others, ensure you do not mislead users by accessing future information on
historical bars.

This example demonstrates how the lookahead parameter affects the behavior of higher-timeframe data requests and
why enabling lookahead in request.security() without offsetting the expression is misleading. The script calls re-
quest.security() to get the HTF high price for the current chart’s symbol in three different ways and plots the resulting
series on the chart for comparison.
The first call uses barmerge.lookahead_off (default), and the others use barmerge.lookahead_on. However, the third
request.security() call also offsets its expression using the history-referencing operator [] to avoid leaking future data
into the past.
As we see on the chart, the plot of the series requested using barmerge.lookahead_on without an offset (fuchsia line)
shows final HTF high prices before they’re actually available on historical bars, whereas the other two calls do not:

288 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_request.financial
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.dividends
https://www.tradingview.com/pine-script-reference/v5/#fun_request.splits
https://www.tradingview.com/pine-script-reference/v5/#fun_request.earnings
https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.lookahead_off
https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.lookahead_on
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe.period
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe.period
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.lookahead_off
https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.lookahead_on
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#op_{[}{]}
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.lookahead_on
https://www.tradingview.com/pine-script-reference/v5/#var_color.fuchsia
https://www.tradingview.com/pine-script-reference/v5/#var_high

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("lookahead demo", overlay = true)
3

4 //@variable The timeframe to request the data from.
5 string timeframe = input.timeframe("30", "Timeframe")
6

7 //@variable The requested `high` price from the current symbol on the `timeframe`␣
↪→without lookahead bias.

8 // On realtime bars, it returns the current `high` of the `timeframe`.
9 float lookaheadOff = request.security(syminfo.tickerid, timeframe, high, lookahead =␣

↪→barmerge.lookahead_off)
10

11 //@variable The requested `high` price from the current symbol on the `timeframe`␣
↪→with lookahead bias.

12 // Returns values that should NOT be accessible yet on historical bars.
13 float lookaheadOn = request.security(syminfo.tickerid, timeframe, high, lookahead =␣

↪→barmerge.lookahead_on)
14

15 //@variable The requested `high` price from the current symbol on the `timeframe`␣
↪→without lookahead bias or repainting.

16 // Behaves the same on historical and realtime bars.
17 float lookaheadOnOffset = request.security(syminfo.tickerid, timeframe, high[1],␣

↪→lookahead = barmerge.lookahead_on)
18

19 // Plot the values.
20 plot(lookaheadOff, "High, no lookahead bias", color.new(color.blue, 40), 5)
21 plot(lookaheadOn, "High with lookahead bias", color.fuchsia, 3)
22 plot(lookaheadOnOffset, "High, no lookahead bias or repaint", color.aqua, 3)
23 // Highlight the background on realtime bars.
24 bgcolor(barstate.isrealtime ? color.new(color.orange, 60) : na, title = "Realtime bar␣

↪→highlight")

Note that:
• The series requested using barmerge.lookahead_off has a new historical value at the end of each HTF period,
and both series requested using barmerge.lookahead_on have new historical data at the start of each period.

• On realtime bars, the plot of the series without lookahead (blue) and the series with lookahead and no historical
offset (fuchsia) show the same value (i.e., the HTF period’s unconfirmed high price), as no data exists beyond

4.14. Other timeframes and data 289

https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.lookahead_off
https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.lookahead_on
https://www.tradingview.com/pine-script-reference/v5/#var_color.blue
https://www.tradingview.com/pine-script-reference/v5/#var_color.fuchsia
https://www.tradingview.com/pine-script-reference/v5/#var_high

Pine Script™ v5 User Manual

those points to leak into the past. Both of these plots will repaint their results after restarting the script’s
execution, as realtime bars will become historical bars.

• The series that uses lookahead and a historical offset (aqua) does not repaint its values, as it always references
the last confirmed value from the higher timeframe. See the Avoiding repainting section of this page for more
information.

Note: In Pine Script™ v1 and v2, the security() function did not include a lookahead parameter, but it behaved
as it does in later versions of Pine with lookahead = barmerge.lookahead_on, meaning that it systematically
used data from the future HTF context on historical bars. Therefore, users should exercise caution with Pine v1 or v2
scripts that use HTF security() calls unless the function calls contain historical offsets.

4.14.3 Data feeds

TradingView’s data providers supply different data feeds that scripts can access to retrieve information about an instrument,
including:

• Intraday historical data (for timeframes < 1D)
• End-of-day (EOD) historical data (for timeframes >= 1D)
• Realtime data (which may be delayed, depending on your account type and extra data services)
• Extended hours data

Not all of these data feed types exist for every instrument. For example, the symbol “BNC:BLX” only has EOD data
available.
For some instruments with intraday and EOD historical feeds, volume data may not be the same since some trades (block
trades, OTC trades, etc.) may only be available at the end of the trading day. Consequently, the EOD feed will include this
volume data, but the intraday feed will not. Differences between EOD and intraday volume feeds are almost nonexistent
for instruments such as cryptocurrencies, but they are commonplace in stocks.
Slight price discrepancies may also occur between EOD and intraday feeds. For example, the high value on one EOD bar
may not match any intraday high values supplied by the data provider for that day.
Another distinction between EOD and intraday data feeds is that EOD feeds do not contain information from extended
hours.
When retrieving information on realtime bars with request.*() functions, it’s important to note that historical and
realtime data reported for an instrument often rely on different data feeds. A broker/exchange may retroactively modify
values reported on realtime bars, which the data will only reflect after refreshing the chart or restarting the execution of
the script.
Another important consideration is that the chart’s data feeds and feeds requested from providers by the script aremanaged
by independent, concurrent processes. Consequently, in some rare cases, it’s possible for races to occur where requested
results temporarily fall out of synch with the chart on a realtime bar, which a script retroactively adjusts after restarting
its execution.
These points may account for variations in the values retrieved by request.*() functions when requesting data from
other contexts. They may also result in discrepancies between data received on realtime bars and historical bars. There
are no steadfast rules about the variations one may encounter in their requested data feeds.

Note: As a rule, TradingView does not generate data; it relies on its data providers for the information displayed on
charts and accessed by scripts.

290 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#var_barstate.isrealtime
https://www.tradingview.com/pine-script-reference/v5/#var_barstate.ishistory
https://www.tradingview.com/pine-script-reference/v5/#var_color.aqua

Pine Script™ v5 User Manual

When using data feeds requested from other contexts, it’s also crucial to consider the time axis differences between the
chart the script executes on and the requested feeds since request.*() functions adapt the returned series to the chart’s
time axis. For example, requesting “BTCUSD” data on the “SPY” chart with request.security() will only show new values
when the “SPY” chart has new data as well. Since “SPY” is not a 24-hour symbol, the “BTCUSD” data returned will
contain gaps that are otherwise not present when viewing its chart directly.

4.14.4 `request.security()`

The request.security() function allows scripts to request data from other contexts than the chart the script executes on,
such as:

• Other symbols, including spread symbols
• Other timeframes (see our User Manual’s page on Timeframes to learn about timeframe specifications in Pine
Script™)

• Custom contexts, including alternative sessions, price adjustments, chart types, etc. using ticker.*() functions
This is the function’s signature:

request.security(symbol, timeframe, expression, gaps, lookahead, ignore_invalid_
↪→symbol, currency) → series <type>

The symbol value is the ticker identifier representing the symbol to fetch data from. This parameter accepts values in
any of the following formats:

• A “string” representing a symbol (e.g., “IBM” or “EURUSD”) or an “Exchange:Symbol” pair (e.g., “NYSE:IBM”
or “OANDA:EURUSD”). When the value does not contain an exchange prefix, the function selects the exchange
automatically. We recommend specifying the exchange prefix when possible for consistent results. Users can also
pass an empty string to this parameter, which prompts the function to use the current chart’s symbol.

• A “string” representing a spread symbol (e.g., “AMD/INTC”). Note that “Bar Replay” mode does not work with
these symbols.

• The syminfo.ticker or syminfo.tickerid built-in variables, which return the symbol or the “Exchange:Symbol” pair
that the current chart references. We recommend using syminfo.tickerid to avoid ambiguity unless the exchange
information does not matter in the data request. For more information on syminfo.* variables, see this section
of our Chart information page.

• A custom ticker identifier created using ticker.*() functions. Ticker IDs constructed from these functions
may contain additional settings for requesting data using non-standard chart calculations, alternative sessions, and
other contexts. See the Custom contexts section for more information.

The timeframe value specifies the timeframe of the requested data. This parameter accepts “string” values in our
timeframe specification format (e.g., a value of “1D” represents the daily timeframe). To request data from the same
timeframe as the chart the script executes on, use the timeframe.period variable or an empty string.
Theexpression parameter of the request.security() function determines the data it retrieves from the specified context.
This versatile parameter accepts “series” values of int, float, bool, color, string, and chart.point types. It can also accept
tuples, collections, user-defined types, and the outputs of function and method calls. For more details on the data one can
retrieve, see the Requestable data section below.

Note: When using the value from an input.source() call in the expression argument and the input references a series
from another indicator, request.*() functions calculate that value’s results using the chart’s symbol, regardless of
the symbol argument supplied, since they cannot evaluate the scopes required by an external series. We therefore do
not recommend attempting to request external source input data from other contexts.

4.14. Other timeframes and data 291

https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/support/solutions/43000502298/
https://www.tradingview.com/support/solutions/43000502298/
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo.ticker
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo.tickerid
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo.tickerid
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe.period
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_input.source

Pine Script™ v5 User Manual

Timeframes

The request.security() function can request data from any available timeframe, regardless of the chart the script executes
on. The timeframe of the data retrieved depends on the timeframe argument in the function call, which may represent
a higher timeframe (e.g., using “1D” as the timeframe value while running the script on an intraday chart) or the chart’s
timeframe (i.e., using timeframe.period or an empty string as the timeframe argument).
Scripts can also request limited data from lower timeframes with request.security() (e.g., using “1” as the timeframe
argument while running the script on a 60-minute chart). However, we don’t typically recommend using this function for
LTF data requests. The request.security_lower_tf() function is more optimal for such cases.

Higher timeframes

Most use cases of request.security() involve requesting data from a timeframe higher than or the same as the chart time-
frame. For example, this script retrieves the hl2 price from a requested higherTimeframe. It plots the resulting
series on the chart alongside the current chart’s hl2 for comparison:

1 //@version=5
2 indicator("Higher timeframe security demo", overlay = true)
3

4 //@variable The higher timeframe to request data from.
5 string higherTimeframe = input.timeframe("240", "Higher timeframe")
6

7 //@variable The `hl2` value from the `higherTimeframe`. Combines lookahead with an␣
↪→offset to avoid repainting.

8 float htfPrice = request.security(syminfo.tickerid, higherTimeframe, hl2[1],␣
↪→lookahead = barmerge.lookahead_on)

9

10 // Plot the `hl2` from the chart timeframe and the `higherTimeframe`.
11 plot(hl2, "Current timeframe HL2", color.teal, 2)
12 plot(htfPrice, "Higher timeframe HL2", color.purple, 3)

Note that:
• We’ve included an offset to the expression argument and used barmerge.lookahead_on in re-
quest.security() to ensure the series returned behaves the same on historical and realtime bars. See the
Avoiding repainting section for more information.

292 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe.period
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#var_hl2
https://www.tradingview.com/pine-script-reference/v5/#var_hl2
https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.lookahead_on
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security

Pine Script™ v5 User Manual

Notice that in the above example, it is possible to select a higherTimeframe value that actually represents a lower
timeframe than the one the chart uses, as the code does not prevent it. When designing a script to work specifically with
higher timeframes, we recommend including conditions to prevent it from accessing lower timeframes, especially if you
intend to publish it.
Below, we’ve added an if structure to our previous example that raises a runtime error when the higherTimeframe
input represents a timeframe smaller than the chart timeframe, effectively preventing the script from requesting LTF data:

1 //@version=5
2 indicator("Higher timeframe security demo", overlay = true)
3

4 //@variable The higher timeframe to request data from.
5 string higherTimeframe = input.timeframe("240", "Higher timeframe")
6

7 // Raise a runtime error when the `higherTimeframe` is smaller than the chart's␣
↪→timeframe.

8 if timeframe.in_seconds() > timeframe.in_seconds(higherTimeframe)
9 runtime.error("The requested timeframe is smaller than the chart's timeframe.␣

↪→Select a higher timeframe.")
10

11 //@variable The `hl2` value from the `higherTimeframe`. Combines lookahead with an␣
↪→offset to avoid repainting.

12 float htfPrice = request.security(syminfo.tickerid, higherTimeframe, hl2[1],␣
↪→lookahead = barmerge.lookahead_on)

13

14 // Plot the `hl2` from the chart timeframe and the `higherTimeframe`.
15 plot(hl2, "Current timeframe HL2", color.teal, 2)
16 plot(htfPrice, "Higher timeframe HL2", color.purple, 3)

Lower timeframes

Although the request.security() function is intended to operate on timeframes greater than or equal to the chart timeframe,
it can request data from lower timeframes as well, with limitations. When calling this function to access a lower timeframe,
it will evaluate the expression from the LTF context. However, it can only return the results from a single intrabar
(LTF bar) on each chart bar.
The intrabar that the function returns data from on each historical chart bar depends on the lookahead value in the
function call. When using barmerge.lookahead_on, it will return the first available intrabar from the chart period. When
using barmerge.lookahead_off, it will return the last intrabar from the chart period. On realtime bars, it returns the last

4.14. Other timeframes and data 293

https://www.tradingview.com/pine-script-reference/v5/#kw_if
https://www.tradingview.com/pine-script-reference/v5/#fun_runtime.error
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.lookahead_on
https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.lookahead_off

Pine Script™ v5 User Manual

available value of the expression from the timeframe, regardless of the lookahead value, as the realtime intrabar
information retrieved by the function is not yet sorted.
This script retrieves close data from the valid timeframe closest to a fourth of the size of the chart timeframe. It makes
two calls to request.security() with different lookahead values. The first call uses barmerge.lookahead_on to access
the first intrabar value in each chart bar. The second uses the default lookahead value (barmerge.lookahead_off),
which requests the last intrabar value assigned to each chart bar. The script plots the outputs of both calls on the chart to
compare the difference:

1 //@version=5
2 indicator("Lower timeframe security demo", overlay = true)
3

4 //@variable The valid timeframe closest to 1/4 the size of the chart timeframe.
5 string lowerTimeframe = timeframe.from_seconds(int(timeframe.in_seconds() / 4))
6

7 //@variable The `close` value on the `lowerTimeframe`. Represents the first intrabar␣
↪→value on each chart bar.

8 float firstLTFClose = request.security(syminfo.tickerid, lowerTimeframe, close,␣
↪→lookahead = barmerge.lookahead_on)

9 //@variable The `close` value on the `lowerTimeframe`. Represents the last intrabar␣
↪→value on each chart bar.

10 float lastLTFClose = request.security(syminfo.tickerid, lowerTimeframe, close)
11

12 // Plot the values.
13 plot(firstLTFClose, "First intrabar close", color.teal, 3)
14 plot(lastLTFClose, "Last intrabar close", color.purple, 3)
15 // Highlight the background on realtime bars.
16 bgcolor(barstate.isrealtime ? color.new(color.orange, 70) : na, title = "Realtime␣

↪→background highlight")

Note that:
• The script determines the value of the lowerTimeframe by calculating the number of seconds in the chart
timeframe with timeframe.in_seconds(), then dividing by four and converting the result to a valid timeframe
string via timeframe.from_seconds().

• The plot of the series without lookahead (purple) aligns with the close value on the chart timeframe, as this
is the last intrabar value in the chart bar.

• Both request.security() calls return the same value (the current close) on each realtime bar, as shown on the

294 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.lookahead_on
https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.lookahead_off
https://www.tradingview.com/pine-script-reference/v5/#fun_timeframe.in_seconds
https://www.tradingview.com/pine-script-reference/v5/#fun_timeframe.from_seconds
https://www.tradingview.com/pine-script-reference/v5/#var_color.purple
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_barstate.isrealtime

Pine Script™ v5 User Manual

bars with the orange background.
• Scripts can retrieve up to 100,000 intrabars from a lower-timeframe context. See this section of the Limitations
page.

Note: While scripts can use request.security() to retrieve the values from a single intrabar on each chart bar, which might
provide utility in some unique cases, we recommend using the request.security_lower_tf() function for intrabar analysis
when possible, as it returns an array containing data from all available intrabars within a chart bar. See this section to
learn more.

Requestable data

The request.security() function is quite versatile, as it can retrieve values of any fundamental type (int, float, bool, color,
or string). It can also request the IDs of data structures and built-in or user-defined types that reference fundamental types.
The data this function requests depends on its expression parameter, which accepts any of the following arguments:

• Built-in variables and function calls

• Variables calculated by the script

• Tuples

• Calls to user-defined functions

• Chart points

• Collections

• User-defined types

Note: The request.security() function duplicates the scopes and operations required by the expression to calculate
its requested values in another context, which elevates runtime memory consumption. Additionally, the extra scopes
produced by each call to request.security() count toward the script’s compilation limits. See the Scope count section of the
Limitations page for more information.

Built-in variables and functions

A frequent use case of request.security() is requesting the output of a built-in variable or function/method call from another
symbol or timeframe.
For example, suppose we want to calculate the 20-bar SMA of a symbol’s ohlc4 price from the daily timeframe while on
an intraday chart. We can accomplish this with a single line of code:

float ma = request.security(syminfo.tickerid, "1D", ta.sma(ohlc4, 20))

The above line calculates the value of ta.sma(ohlc4, 20) on the current symbol from the daily timeframe.
It’s important to note that newcomers to Pine may sometimes confuse the above line of code as being equivalent to the
following:

float ma = ta.sma(request.security(syminfo.tickerid, "1D", ohlc4), 20)

However, this line will return an entirely different result. Rather than requesting a 20-bar SMA from the daily timeframe,
it requests the ohlc4 price from the daily timeframe and calclates the ta.sma() of the results over 20 chart bars.

4.14. Other timeframes and data 295

https://www.tradingview.com/pine-script-reference/v5/#var_color.orange
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.sma
https://www.tradingview.com/pine-script-reference/v5/#var_ohlc4
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.sma
https://www.tradingview.com/pine-script-reference/v5/#var_ohlc4
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.sma

Pine Script™ v5 User Manual

In essence, when the intention is to request the results of an expression from other contexts, pass the expression directly
to the expression parameter in the request.security() call, as demonstrated in the initial example.
Let’s expand on this concept. The script below calculates amulti-timeframe (MTF) ribbon ofmoving averages, where each
moving average in the ribbon calculates over the same number of bars on its respective timeframe. Each request.security()
call uses ta.sma(close, length) as its expression argument to return a length-bar SMA from the specified timeframe:

1 //@version=5
2 indicator("Requesting built-ins demo", "MTF Ribbon", true)
3

4 //@variable The length of each moving average.
5 int length = input.int(20, "Length", 1)
6

7 //@variable The number of seconds in the chart timeframe.
8 int chartSeconds = timeframe.in_seconds()
9

10 // Calculate the higher timeframes closest to 2, 3, and 4 times the size of the chart␣
↪→timeframe.

11 string htf1 = timeframe.from_seconds(chartSeconds * 2)
12 string htf2 = timeframe.from_seconds(chartSeconds * 3)
13 string htf3 = timeframe.from_seconds(chartSeconds * 4)
14

15 // Calculate the `length`-bar moving averages from each timeframe.
16 float chartAvg = ta.sma(ohlc4, length)
17 float htfAvg1 = request.security(syminfo.tickerid, htf1, ta.sma(ohlc4, length))
18 float htfAvg2 = request.security(syminfo.tickerid, htf2, ta.sma(ohlc4, length))
19 float htfAvg3 = request.security(syminfo.tickerid, htf3, ta.sma(ohlc4, length))
20

21 // Plot the results.
22 plot(chartAvg, "Chart timeframe SMA", color.red, 3)
23 plot(htfAvg1, "Double timeframe SMA", color.orange, 3)
24 plot(htfAvg2, "Triple timeframe SMA", color.green, 3)
25 plot(htfAvg3, "Quadruple timeframe SMA", color.blue, 3)
26

27 // Highlight the background on realtime bars.
28 bgcolor(barstate.isrealtime ? color.new(color.aqua, 70) : na, title = "Realtime␣

↪→highlight")

Note that:

296 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.sma

Pine Script™ v5 User Manual

• The script calculates the ribbon’s higher timeframes by multiplying the chart’s timeframe.in_seconds() value
by 2, 3, and 4, then converting each result into a valid timeframe string using timeframe.from_seconds().

• Instead of calling ta.sma() within each request.security() call, one could use the chartAvg variable as the
expression in each call to achieve the same result. See the next section for more information.

• On realtime bars, this script also tracks unconfirmed SMA values from each higher timeframe. See the
Historical and realtime behavior section to learn more.

Calculated variables

The expression parameter of request.security() accepts variables declared in the global scope, allowing scripts to
evaluate their variables’ calculations from other contexts without redundantly listing the operations in each function call.
For example, one can declare the following variable:

priceReturn = (close - close[1]) / close[1]

and execute the variable’s calculation from another context with request.security():

requestedReturn = request.security(symbol, timeframe.period, priceReturn)

The function call in the line above will return the result of the priceReturn calculation on another symbol’s data as
a series adapted to the current chart, which the script can display directly on the chart or utilize in additional operations.
The following example compares the price returns of the current chart’s symbol and another specifiedsymbol. The script
declares the priceReturn variable from the chart’s context, then uses that variable in request.security() to evaluate
its calculation on another symbol. It then calculates the correlation between the priceReturn and requeste-
dReturn and plots the result on the chart:

1 //@version=5
2 indicator("Requesting calculated variables demo", "Price return correlation")
3

4 //@variable The symbol to compare to the chart symbol.
5 string symbol = input.symbol("SPY", "Symbol to compare")
6 //@variable The number of bars in the calculation window.
7 int length = input.int(60, "Length", 1)
8

(continues on next page)

4.14. Other timeframes and data 297

https://www.tradingview.com/pine-script-reference/v5/#fun_timeframe.in_seconds
https://www.tradingview.com/pine-script-reference/v5/#fun_timeframe.from_seconds
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.sma
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.correlation

Pine Script™ v5 User Manual

(continued from previous page)
9 //@variable The close-to-close price return.
10 float priceReturn = (close - close[1]) / close[1]
11 //@variable The close-to-close price return calculated on another `symbol`.
12 float requestedReturn = request.security(symbol, timeframe.period, priceReturn)
13

14 //@variable The correlation between the `priceReturn` and `requestedReturn` over␣
↪→`length` bars.

15 float correlation = ta.correlation(priceReturn, requestedReturn, length)
16 //@variable The color of the correlation plot.
17 color plotColor = color.from_gradient(correlation, -1, 1, color.purple, color.orange)
18

19 // Plot the correlation value.
20 plot(correlation, "Correlation", plotColor, style = plot.style_area)

Note that:
• The request.security() call executes the same calculation used in the priceReturn declaration, except it
uses the close values fetched from the input symbol.

• The script colors the plot with a gradient based on the correlation value. To learn more about color
gradients in Pine, see this section of our User Manual’s page on colors.

Tuples

Tuples in Pine Script™ are comma-separated sets of expressions enclosed in brackets that can hold multiple values of
any available type. We use tuples when creating functions or other local blocks that return more than one value.
The request.security() function can accept a tuple as its expression argument, allowing scripts to request multiple
series of different types using a single function call. The expressions within requested tuples can be of any type outlined
throughout the Requestable data section of this page, excluding other tuples.

Note: The combined size of all tuples returned by request.*() calls in a script cannot exceed 127 elements. See
this section of the Limitations page for more information.

Tuples are particularly handy when a script needs to retrieve more than one value from a specific context.
For example, this script calculates the percent rank of the close price over length bars and assigns the expression to
the rank variable. It then calls request.security() to request a tuple containing the rank, ta.crossover(rank, 50), and
ta.crossunder(rank, 50) values from the specified timeframe. The script plots the requestedRank and uses the
crossOver and crossUnder “bool” values within bgcolor() to conditionally highlight the chart pane’s background:

298 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#fun_color.from_gradient
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.percentrank
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.crossover
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.crossunder
https://www.tradingview.com/pine-script-reference/v5/#fun_bgcolor

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Requesting tuples demo", "Percent rank cross")
3

4 //@variable The timeframe of the request.
5 string timeframe = input.timeframe("240", "Timeframe")
6 //@variable The number of bars in the calculation.
7 int length = input.int(20, "Length")
8

9 //@variable The previous bar's percent rank of the `close` price over `length` bars.
10 float rank = ta.percentrank(close, length)[1]
11

12 // Request the `rank` value from another `timeframe`, and two "bool" values␣
↪→indicating the `rank` from the `timeframe`

13 // crossed over or under 50.
14 [requestedRank, crossOver, crossUnder] = request.security(
15 syminfo.tickerid, timeframe, [rank, ta.crossover(rank, 50), ta.crossunder(rank,␣

↪→50)],
16 lookahead = barmerge.lookahead_on
17)
18

19 // Plot the `requestedRank` and create a horizontal line at 50.
20 plot(requestedRank, "Percent Rank", linewidth = 3)
21 hline(50, "Cross line", linewidth = 2)
22 // Highlight the background of all bars where the `timeframe`'s `crossOver` or␣

↪→`crossUnder` value is `true`.
23 bgcolor(crossOver ? color.new(color.green, 50) : crossUnder ? color.new(color.red,␣

↪→50) : na)

Note that:
• We’ve offset the rank variable’s expression by one bar using the history-referencing operator [] and included
barmerge.lookahead_on in the request.security() call to ensure the values on realtime bars do not repaint after
becoming historical bars. See the Avoiding repainting section for more information.

• The request.security() call returns a tuple, so we use a tuple declaration to declare the requestedRank,
crossOver, and crossUnder variables. To learn more about using tuples, see this section of our User
Manual’s Type system page.

4.14. Other timeframes and data 299

https://www.tradingview.com/pine-script-reference/v5/#op_{[}{]}
https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.lookahead_on
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security

Pine Script™ v5 User Manual

User-defined functions

User-defined functions and methods are custom functions written by users. They allow users to define sequences of
operations associated with an identifier that scripts can conveniently call throughout their execution (e.g., myUDF()).
The request.security() function can request the results of user-defined functions and methods whose scopes consist of any
types outlined throughout this page’s Requestable data section.
For example, this script contains a user-defined weightedBB() function that calculates Bollinger Bands with the basis
average weighted by a specified weight series. The function returns a tuple of custom band values. The script calls the
weightedBB() as the expression argument in request.security() to retrieve a tuple of band values calculated on
the specified timeframe and plots the results on the chart:

1 //@version=5
2 indicator("Requesting user-defined functions demo", "Weighted Bollinger Bands", true)
3

4 //@variable The timeframe of the request.
5 string timeframe = input.timeframe("480", "Timeframe")
6

7 //@function Calculates Bollinger Bands with a custom weighted basis.
8 //@param source The series of values to process.
9 //@param length The number of bars in the calculation.
10 //@param mult The standard deviation multiplier.
11 //@param weight The series of weights corresponding to each `source` value.
12 //@returns A tuple containing the basis, upper band, and lower band respectively.
13 weightedBB(float source, int length, float mult = 2.0, float weight = 1.0) =>
14 //@variable The basis of the bands.
15 float ma = math.sum(source * weight, length) / math.sum(weight, length)
16 //@variable The standard deviation from the `ma`.
17 float dev = 0.0
18 // Loop to accumulate squared error.
19 for i = 0 to length - 1
20 difference = source[i] - ma
21 dev += difference * difference
22 // Divide `dev` by the `length`, take the square root, and multiply by the `mult`.
23 dev := math.sqrt(dev / length) * mult
24 // Return the bands.
25 [ma, ma + dev, ma - dev]
26

(continues on next page)

300 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security

Pine Script™ v5 User Manual

(continued from previous page)
27 // Request weighted bands calculated on the chart symbol's prices over 20 bars from␣

↪→the
28 // last confirmed bar on the `timeframe`.
29 [basis, highBand, lowBand] = request.security(
30 syminfo.tickerid, timeframe, weightedBB(close[1], 20, 2.0, (high - low)[1]),␣

↪→lookahead = barmerge.lookahead_on
31)
32

33 // Plot the values.
34 basisPlot = plot(basis, "Basis", color.orange, 2)
35 upperPlot = plot(highBand, "Upper", color.teal, 2)
36 lowerPlot = plot(lowBand, "Lower", color.maroon, 2)
37 fill(upperPlot, lowerPlot, color.new(color.gray, 90), "Background")

Note that:
• We offset the source and weight arguments in the weightedBB() call used as the expression in
request.security() and used barmerge.lookahead_on to ensure the requested results reflect the last confirmed
values from the timeframe on realtime bars. See this section to learn more.

Chart points

Chart points are reference types that represent coordinates on the chart. Lines, boxes, polylines, and labels use chart.point
objects to set their display locations.
The request.security() function can use the ID of a chart.point instance in its expression argument, allowing scripts
to retrieve chart coordinates from other contexts.
The example below requests a tuple of historical chart points from a higher timeframe and uses them to draw boxes
on the chart. The script declares the topLeft and bottomRight variables that reference chart.point IDs from the
last confirmed bar. It then uses request.security() to request a tuple containing the IDs of chart points representing the
topLeft and bottomRight from a higherTimeframe.
When a new bar starts on the higherTimeframe, the script draws a new box using the time and price coordinates
from the requestedTopLeft and requestedBottomRight chart points:

4.14. Other timeframes and data 301

https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.lookahead_on
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#type_chart.point
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_box.new

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Requesting chart points demo", "HTF Boxes", true, max_boxes_count = 500)
3

4 //@variable The timeframe to request data from.
5 string higherTimeframe = input.timeframe("1D", "Timeframe")
6

7 // Raise a runtime error if the `higherTimeframe` is smaller than the chart's␣
↪→timeframe.

8 if timeframe.in_seconds(higherTimeframe) < timeframe.in_seconds(timeframe.period)
9 runtime.error("The selected timeframe is too small. Choose a higher timeframe.")
10

11 //@variable A `chart.point` containing top-left coordinates from the last confirmed␣
↪→bar.

12 topLeft = chart.point.now(high)[1]
13 //@variable A `chart.point` containing bottom-right coordinates from the last␣

↪→confirmed bar.
14 bottomRight = chart.point.from_time(time_close, low)[1]
15

16 // Request the last confirmed `topLeft` and `bottomRight` chart points from the␣
↪→`higherTimeframe`.

17 [requestedTopLeft, requestedBottomRight] = request.security(
18 syminfo.tickerid, higherTimeframe, [topLeft, bottomRight], lookahead = barmerge.

↪→lookahead_on
19)
20

21 // Draw a new box when a new `higherTimeframe` bar starts.
22 // The box uses the `time` fields from the `requestedTopLeft` and␣

↪→`requestedBottomRight` as x-coordinates.
23 if timeframe.change(higherTimeframe)
24 box.new(
25 requestedTopLeft, requestedBottomRight, color.purple, 3,
26 xloc = xloc.bar_time, bgcolor = color.new(color.purple, 90)
27)

Note that:
• Since this example is designed specifically for higher timeframes, we’ve included a custom runtime error that
the script raises when the timeframe.in_seconds() of the higherTimeframe is smaller than that of the
chart’s timeframe.

Collections

Pine Script™ collections (arrays, matrices, and maps) are data structures that contain an arbitrary number of elements
with specified types. The request.security() function can retrieve the IDs of collections whose elements consist of:

• Fundamental types
• Chart points

• User-defined types that satisfy the criteria listed in the section below

This example calculates the ratio of a confirmed bar’s high-low range to the range between the highest and lowest values
over 10 bars from a specified symbol and timeframe. It uses maps to hold the values used in the calculations.
The script creates a data map with “string” keys and “float” values to hold high, low, highest, and lowest price values
on each bar, which it uses as the expression in request.security() to calculate an otherData map representing the
data from the specified context. It uses the values associated with the “High”, “Low”, “Highest”, and “Lowest” keys of
the otherData map to calculate the ratio that it plots in the chart pane:

302 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_runtime.error
https://www.tradingview.com/pine-script-reference/v5/#fun_timeframe.in_seconds
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe.period
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.highest
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.lowest
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.highest
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.lowest
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Requesting collections demo", "Bar range ratio")
3

4 //@variable The ticker ID to request data from.
5 string symbol = input.symbol("", "Symbol")
6 //@variable The timeframe of the request.
7 string timeframe = input.timeframe("30", "Timeframe")
8

9 //@variable A map with "string" keys and "float" values.
10 var map<string, float> data = map.new<string, float>()
11

12 // Put key-value pairs into the `data` map.
13 map.put(data, "High", high)
14 map.put(data, "Low", low)
15 map.put(data, "Highest", ta.highest(10))
16 map.put(data, "Lowest", ta.lowest(10))
17

18 //@variable A new `map` whose data is calculated from the last confirmed bar of the␣
↪→requested context.

19 map<string, float> otherData = request.security(symbol, timeframe, data[1], lookahead␣
↪→= barmerge.lookahead_on)

20

21 //@variable The ratio of the context's bar range to the max range over 10 bars.␣
↪→Returns `na` if no data is available.

22 float ratio = na
23 if not na(otherData)
24 ratio := (otherData.get("High") - otherData.get("Low")) / (otherData.get("Highest

↪→") - otherData.get("Lowest"))
25

26 //@variable A gradient color for the plot of the `ratio`.
27 color ratioColor = color.from_gradient(ratio, 0, 1, color.purple, color.orange)
28

29 // Plot the `ratio`.
30 plot(ratio, "Range Ratio", ratioColor, 3, plot.style_area)

Note that:
• The request.security() call in this script can return na if no data is available from the specified context. Since
one cannot call methods on a map variable when its value is na, we’ve added an if structure to only calculate
a new ratio value when otherData references a valid map ID.

4.14. Other timeframes and data 303

https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#type_map
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#kw_if
https://www.tradingview.com/pine-script-reference/v5/#type_map

Pine Script™ v5 User Manual

User-defined types

User-defined types (UDTs) are composite types containing an arbitrary number of fields, which can be of any available
type, including other user-defined types.
The request.security() function can retrieve the IDs of objects produced by UDTs from other contexts if their fields consist
of:

• Fundamental types
• Chart points

• Collections that satisfy the criteria listed in the section above

• Other UDTs whose fields consist of any of these types
The following example requests an object ID using a specified symbol and displays its field values on a chart pane.
The script contains a TickerInfo UDT with “string” fields for syminfo.* values, an array field to store recent
“float” price data, and an “int” field to hold the requested ticker’s bar_index value. It assigns a new TickerInfo ID to
an info variable on every bar and uses the variable as the expression in request.security() to retrieve the ID of an
object representing the calculated info from the specified symbol.
The script displays the requestedInfo object’s description, tickerType, currency, and barIndex
values in a label and uses plotcandle() to display the values from its prices array:

1 //@version=5
2 indicator("Requesting user-defined types demo", "Ticker info")
3

4 //@variable The symbol to request information from.
5 string symbol = input.symbol("NASDAQ:AAPL", "Symbol")
6

7 //@type A custom type containing information about a ticker.
8 //@field description The symbol's description.
9 //@field tickerType The type of ticker.
10 //@field currency The symbol's currency.
11 //@field prices An array of the symbol's current prices.
12 //@field barIndex The ticker's `bar_index`.
13 type TickerInfo
14 string description
15 string tickerType

(continues on next page)

304 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#type_label
https://www.tradingview.com/pine-script-reference/v5/#fun_plotcandle

Pine Script™ v5 User Manual

(continued from previous page)
16 string currency
17 array<float> prices
18 int barIndex
19

20 //@variable A `TickerInfo` object containing current data.
21 info = TickerInfo.new(
22 syminfo.description, syminfo.type, syminfo.currency, array.from(open, high, low,␣

↪→close), bar_index
23)
24 //@variable The `info` requested from the specified `symbol`.
25 TickerInfo requestedInfo = request.security(symbol, timeframe.period, info)
26 // Assign a new `TickerInfo` instance to `requestedInfo` if one wasn't retrieved.
27 if na(requestedInfo)
28 requestedInfo := TickerInfo.new(prices = array.new<float>(4))
29

30 //@variable A label displaying information from the `requestedInfo` object.
31 var infoLabel = label.new(
32 na, na, "", color = color.purple, style = label.style_label_left, textcolor =␣

↪→color.white, size = size.large
33)
34 //@variable The text to display inside the `infoLabel`.
35 string infoText = na(requestedInfo) ? "" : str.format(
36 "{0}\nType: {1}\nCurrency: {2}\nBar Index: {3}",
37 requestedInfo.description, requestedInfo.tickerType, requestedInfo.currency,␣

↪→requestedInfo.barIndex
38)
39

40 // Set the `point` and `text` of the `infoLabel`.
41 label.set_point(infoLabel, chart.point.now(array.last(requestedInfo.prices)))
42 label.set_text(infoLabel, infoText)
43 // Plot candles using the values from the `prices` array of the `requestedInfo`.
44 plotcandle(
45 requestedInfo.prices.get(0), requestedInfo.prices.get(1), requestedInfo.prices.

↪→get(2), requestedInfo.prices.get(3),
46 "Requested Prices"
47)

Note that:
• The syminfo.* variables used in this script all return “simple string” qualified types. However, objects in
Pine are always qualified as “series”. Consequently, all values assigned to the info object’s fields automati-
cally adopt the “series” qualifier.

• It is possible for the request.security() call to return na due to differences between the data requested from
the symbol and the main chart. This script assigns a new TickerInfo object to the requestedInfo
in that case to prevent runtime errors.

4.14. Other timeframes and data 305

https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#var_na

Pine Script™ v5 User Manual

4.14.5 `request.security_lower_tf()`

The request.security_lower_tf() function is an alternative to request.security() designed for reliably requesting information
from lower-timeframe (LTF) contexts.
While request.security() can retrieve data from a single intrabar (LTF bar) in each chart bar, request.security_lower_tf()
retrieves data from all available intrabars in each chart bar, which the script can access and use in additional calculations.
Each request.security_lower_tf() call can retrieve up to 100,000 intrabars from a lower timeframe. See this section of our
Limitations page for more information.

Note: Working with request.security_lower_tf() involves frequent usage of arrays since it always returns array results.
We therefore recommend you familiarize yourself with arrays to make the most of this function in your scripts.

Below is the function’s signature, which is similar to request.security():

request.security_lower_tf(symbol, timeframe, expression, ignore_invalid_symbol,␣
↪→currency, ignore_invalid_timeframe) → array<type>

This function only requests data from timeframes less than or equal to the chart’s timeframe. If the timeframe of the
request represents a higher timeframe than the chart’s timeframe, the function will either raise a runtime error or return na
values depending on the ignore_invalid_timeframe argument in the call. The default value for this parameter
is false, meaning it will raise an error and halt the script’s execution when attempting to request HTF data.

Requesting intrabar data

Intrabar data can provide a script with additional information that may not be obvious or accessible from solely analyzing
data sampled on the chart’s timerframe. The request.security_lower_tf() function can retrieve many data types from an
intrabar context.
Before you venture further in this section, we recommend exploring the Requestable data portion of the request.security()
section above, which provides foundational information about the types of data one can request. The expression
parameter in request.security_lower_tf() accepts most of the same arguments discussed in that section, excluding direct
references to collections and mutable variables declared in the script’s main scope. Although it accepts many of the same
types of arguments, this function returns array results, which comes with some differences in interpretation and handling,
as explained below.

Note: As with request.security(), request.security_lower_tf() duplicates the scopes and operations required to calculate
the expression from another context. The scopes from request.security_lower_tf() increase runtime memory con-
sumption and count toward the script’s compilation limits. See the Scope count section of the Limitations page to learn
more.

Intrabar data arrays

Lower timeframes contain more data points than higher timeframes, as new values come in at a higher frequency. For
example, when comparing a 1-minute chart to an hourly chart, the 1-minute chart will have up to 60 times the number
of bars per hour, depending on the available data.
To address the fact that multiple intrabars exist within a chart bar, request.security_lower_tf() always returns its results
as arrays. The elements in the returned arrays represent the expression values retrieved from the lower timeframe
sorted in ascending order based on each intrabar’s timestamp.

306 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe.period
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf

Pine Script™ v5 User Manual

The type template assigned to the returned arrays corresponds to the value types passed in the request.security_lower_tf()
call. For example, using an “int” as the expression will produce an array<int> instance, a “bool” as the ex-
pression will produce an array<bool> instance, etc.
The following script uses intrabar information to decompose the chart’s close-to-close price changes into positive and neg-
ative parts. It calls request.security_lower_tf() to fetch a “float” array of ta.change(close) values from the lowerTime-
frame on each chart bar, then accesses all the array’s elements using a for…in loop to accumulate positiveChange
and negativeChange sums. The script adds the accumulated values to calculate the netChange, then plots the
results on the chart alongside the priceChange for comparison:

1 //@version=5
2 indicator("Intrabar arrays demo", "Intrabar price changes")
3

4 //@variable The lower timeframe of the requested data.
5 string lowerTimeframe = input.timeframe("1", "Timeframe")
6

7 //@variable The close-to-close price change.
8 float priceChange = ta.change(close)
9

10 //@variable An array of `close` values from available intrabars on the␣
↪→`lowerTimeframe`.

11 array<float> intrabarChanges = request.security_lower_tf(syminfo.tickerid,␣
↪→lowerTimeframe, priceChange)

12

13 //@variable The total positive intrabar `close` movement on the chart bar.
14 float positiveChange = 0.0
15 //@variable The total negative intrabar `close` movement on the chart bar.
16 float negativeChange = 0.0
17

18 // Loop to calculate totals, starting from the chart bar's first available intrabar.
19 for change in intrabarChanges
20 // Add the `change` to `positiveChange` if its sign is 1, and add to␣

↪→`negativeChange` if its sign is -1.
21 switch math.sign(change)
22 1 => positiveChange += change
23 -1 => negativeChange += change
24

25 //@variable The sum of `positiveChange` and `negativeChange`. Equals the␣
↪→`priceChange` on bars with available intrabars.

(continues on next page)

4.14. Other timeframes and data 307

https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.change
https://www.tradingview.com/pine-script-reference/v5/#kw_for...in

Pine Script™ v5 User Manual

(continued from previous page)
26 float netChange = positiveChange + negativeChange
27

28 // Plot the `positiveChange`, `negativeChange`, and `netChange`.
29 plot(positiveChange, "Positive intrabar change", color.teal, style = plot.style_area)
30 plot(negativeChange, "Negative intrabar change", color.maroon, style = plot.style_

↪→area)
31 plot(netChange, "Net intrabar change", color.yellow, 5)
32 // Plot the `priceChange` to compare.
33 plot(priceChange, "Chart price change", color.orange, 2)

Note that:
• The plots based on intrabar data may not appear on all available chart bars, as request.security_lower_tf() can
only access up to the most recent 100,000 intrabars available from the requested context. When executing
this function on a chart bar that doesn’t have accessible intrabar data, it will return an empty array.

• The number of intrabars per chart bar may vary depending on the data available from the context and the
chart the script executes on. For example, a provider’s 1-minute data feed may not include data for every
minute within the 60-minute timeframe due to a lack of trading activity over some 1-minute intervals. To
check the number of intrabars retrieved for a chart bar, one can use array.size() on the resulting array.

• If the lowerTimeframe value is greater than the chart’s timeframe, the script will raise a runtime error,
as we have not supplied an ignore_invalid_timeframe argument in the request.security_lower_tf()
call.

Tuples of intrabar data

When passing a tuple or a function call that returns a tuple as the expression argument in request.security_lower_tf(),
the result is a tuple of arrays with type templates corresponding to the types within the argument. For example, using a
[float, string, color] tuple as the expression will result in [array<float>, array<string>,
array<color>] data returned by the function. Using a tuple expression allows a script to fetch several arrays of
intrabar data with a single request.security_lower_tf() function call.

Note: The combined size of all tuples returned by request.*() calls in a script is limited to 127 elements. See this
section of the Limitations page for more information.

The following example requests OHLC data from a lower timeframe and visualizes the current bar’s intrabars on the chart
using lines and boxes. The script calls request.security_lower_tf() with the [open, high, low, close] tuple as
its expression to retrieve a tuple of arrays representing OHLC information from a calculated lowerTimeframe.
It then uses a for loop to set line coordinates with the retrieved data and current bar indices to display the results next to
the current chart bar, providing a “magnified view” of the price movement within the latest candle. It also draws a box
around the lines to indicate the chart region occupied by intrabar drawings:

308 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_array.size
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#kw_for
https://www.tradingview.com/pine-script-reference/v5/#type_box

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Tuples of intrabar data demo", "Candle magnifier", max_lines_count = 500)
3

4 //@variable The maximum number of intrabars to display.
5 int maxIntrabars = input.int(20, "Max intrabars", 1, 250)
6 //@variable The width of the drawn candle bodies.
7 int candleWidth = input.int(20, "Candle width", 2)
8

9 //@variable The largest valid timeframe closest to `maxIntrabars` times smaller than␣
↪→the chart timeframe.

10 string lowerTimeframe = timeframe.from_seconds(math.ceil(timeframe.in_seconds() /␣
↪→maxIntrabars))

11

12 //@variable An array of lines to represent intrabar wicks.
13 var array<line> wicks = array.new<line>()
14 //@variable An array of lines to represent intrabar bodies.
15 var array<line> bodies = array.new<line>()
16 //@variable A box that surrounds the displayed intrabars.
17 var box magnifierBox = box.new(na, na, na, na, bgcolor = na)
18

19 // Fill the `wicks` and `bodies` arrays with blank lines on the first bar.
20 if barstate.isfirst
21 for i = 1 to maxIntrabars
22 array.push(wicks, line.new(na, na, na, na, color = color.gray))
23 array.push(bodies, line.new(na, na, na, na, width = candleWidth))
24

25 //@variable A tuple of "float" arrays containing `open`, `high`, `low`, and `close`␣
↪→prices from the `lowerTimeframe`.

26 [oData, hData, lData, cData] = request.security_lower_tf(syminfo.tickerid,␣
↪→lowerTimeframe, [open, high, low, close])

27 //@variable The number of intrabars retrieved from the `lowerTimeframe` on the chart␣
↪→bar.

28 int numIntrabars = array.size(oData)
29

30 if numIntrabars > 0
31 // Define the start and end bar index values for intrabar display.
32 int startIndex = bar_index + 2
33 int endIndex = startIndex + numIntrabars
34 // Loop to update lines.

(continues on next page)

4.14. Other timeframes and data 309

Pine Script™ v5 User Manual

(continued from previous page)
35 for i = 0 to maxIntrabars - 1
36 line wickLine = array.get(wicks, i)
37 line bodyLine = array.get(bodies, i)
38 if i < numIntrabars
39 //@variable The `bar_index` of the drawing.
40 int candleIndex = startIndex + i
41 // Update the properties of the `wickLine` and `bodyLine`.
42 line.set_xy1(wickLine, startIndex + i, array.get(hData, i))
43 line.set_xy2(wickLine, startIndex + i, array.get(lData, i))
44 line.set_xy1(bodyLine, startIndex + i, array.get(oData, i))
45 line.set_xy2(bodyLine, startIndex + i, array.get(cData, i))
46 line.set_color(bodyLine, bodyLine.get_y2() > bodyLine.get_y1() ? color.

↪→teal : color.maroon)
47 continue
48 // Set the coordinates of the `wickLine` and `bodyLine` to `na` if no␣

↪→intrabar data is available at the index.
49 line.set_xy1(wickLine, na, na)
50 line.set_xy2(wickLine, na, na)
51 line.set_xy1(bodyLine, na, na)
52 line.set_xy2(bodyLine, na, na)
53 // Set the coordinates of the `magnifierBox`.
54 box.set_lefttop(magnifierBox, startIndex - 1, array.max(hData))
55 box.set_rightbottom(magnifierBox, endIndex, array.min(lData))

Note that:
• The script draws each candle using two lines: one to represent wicks and the other to represent the body.
Since the script can display up to 500 lines on the chart, we’ve limited the maxIntrabars input to 250.

• The lowerTimeframe value is the result of calculating the math.ceil() of the timeframe.in_seconds()
divided by the maxIntrabars and converting to a valid timeframe string with timeframe.from_seconds().

• The script sets the top of the box drawing using the array.max() of the requested hData array, and it sets
the box’s bottom using the array.min() of the requested lData array. As we see on the chart, these values
correspond to the high and low of the chart bar.

Requesting collections

In some cases, a script may need to request the IDs of collections from an intrabar context. However, unlike re-
quest.security(), one cannot pass collections or calls to functions that return them as the expression argument in
a request.security_lower_tf() call, as arrays cannot directly reference other collections.
Despite these limitations, it is possible to request collections from lower timeframes, if needed, with the help of wrapper
types.

Note: The use case described below is advanced and not recommended for beginners. Before exploring this approach,
we recommend understanding how user-defined types and collections work in Pine Script™. When possible, we recom-
mend using simpler methods to manage LTF requests, and only using this approach when nothing else will suffice.

To make collections requestable with request.security_lower_tf(), we must create a UDT with a field to reference a col-
lection ID. This step is necessary since arrays cannot reference other collections directly but can reference UDTs with
collection fields:

310 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_math.ceil
https://www.tradingview.com/pine-script-reference/v5/#fun_timeframe.in_seconds
https://www.tradingview.com/pine-script-reference/v5/#fun_timeframe.from_seconds
https://www.tradingview.com/pine-script-reference/v5/#fun_array.max
https://www.tradingview.com/pine-script-reference/v5/#fun_array.min
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf

Pine Script™ v5 User Manual

//@type A "wrapper" type to hold an `array<float>` instance.
type Wrapper

array<float> collection

With our Wrapper UDT defined, we can now pass the IDs of objects of the UDT to the expression parameter in
request.security_lower_tf().
A straightforward approach is to call the built-in *.new() function as the expression. For example, this line of
code calls Wrapper.new() with array.from(close) as its collection within request.security_lower_tf():

//@variable An array of `Wrapper` IDs requested from the 1-minute timeframe.
array<Wrapper> wrappers = request.security_lower_tf(syminfo.tickerid, "1", Wrapper.
↪→new(array.from(close)))

Alternatively, we can create a user-defined function or method that returns an object of the UDT and call that func-
tion within request.security_lower_tf(). For instance, this code calls a custom newWrapper() function that returns a
Wrapper ID as the expression argument:

//@function Creates a new `Wrapper` instance to wrap the specified `collection`.
newWrapper(array<float> collection) =>

Wrapper.new(collection)

//@variable An array of `Wrapper` IDs requested from the 1-minute timeframe.
array<Wrapper> wrappers = request.security_lower_tf(syminfo.tickerid, "1",␣
↪→newWrapper(array.from(close)))

The result with either of the above is an array containing Wrapper IDs from all available intrabars in the chart bar,
which the script can use to reference Wrapper instances from specific intrabars and use their collection fields in
additional operations.
The script below utilizes this approach to collect arrays of intrabar data from a lowerTimeframe and uses them to
display data from a specific intrabar. Its custom Prices type contains a single data field to reference array<float>
instances that hold price data, and the user-defined newPrices() function returns the ID of a Prices object.
The script calls request.security_lower_tf() with a newPrices() call as its expression argument to retrieve an
array of Prices IDs from each intrabar in the chart bar, then uses array.get() to get the ID from a specified available
intrabar, if it exists. Lastly, it uses array.get() on the data array assigned to that instance and calls plotcandle() to display
its values on the chart:

4.14. Other timeframes and data 311

https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_array.from
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#fun_array.get
https://www.tradingview.com/pine-script-reference/v5/#fun_array.get
https://www.tradingview.com/pine-script-reference/v5/#fun_plotcandle

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Requesting LTF collections demo", "Intrabar viewer", true)
3

4 //@variable The timeframe of the LTF data request.
5 string lowerTimeframe = input.timeframe("1", "Timeframe")
6 //@variable The index of the intrabar to show on each chart bar. 0 is the first␣

↪→available intrabar.
7 int intrabarIndex = input.int(0, "Intrabar to show", 0)
8

9 //@variable A custom type to hold an array of price `data`.
10 type Prices
11 array<float> data
12

13 //@function Returns a new `Prices` instance containing current `open`, `high`, `low`,␣
↪→and `close` prices.

14 newPrices() =>
15 Prices.new(array.from(open, high, low, close))
16

17 //@variable An array of `Prices` requested from the `lowerTimeframe`.
18 array<Prices> requestedPrices = request.security_lower_tf(syminfo.tickerid,␣

↪→lowerTimeframe, newPrices())
19

20 //@variable The `Prices` ID from the `requestedPrices` array at the `intrabarIndex`,␣
↪→or `na` if not available.

21 Prices intrabarPrices = array.size(requestedPrices) > intrabarIndex ? array.
↪→get(requestedPrices, intrabarIndex) : na

22 //@variable The `data` array from the `intrabarPrices`, or an array of `na` values if␣
↪→`intrabarPrices` is `na`.

23 array<float> intrabarData = na(intrabarPrices) ? array.new<float>(4, na) :␣
↪→intrabarPrices.data

24

25 // Plot the `intrabarData` values as candles.
26 plotcandle(intrabarData.get(0), intrabarData.get(1), intrabarData.get(2),␣

↪→intrabarData.get(3))

Note that:
• The intrabarPrices variable only references a Prices ID if the size of the requestedPrices
array is greater than the intrabarIndex, as attempting to use array.get() to get an element that doesn’t
exist will result in an out of bounds error.

• The intrabarData variable only references the data field from intrabarPrices if a valid Prices
ID exists since a script cannot reference fields of an na value.

• The process used in this example is not necessary to achieve the intended result. We could instead avoid using
UDTs and pass an [open, high, low, close] tuple to the expression parameter to retrieve a
tuple of arrays for further operations, as explained in the previous section.

312 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_array.size
https://www.tradingview.com/pine-script-reference/v5/#fun_array.get
https://www.tradingview.com/pine-script-reference/v5/#var_na

Pine Script™ v5 User Manual

4.14.6 Custom contexts

Pine Script™ includes multiple ticker.*() functions that allow scripts to construct custom ticker IDs that specify ad-
ditional settings for data requests when used as a symbol argument in request.security() and request.security_lower_tf():

• ticker.new() constructs a custom ticker ID from a specified prefix and ticker with additional session and
adjustment settings.

• ticker.modify() constructs a modified form of a specified tickerid with additional session and adjust-
ment settings.

• ticker.heikinashi(), ticker.renko(), ticker.pointfigure(), ticker.kagi(), and ticker.linebreak() construct a modified
form a symbol with non-standard chart settings.

• ticker.inherit() constructs a new ticker ID for a symbol with additional parameters inherited from the
from_tickerid specified in the function call, allowing scripts to request the symbol data with the same
modifiers as the from_tickerid, including session, dividend adjustment, currency conversion, non-standard
chart type, back-adjustment, settlement-as-close, etc.

• ticker.standard() constructs a standard ticker ID representing the symbol without additional modifiers.
Let’s explore some practical examples of applying ticker.*() functions to request data from custom contexts.
Suppose wewant to include dividend adjustment in a stock symbol’s prices without enabling the “Adjust data for dividends”
option in the “Symbol” section of the chart’s settings. We can achieve this in a script by constructing a custom ticker ID
for the instrument using ticker.new() or ticker.modify() with an adjustment value of adjustment.dividends.
This script creates an adjustedTickerID using ticker.modify(), uses that ticker ID as the symbol in re-
quest.security() to retrieve a tuple of adjusted price values, then plots the result as candles on the chart. It also highlights
the background when the requested prices differ from the prices without dividend adjustment.
As we see on the “NYSE:XOM” chart below, enabling dividend adjustment results in different historical values before the
date of the latest dividend:

1 //@version=5
2 indicator("Custom contexts demo 1", "Adjusted prices", true)
3

4 //@variable A custom ticker ID representing the chart's symbol with the dividend␣
↪→adjustment modifier.

5 string adjustedTickerID = ticker.modify(syminfo.tickerid, adjustment = adjustment.
↪→dividends)

(continues on next page)

4.14. Other timeframes and data 313

https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker.new
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker.modify
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker.heikinashi
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker.renko
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker.pointfigure
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker.kagi
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker.linebreak
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker.inherit
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker.standard
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker.new
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker.modify
https://www.tradingview.com/pine-script-reference/v5/#var_adjustment.dividends
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker.modify
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_plotcandle

Pine Script™ v5 User Manual

(continued from previous page)
6

7 // Request the adjusted prices for the chart's symbol.
8 [o, h, l, c] = request.security(adjustedTickerID, timeframe.period, [open, high, low,␣

↪→close])
9

10 //@variable The color of the candles on the chart.
11 color candleColor = c > o ? color.teal : color.maroon
12

13 // Plot the adjusted prices.
14 plotcandle(o, h, l, c, "Adjusted Prices", candleColor)
15 // Highlight the background when `c` is different from `close`.
16 bgcolor(c != close ? color.new(color.orange, 80) : na)

Note that:
• If a modifier included in a constructed ticker ID does not apply to the symbol, the script will ignore that
modifier when requesting data. For instance, this script will display the same values as the main chart on
forex symbols such as “EURUSD”.

While the example above demonstrates a simple way to modify the chart’s symbol, a more frequent use case for ticker.
*() functions is applying custom modifiers to another symbol while requesting data. If a ticker ID referenced in a script
already has the modifiers one would like to apply (e.g., adjustment settings, session type, etc.), they can use ticker.inherit()
to quickly and efficiently add those modifiers to another symbol.
In the example below, we’ve edited the previous script to request data for a symbolInput using modifiers inherited
from the adjustedTickerID. This script calls ticker.inherit() to construct an inheritedTickerID and uses that
ticker ID in a request.security() call. It also requests data for the symbolInput without additional modifiers and plots
candles for both ticker IDs in a separate chart pane to compare the difference.
As shown on the chart, the data requested using the inheritedTickerID includes dividend adjustment, whereas the
data requested using the symbolInput directly does not:

1 //@version=5
2 indicator("Custom contexts demo 2", "Inherited adjustment")
3

4 //@variable The symbol to request data from.
5 string symbolInput = input.symbol("NYSE:PFE", "Symbol")
6

(continues on next page)

314 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_ticker.inherit
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker.inherit
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_plotcandle

Pine Script™ v5 User Manual

(continued from previous page)
7 //@variable A custom ticker ID representing the chart's symbol with the dividend␣

↪→adjustment modifier.
8 string adjustedTickerID = ticker.modify(syminfo.tickerid, adjustment = adjustment.

↪→dividends)
9 //@variable A custom ticker ID representing the `symbolInput` with modifiers␣

↪→inherited from the `adjustedTickerID`.
10 string inheritedTickerID = ticker.inherit(adjustedTickerID, symbolInput)
11

12 // Request prices using the `symbolInput`.
13 [o1, h1, l1, c1] = request.security(symbolInput, timeframe.period, [open, high, low,␣

↪→close])
14 // Request prices using the `inheritedTickerID`.
15 [o2, h2, l2, c2] = request.security(inheritedTickerID, timeframe.period, [open, high,␣

↪→low, close])
16

17 //@variable The color of the candles that use the `inheritedTickerID` prices.
18 color candleColor = c2 > o2 ? color.teal : color.maroon
19

20 // Plot the `symbol` prices.
21 plotcandle(o1, h1, l1, c1, "Symbol", color.gray, color.gray, bordercolor = color.gray)
22 // Plot the `inheritedTickerID` prices.
23 plotcandle(o2, h2, l2, c2, "Symbol With Modifiers", candleColor)
24 // Highlight the background when `c1` is different from `c2`.
25 bgcolor(c1 != c2 ? color.new(color.orange, 80) : na)

Note that:
• Since theadjustedTickerID represents amodified form of the syminfo.tickerid, if wemodify the chart’s
context in other ways, such as changing the chart type or enabling extended trading hours in the chart’s settings,
those modifiers will also apply to the adjustedTickerID and inheritedTickerID. However, they
will not apply to the symbolInput since it represents a standard ticker ID.

Another frequent use case for requesting custom contexts is retrieving data that uses non-standard chart calculations.
For example, suppose we want to use Renko price values to calculate trade signals in a strategy() script. If we simply
change the chart type to “Renko” to get the prices, the strategy will also simulate its trades based on those synthetic prices,
producing misleading results:

4.14. Other timeframes and data 315

https://www.tradingview.com/pine-script-reference/v5/#var_syminfo.tickerid
https://www.tradingview.com/support/solutions/43000502284-renko-charts/
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/support/solutions/43000481029/

Pine Script™ v5 User Manual

1 //@version=5
2 strategy(
3 "Custom contexts demo 3", "Renko strategy", true, default_qty_type = strategy.

↪→percent_of_equity,
4 default_qty_value = 2, initial_capital = 50000, slippage = 2,
5 commission_type = strategy.commission.cash_per_contract, commission_value = 1,␣

↪→margin_long = 100,
6 margin_short = 100
7)
8

9 //@variable When `true`, the strategy places a long market order.
10 bool longEntry = ta.crossover(close, open)
11 //@variable When `true`, the strategy places a short market order.
12 bool shortEntry = ta.crossunder(close, open)
13

14 if longEntry
15 strategy.entry("Long Entry", strategy.long)
16 if shortEntry
17 strategy.entry("Short Entry", strategy.short)

To ensure our strategy shows results based on actual prices, we can create a Renko ticker ID using ticker.renko() while
keeping the chart on a standard type, allowing the script to request and use Renko prices to calculate its signals without
calculating the strategy results on them:

1 //@version=5
2 strategy(
3 "Custom contexts demo 3", "Renko strategy", true, default_qty_type = strategy.

↪→percent_of_equity,
4 default_qty_value = 2, initial_capital = 50000, slippage = 1,
5 commission_type = strategy.commission.cash_per_contract, commission_value = 1,␣

↪→margin_long = 100,
6 margin_short = 100
7)
8

9 //@variable A Renko ticker ID.
10 string renkoTickerID = ticker.renko(syminfo.tickerid, "ATR", 14)

(continues on next page)

316 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_ticker.renko
https://www.tradingview.com/support/solutions/43000502284-renko-charts/

Pine Script™ v5 User Manual

(continued from previous page)
11 // Request the `open` and `close` prices using the `renkoTickerID`.
12 [renkoOpen, renkoClose] = request.security(renkoTickerID, timeframe.period, [open,␣

↪→close])
13

14 //@variable When `true`, the strategy places a long market order.
15 bool longEntry = ta.crossover(renkoClose, renkoOpen)
16 //@variable When `true`, the strategy places a short market order.
17 bool shortEntry = ta.crossunder(renkoClose, renkoOpen)
18

19 if longEntry
20 strategy.entry("Long Entry", strategy.long)
21 if shortEntry
22 strategy.entry("Short Entry", strategy.short)
23

24 plot(renkoOpen)
25 plot(renkoClose)

4.14.7 Historical and realtime behavior

Functions in the request.*() namespace can behave differently on historical and realtime bars. This behavior is
closely related to Pine’s Execution model.
Consider how a script behaves within the main context. Throughout the chart’s history, the script calculates its required
values once and commits them to that bar so their states are accessible later in the execution. On an unconfirmed bar,
however, the script recalculates its values on each update to the bar’s data to align with realtime changes. Before recalcu-
lating the values on that bar, it reverts calculated values to their last committed states, otherwise known as rollback, and
it only commits values to that bar once the bar closes.
Now consider the behavior of data requests from other contexts with request.security(). As when evaluating historical bars
in the main context, request.security() only returns new historical values when it confirms a bar in its specified context.
When executing on realtime bars, it returns recalculated values on each chart bar, similar to how a script recalculates
values in the main context on the open chart bar.
However, the function only confirms the requested values when a bar from its context closes. When the script restarts its
execution, what were previously considered realtime bars become historical bars. Therefore, request.security() will only
return the values it confirmed on those bars. In essence, this behavior means that requested data may repaint when its
values fluctuate on realtime bars without confirmation from the context.

Note: It’s often helpful to distinguish historical bars from realtime bars when working with request.*() functions.
Scripts can determine whether bars have historical or realtime states via the barstate.ishistory and barstate.isrealtime
variables.

In most circumstances where a script requests data from a broader context, one will typically require confirmed, stable
values that do not fluctuate on realtime bars. The section below explains how to achieve such a result and avoid repainting
data requests.

4.14. Other timeframes and data 317

https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#var_barstate.ishistory
https://www.tradingview.com/pine-script-reference/v5/#var_barstate.isrealtime

Pine Script™ v5 User Manual

Avoiding Repainting

Higher-timeframe data

When requesting values from a higher timeframe, they are subject to repainting since realtime bars can contain uncon-
firmed information from developing HTF bars, and the script may adjust the times that new values come in on historical
bars. To avoid repainting HTF data, one must ensure that the function only returns confirmed values with consistent
timing on all bars, regardless of bar state.
The most reliable approach to achieve non-repainting results is to use an expression argument that only references
past bars (e.g., close[1]) while using barmerge.lookahead_on as the lookahead value.
Using barmerge.lookahead_on with non-offset HTF data requests is discouraged since it prompts request.security() to
“look ahead” to the final values of an HTF bar, retrieving confirmed values before they’re actually available in the script’s
history. However, if the values used in the expression are offset by at least one bar, the “future” data the function
retrieves is no longer from the future. Instead, the data represents confirmed values from established, available HTF bars.
In other words, applying an offset to the expression effectively prevents the requested data from repainting when the
script restarts its execution and eliminates lookahead bias in the historical series.
The following example demonstrates a repainting HTF data request. The script uses request.security() without offset
modifications or additional arguments to retrieve the results of a ta.wma() call from a higher timeframe. It also highlights
the background to indicate which bars were in a realtime state during its calculations.
As shown on the chart below, the plot of the requested WMA only changes on historical bars when HTF bars close,
whereas it fluctuates on all realtime bars since the data includes unconfirmed values from the higher timeframe:

1 //@version=5
2 indicator("Avoiding HTF repainting demo", overlay = true)
3

4 //@variable The multiplier applied to the chart's timeframe.
5 int tfMultiplier = input.int(10, "Timeframe multiplier", 1)
6 //@variable The number of bars in the moving average.
7 int length = input.int(5, "WMA smoothing length")
8

9 //@variable The valid timeframe string closest to `tfMultiplier` times larger than␣
↪→the chart timeframe.

10 string timeframe = timeframe.from_seconds(timeframe.in_seconds() * tfMultiplier)
11

12 //@variable The weighted MA of `close` prices over `length` bars on the `timeframe`.

(continues on next page)

318 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.lookahead_on
https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.lookahead_on
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.wma
https://www.tradingview.com/pine-script-reference/v5/#fun_plot

Pine Script™ v5 User Manual

(continued from previous page)
13 // This request repaints because it includes unconfirmed HTF data on␣

↪→realtime bars and it may offset the
14 // times of its historical results.
15 float requestedWMA = request.security(syminfo.tickerid, timeframe, ta.wma(close,␣

↪→length))
16

17 // Plot the requested series.
18 plot(requestedWMA, "HTF WMA", color.purple, 3)
19 // Highlight the background on realtime bars.
20 bgcolor(barstate.isrealtime ? color.new(color.orange, 70) : na, title = "Realtime bar␣

↪→highlight")

To avoid repainting in this script, we can add lookahead = barmerge.lookahead_on to the request.security()
call and offset the call history of ta.wma() by one bar with the history-referencing operator [], ensuring the request always
retrieves the last confirmed HTF bar’s WMA at the start of each new timeframe. Unlike the previous script, this
version has consistent behavior on historical and realtime bar states, as we see below:

1 //@version=5
2 indicator("Avoiding HTF repainting demo", overlay = true)
3

4 //@variable The multiplier applied to the chart's timeframe.
5 int tfMultiplier = input.int(10, "Timeframe multiplier", 1)
6 //@variable The number of bars in the moving average.
7 int length = input.int(5, "WMA smoothing length")
8

9 //@variable The valid timeframe string closest to `tfMultiplier` times larger than␣
↪→the chart timeframe.

10 string timeframe = timeframe.from_seconds(timeframe.in_seconds() * tfMultiplier)
11

12 //@variable The weighted MA of `close` prices over `length` bars on the `timeframe`.
13 // This request does not repaint, as it always references the last confirmed␣

↪→WMA value on all bars.
14 float requestedWMA = request.security(
15 syminfo.tickerid, timeframe, ta.wma(close, length)[1], lookahead = barmerge.

↪→lookahead_on
16)
17

18 // Plot the requested value.
(continues on next page)

4.14. Other timeframes and data 319

https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.wma
https://www.tradingview.com/pine-script-reference/v5/#op_{[}{]}

Pine Script™ v5 User Manual

(continued from previous page)
19 plot(requestedWMA, "HTF WMA", color.purple, 3)
20 // Highlight the background on realtime bars.
21 bgcolor(barstate.isrealtime ? color.new(color.orange, 70) : na, title = "Realtime bar␣

↪→highlight")

Lower-timeframe data

The request.security() and request.security_lower_tf() functions can retrieve data from lower-timeframe contexts. The
request.security() function can only retrieve data from a single intrabar in each chart bar, and request.security_lower_tf()
retrieves data from all available intrabars.
When using these functions to retrieve intrabar data, it’s important to note that such requests are not immune to repainting
behavior. Historical and realtime series often rely on separate data feeds. Data providersmay retroactivelymodify realtime
data, and it’s possible for races to occur in realtime data feeds, as explained in the Data feeds section of this page. Either
case may result in intrabar data retrieved on realtime bars repainting after the script restarts its execution.
Additionally, a particular case that will cause repainting LTF requests is using request.security() with
barmerge.lookahead_on to retrieve data from the first intrabar in each chart bar. While it will generally work as
expected on historical bars, it will track only the most recent intrabar on realtime bars, as request.security() does not
retain all intrabar information, and the intrabars retrieved by the function on realtime bars are unsorted until restarting
the script’s execution:

1 //@version=5
2 indicator("Avoiding LTF repainting demo", overlay = true)
3

4 //@variable The lower timeframe of the requested data.
5 string lowerTimeframe = input.timeframe("1", "Timeframe")
6

7 //@variable The first intrabar `close` requested from the `lowerTimeframe` on each␣
↪→bar.

8 // Only works as intended on historical bars.
9 float requestedClose = request.security(syminfo.tickerid, lowerTimeframe, close,␣

↪→lookahead = barmerge.lookahead_on)
10

11 // Plot the `requestedClose`.
12 plot(requestedClose, "First intrabar close", linewidth = 3)

(continues on next page)

320 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.lookahead_on
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security

Pine Script™ v5 User Manual

(continued from previous page)
13 // Highlight the background on realtime bars.
14 bgcolor(barstate.isrealtime ? color.new(color.orange, 60) : na, title = "Realtime bar␣

↪→Highlight")

One can mitigate this behavior and track the values from the first intrabar, or any available intrabar in the chart bar, by
using request.security_lower_tf() since it maintains an array of intrabar values ordered by the times they come in. Here,
we call array.first() on a requested array of intrabar data to retrieve the close price from the first available intrabar in each
chart bar:

1 //@version=5
2 indicator("Avoiding LTF repainting demo", overlay = true)
3

4 //@variable The lower timeframe of the requested data.
5 string lowerTimeframe = input.timeframe("1", "Timeframe")
6

7 //@variable An array of intrabar `close` values requested from the `lowerTimeframe`␣
↪→on each bar.

8 array<float> requestedCloses = request.security_lower_tf(syminfo.tickerid,␣
↪→lowerTimeframe, close)

9

10 //@variable The first intrabar `close` on each bar with available data.
11 float firstClose = requestedCloses.size() > 0 ? requestedCloses.first() : na
12

13 // Plot the `firstClose`.
14 plot(firstClose, "First intrabar close", linewidth = 3)
15 // Highlight the background on realtime bars.
16 bgcolor(barstate.isrealtime ? color.new(color.orange, 60) : na, title = "Realtime bar␣

↪→Highlight")

Note that:
• While request.security_lower_tf() is more optimized for handling historical and realtime intrabars, it’s still
possible in some cases for minor repainting to occur due to data differences from the provider, as outlined
above.

• This code may not show intrabar data on all available chart bars, depending on how many intrabars each chart
bar contains, as request.*() functions can retrieve up to 100,000 intrabars from an LTF context. See
this section of the Limitations page for more information.

4.14. Other timeframes and data 321

https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#fun_array.first
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf

Pine Script™ v5 User Manual

4.14.8 `request.currency_rate()`

When a script needs to convert values expressed in one currency to another, one can use request.currency_rate(). This
function requests a daily rate for currency conversion calculations based on “FX_IDC” data, providing a simpler alternative
to fetching specific pairs or spreads with request.security().
While one can use request.security() to retrieve daily currency rates, its use case is more involved than re-
quest.currency_rate(), as one needs to supply a valid ticker ID for a currency pair or spread to request the rate. Addi-
tionally, a historical offset and barmerge.lookahead_on are necessary to prevent the results from repainting, as explained
in this section.
The request.currency_rate() function, on the other hand, only requires currency codes. No ticker ID is needed when
requesting rates with this function, and it ensures non-repainting results without requiring additional specification.
The function’s signature is as follows:

request.currency_rate(from, to, ignore_invalid_currency) → series float

The from parameter specifies the currency to convert, and the to parameter specifies the target currency. Both pa-
rameters accept “string” values in the ISO 4217 format (e.g., “USD”) or any built-in currency.* variable (e.g., cur-
rency.USD).
When the function cannot calculate a valid conversion rate between the from and to currencies supplied in the call, one
can decide whether it will raise a runtime error or return na via the ignore_invalid_currency parameter. The
default value is false, meaning the function will raise a runtime error and halt the script’s execution.
The following example demonstrates a simple use case for request.currency_rate(). Suppose we want to convert values
expressed in Turkish lira (currency.TRY) to South Korean won (currency.KRW) using a daily conversion rate. If we
use request.security() to retrieve the rate, we must supply a valid ticker ID and request the last confirmed close from the
previous day.
In this case, no “FX_IDC” symbol exists that would allow us to retrieve a conversion rate directly with request.security().
Therefore, we first need a ticker ID for a spread that converts TRY to an intermediate currency, such as USD, then
converts the intermediate currency to KRW. We can then use that ticker ID within request.security() with close[1]
as the expression and barmerge.lookahead_on as the lookahead value to request a non-repainting daily rate.
Alternatively, we can achieve the same result more simply by calling request.currency_rate(). This function does all the
heavy lifting for us, only requiring from and to currency arguments to perform its calculation.
As we see below, both approaches return the same daily rate:

322 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_request.currency_rate
https://www.tradingview.com/support/solutions/43000502298/
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.currency_rate
https://www.tradingview.com/pine-script-reference/v5/#fun_request.currency_rate
https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.lookahead_on
https://www.tradingview.com/pine-script-reference/v5/#fun_request.currency_rate
https://en.wikipedia.org/wiki/ISO_4217#Active_codes
https://www.tradingview.com/pine-script-reference/v5/#var_currency.USD
https://www.tradingview.com/pine-script-reference/v5/#var_currency.USD
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_request.currency_rate
https://www.tradingview.com/pine-script-reference/v5/#var_currency.TRY
https://www.tradingview.com/pine-script-reference/v5/#var_currency.KRW
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/support/solutions/43000502298/
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.lookahead_on
https://www.tradingview.com/pine-script-reference/v5/#fun_request.currency_rate

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Requesting currency rates demo")
3

4 //@variable The currency to convert.
5 simple string fromCurrency = currency.TRY
6 //@variable The resulting currency.
7 simple string toCurrency = currency.KRW
8

9 //@variable The spread symbol to request. Required in `request.security()` since no␣
↪→direct "FX_IDC" rate exists.

10 simple string spreadSymbol = str.format("FX_IDC:{0}{2} * FX_IDC:{2}{1}", fromCurrency,
↪→ toCurrency, currency.USD)

11

12 //@variable The non-repainting conversion rate from `request.security()` using the␣
↪→`spreadSymbol`.

13 float securityRequestedRate = request.security(spreadSymbol, "1D", close[1],␣
↪→lookahead = barmerge.lookahead_on)

14 //@variable The non-repainting conversion rate from `request.currency_rate()`.
15 float nonSecurityRequestedRate = request.currency_rate(fromCurrency, toCurrency)
16

17 // Plot the requested rates. We can multiply TRY values by these rates to convert␣
↪→them to KRW.

18 plot(securityRequestedRate, "`request.security()` value", color.purple, 5)
19 plot(nonSecurityRequestedRate, "`request.currency_rate()` value", color.yellow, 2)

4.14.9 `request.dividends()`, `request.splits()`, and `request.earnings()`

Analyzing a stock’s earnings data and corporate actions provides helpful insights into its underlying financial strength.
Pine Script™ provides the ability to retrieve essential information about applicable stocks via request.dividends(), re-
quest.splits(), and request.earnings().
These are the functions’ signatures:

request.dividends(ticker, field, gaps, lookahead, ignore_invalid_symbol, currency) →␣
↪→series float

request.splits(ticker, field, gaps, lookahead, ignore_invalid_symbol) → series float

request.earnings(ticker, field, gaps, lookahead, ignore_invalid_symbol, currency) →␣
↪→series float

Each function has the same parameters in its signature, with the exception of request.splits(), which doesn’t have a cur-
rency paramter.
Note that unlike the symbol parameter in other request.*() functions, the ticker parameter in these functions
only accepts an “Exchange:Symbol” pair, such as “NASDAQ:AAPL”. The built-in syminfo.ticker variable does not work
with these functions since it does not contain exchange information. Instead, one must use syminfo.tickerid for such cases.
The field parameter determines the data the function will retrieve. Each of these functions accepts different built-in
variables as the field argument since each requests different information about a stock:

• The request.dividends() function retrieves current dividend information for a stock, i.e., the amount per share the
issuing company paid out to investors who purchased shares before the ex-dividend date. Passing the built-in
dividends.gross or dividends.net variables to the field parameter specifies whether the returned value represents
dividends before or after factoring in expenses the company deducts from its payouts.

4.14. Other timeframes and data 323

https://www.tradingview.com/pine-script-reference/v5/#fun_request.dividends
https://www.tradingview.com/pine-script-reference/v5/#fun_request.splits
https://www.tradingview.com/pine-script-reference/v5/#fun_request.splits
https://www.tradingview.com/pine-script-reference/v5/#fun_request.earnings
https://www.tradingview.com/pine-script-reference/v5/#fun_request.splits
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo.ticker
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo.tickerid
https://www.tradingview.com/pine-script-reference/v5/#fun_request.dividends
https://www.tradingview.com/pine-script-reference/v5/#var_dividends.gross
https://www.tradingview.com/pine-script-reference/v5/#var_dividends.net

Pine Script™ v5 User Manual

• The request.splits() function retrieves current split and reverse split information for a stock. A split occurs when a
company increases its outstanding shares to promote liquidity. A reverse split occurs when a company consolidates
its shares and offers them at a higher price to attract specific investors or maintain their listing on a market that has
a minimum per-share price. Companies express their split information as ratios. For example, a 5:1 split means
the company issued additional shares to its shareholders so that they have five times the number of shares they had
before the split, and the raw price of each share becomes one-fifth of the previous price. Passing splits.numerator
or splits.denominator to the field parameter of request.splits() determines whether it returns the numerator or
denominator of the split ratio.

• The request.earnings() function retrieves the earnings per share (EPS) information for a stock ticker’s issu-
ing company. The EPS value is the ratio of a company’s net income to the number of outstanding stock shares,
which investors consider an indicator of the company’s profitability. Passing earnings.actual, earnings.estimate, or
earnings.standardized as the field argument in request.earnings() respectively determines whether the function
requests the actual, estimated, or standardized EPS value.

For a detailed explanation of the gaps, lookahead, and ignore_invalid_symbol parameters of these func-
tions, see the Common characteristics section at the top of this page.
It’s important to note that the values returned by these functions reflect the data available as it comes in. This behavior
differs from financial data originating from a request.financial() call in that the underlying data from such calls becomes
available according to a company’s fiscal reporting period.

Note: Scripts can also retrieve information about upcoming earnings and dividends for an instrument via the
earnings.future_* and dividends.future_* built-in variables.

Here, we’ve included an example that displays a handy table containing the most recent dividend, split, and EPS data.
The script calls the request.*() functions discussed in this section to retrieve the data, then converts the values to
“strings” with str.*() functions and displays the results in the infoTable with table.cell():

1 //@version=5
2 indicator("Dividends, splits, and earnings demo", overlay = true)
3

4 //@variable The size of the table's text.
5 string tableSize = input.string(
6 size.large, "Table size", [size.auto, size.tiny, size.small, size.normal, size.

↪→large, size.huge]
7)

(continues on next page)

324 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_request.splits
https://www.tradingview.com/pine-script-reference/v5/#var_splits.numerator
https://www.tradingview.com/pine-script-reference/v5/#var_splits.denominator
https://www.tradingview.com/pine-script-reference/v5/#fun_request.splits
https://www.tradingview.com/pine-script-reference/v5/#fun_request.earnings
https://www.tradingview.com/pine-script-reference/v5/#var_earnings.actual
https://www.tradingview.com/pine-script-reference/v5/#var_earnings.estimate
https://www.tradingview.com/pine-script-reference/v5/#var_earnings.standardized
https://www.tradingview.com/pine-script-reference/v5/#fun_request.earnings
https://www.tradingview.com/pine-script-reference/v5/#fun_request.financial
https://www.tradingview.com/pine-script-reference/v5/#type_table
https://www.tradingview.com/pine-script-reference/v5/#fun_table.cell

Pine Script™ v5 User Manual

(continued from previous page)
8

9 //@variable The color of the table's text and frame.
10 var color tableColor = chart.fg_color
11 //@variable A `table` displaying the latest dividend, split, and EPS information.
12 var table infoTable = table.new(position.top_right, 3, 4, frame_color = tableColor,␣

↪→frame_width = 1)
13

14 // Add header cells on the first bar.
15 if barstate.isfirst
16 table.cell(infoTable, 0, 0, "Field", text_color = tableColor, text_size =␣

↪→tableSize)
17 table.cell(infoTable, 1, 0, "Value", text_color = tableColor, text_size =␣

↪→tableSize)
18 table.cell(infoTable, 2, 0, "Date", text_color = tableColor, text_size =␣

↪→tableSize)
19 table.cell(infoTable, 0, 1, "Dividend", text_color = tableColor, text_size =␣

↪→tableSize)
20 table.cell(infoTable, 0, 2, "Split", text_color = tableColor, text_size =␣

↪→tableSize)
21 table.cell(infoTable, 0, 3, "EPS", text_color = tableColor, text_size = tableSize)
22

23 //@variable The amount of the last reported dividend as of the current bar.
24 float latestDividend = request.dividends(syminfo.tickerid, dividends.gross, barmerge.

↪→gaps_on)
25 //@variable The numerator of that last reported split ratio as of the current bar.
26 float latestSplitNum = request.splits(syminfo.tickerid, splits.numerator, barmerge.

↪→gaps_on)
27 //@variable The denominator of the last reported split ratio as of the current bar.
28 float latestSplitDen = request.splits(syminfo.tickerid, splits.denominator, barmerge.

↪→gaps_on)
29 //@variable The last reported earnings per share as of the current bar.
30 float latestEPS = request.earnings(syminfo.tickerid, earnings.actual, barmerge.gaps_

↪→on)
31

32 // Update the "Value" and "Date" columns when new values come in.
33 if not na(latestDividend)
34 table.cell(
35 infoTable, 1, 1, str.tostring(math.round(latestDividend, 3)), text_color =␣

↪→tableColor, text_size = tableSize
36)
37 table.cell(infoTable, 2, 1, str.format_time(time, "yyyy-MM-dd"), text_color =␣

↪→tableColor, text_size = tableSize)
38 if not na(latestSplitNum)
39 table.cell(
40 infoTable, 1, 2, str.format("{0}-for-{1}", latestSplitNum, latestSplitDen),␣

↪→text_color = tableColor,
41 text_size = tableSize
42)
43 table.cell(infoTable, 2, 2, str.format_time(time, "yyyy-MM-dd"), text_color =␣

↪→tableColor, text_size = tableSize)
44 if not na(latestEPS)
45 table.cell(infoTable, 1, 3, str.tostring(latestEPS), text_color = tableColor,␣

↪→text_size = tableSize)
46 table.cell(infoTable, 2, 3, str.format_time(time, "yyyy-MM-dd"), text_color =␣

↪→tableColor, text_size = tableSize)

Note that:

4.14. Other timeframes and data 325

Pine Script™ v5 User Manual

• We’ve included barmerge.gaps_on in the request.*() calls, so they only return values when new data is
available. Otherwise, they return na.

• The script assigns a table ID to the infoTable variable on the first chart bar. On subsequent bars, it updates
necessary cells with new information whenever data is available.

• If no information is available from any of the request.*() calls throughout the chart’s history (e.g., if
the ticker has no dividend information), the script does not initialize the corresponding cells since it’s
unnecessary.

4.14.10 `request.quandl()`

TradingView forms partnerships withmany fintech companies to provide users access to extensive information on financial
instruments, economic data, and more. One of our many partners is Nasdaq Data Link (formerly Quandl), which provides
multiple external data feeds that scripts can access via the request.quandl() function.
Here is the function’s signature:

request.quandl(ticker, gaps, index, ignore_invalid_symbol) → series float

The ticker parameter accepts a “simple string” representing the ID of the database published on Nasdaq Data Link
and its time series code, separated by the “/” delimiter. For example, the code “FRED/DFF” represents the “Effective
Federal Funds Rate” time series from the “Federal Reserve Economic Data” database.
The index parameter accepts a “simple int” representing the column index of the requested data, where 0 is the first
available column. Consult the database’s documentaion on Nasdaq Data Link’s website to see available columns.
For details on the gaps and ignore_invalid_symbol parameters, see the Common characteristics section of this
page.

Note: The request.quandl() function can only request free data from Nasdaq Data Link. No data that requires a paid
subscription to their services is accessible with this function. Nasdaq Data Link may change the data it provides over
time, and they may not update available datasets regularly. Therefore, it’s up to programmers to research the supported
data available for request and review the documentation provided for each dataset. You can search for free data here.

This script requests Bitcoin hash rate (“HRATE”) information from the “Bitcoin Data Insights” (“BCHAIN”) database
and plots the retrieved time series data on the chart. It uses color.from_gradient() to color the area plot based on the
distance from the current hash rate to its all-time high:

326 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.gaps_on
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#type_table
https://data.nasdaq.com/
https://www.tradingview.com/pine-script-reference/v5/#fun_request.quandl
https://www.tradingview.com/pine-script-reference/v5/#fun_request.quandl
https://data.nasdaq.com/search?filters=%5B%22Free%22%5D
https://www.tradingview.com/pine-script-reference/v5/#fun_color.from_gradient
https://www.tradingview.com/pine-script-reference/v5/#var_plot.style_area
https://www.tradingview.com/pine-script-reference/v5/#fun_ta.max

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Quandl demo", "BTC hash rate")
3

4 //@variable The estimated hash rate for the Bitcoin network.
5 float hashRate = request.quandl("BCHAIN/HRATE", barmerge.gaps_off, 0)
6 //@variable The percentage threshold from the all-time highest `hashRate`.
7 float dropThreshold = input.int(40, "Drop threshold", 0, 100)
8

9 //@variable The all-time highest `hashRate`.
10 float maxHashRate = ta.max(hashRate)
11 //@variable The value `dropThreshold` percent below the `maxHashRate`.
12 float minHashRate = maxHashRate * (100 - dropThreshold) / 100
13 //@variable The color of the plot based on the `minHashRate` and `maxHashRate`.
14 color plotColor = color.from_gradient(hashRate, minHashRate, maxHashRate, color.

↪→orange, color.blue)
15

16 // Plot the `hashRate`.
17 plot(hashRate, "Hash Rate Estimate", plotColor, style = plot.style_area)

4.14.11 `request.financial()`

Financial metrics provide investors with insights about a company’s economic and financial health that are not tangible
from solely analyzing its stock prices. TradingView offers a wide variety of financial metrics from FactSet that traders can
access via the “Financials” tab in the “Indicators” menu of the chart. Scripts can access available metrics for an instrument
directly via the request.financial() function.
This is the function’s signature:

request.financial(symbol, financial_id, period, gaps, ignore_invalid_symbol,␣
↪→currency) → series float

As with the first parameter in request.dividends(), request.splits(), and request.earnings(), the symbol parameter in
request.financial() requires an “Exchange:Symbol” pair. To request financial information for the chart’s ticker ID, use
syminfo.tickerid, as syminfo.ticker will not work.
The financial_id parameter accepts a “simple string” representing the ID of the requested financial metric. Trad-
ingView has numerous financial metrics to choose from. See the Financial IDs section below for an overview of all
accessible metrics and their “string” identifiers.
The period parameter specifies the fiscal period for which new requested data comes in. It accepts one of the following
arguments: “FQ” (quarterly), “FH” (semiannual), “FY” (annual), or “TTM” (trailing twelve months). Not all
fiscal periods are available for all metrics or instruments. To confirm which periods are available for specific metrics, see
the second column of the tables in the Financial IDs section.
See this page’s Common characteristics section for a detailed explanation of this function’s gaps, ig-
nore_invalid_symbol, and currency parameters.
It’s important to note that the data retrieved from this function comes in at a fixed frequency, independent of the pre-
cise date on which the data is made available within a fiscal period. For a company’s dividends, splits, and earnings
per share (EPS) information, one can request data reported on exact dates via request.dividends(), request.splits(), and
request.earnings().
This script uses request.financial() to retrieve information about the income and expenses of a stock’s issuing company and
visualize the profitability of its typical business operations. It requests the “OPER_INCOME”, “TOTAL_REVENUE”,
and “TOTAL_OPER_EXPENSE” financial IDs for the syminfo.tickerid over the latest fiscalPeriod, then plots the
results on the chart:

4.14. Other timeframes and data 327

https://www.factset.com/
https://www.tradingview.com/pine-script-reference/v5/#fun_request.financial
https://www.tradingview.com/pine-script-reference/v5/#fun_request.dividends
https://www.tradingview.com/pine-script-reference/v5/#fun_request.splits
https://www.tradingview.com/pine-script-reference/v5/#fun_request.earnings
https://www.tradingview.com/pine-script-reference/v5/#fun_request.financial
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo.tickerid
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo.ticker
https://www.tradingview.com/pine-script-reference/v5/#fun_request.dividends
https://www.tradingview.com/pine-script-reference/v5/#fun_request.splits
https://www.tradingview.com/pine-script-reference/v5/#fun_request.earnings
https://www.tradingview.com/pine-script-reference/v5/#fun_request.financial
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo.tickerid

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Requesting financial data demo", format = format.volume)
3

4 //@variable The size of the fiscal reporting period. Some options may not be␣
↪→available, depending on the instrument.

5 string fiscalPeriod = input.string("FQ", "Period", ["FQ", "FH", "FY", "TTM"])
6

7 //@variable The operating income after expenses reported for the stock's issuing␣
↪→company.

8 float operatingIncome = request.financial(syminfo.tickerid, "OPER_INCOME",␣
↪→fiscalPeriod)

9 //@variable The total revenue reported for the stock's issuing company.
10 float totalRevenue = request.financial(syminfo.tickerid, "TOTAL_REVENUE",␣

↪→fiscalPeriod)
11 //@variable The total operating expenses reported for the stock's issuing company.
12 float totalExpenses = request.financial(syminfo.tickerid, "TOTAL_OPER_EXPENSE",␣

↪→fiscalPeriod)
13

14 //@variable Is aqua when the `totalRevenue` exceeds the `totalExpenses`, fuchsia␣
↪→otherwise.

15 color incomeColor = operatingIncome > 0 ? color.new(color.aqua, 50) : color.new(color.
↪→fuchsia, 50)

16

17 // Display the requested data.
18 plot(operatingIncome, "Operating income", incomeColor, 1, plot.style_area)
19 plot(totalRevenue, "Total revenue", color.green, 3)
20 plot(totalExpenses, "Total operating expenses", color.red, 3)

Note that:
• Not allfiscalPeriod options are available for every ticker ID. For example, companies in theUS typically
publish quarterly reports, whereas many European companies publish semiannual reports. See this page in
our Help Center for more information.

328 Chapter 4. Concepts

https://www.tradingview.com/support/solutions/43000540147

Pine Script™ v5 User Manual

Calculating financial metrics

The request.financial() function can provide scripts with numerous useful financial metrics that don’t require additional
calculations. However, some commonly used financial estimates require combining an instrument’s current market price
with requested financial data. Such is the case for:

• Market Capitalization (market price * total shares outstanding)
• Earnings Yield (12-month EPS / market price)
• Price-to-Book Ratio (market price / BVPS)
• Price-to-Earnings Ratio (market price / EPS)
• Price-to-Sales Ratio (market cap / 12-month total revenue)

The following script contains user-defined functions that calculate the above financial metrics for the syminfo.tickerid.
We’ve created these functions so users can easily copy them into their scripts. This example uses themwithin a str.format()
call to construct a tooltipText, which it displays in tooltips on the chart using labels. Hovering over any bar’s label
will expose the tooltip containing the metrics calculated on that bar:

1 //@version=5
2 indicator("Calculating financial metrics demo", overlay = true, max_labels_count =␣

↪→500)
3

4 //@function Calculates the market capitalization (market cap) for the chart's symbol.
5 marketCap() =>
6 //@variable The most recent number of outstanding shares reported for the symbol.
7 float totalSharesOutstanding = request.financial(syminfo.tickerid, "TOTAL_SHARES_

↪→OUTSTANDING", "FQ")
8 // Return the market cap value.
9 totalSharesOutstanding * close
10

11 //@function Calculates the Earnings Yield for the chart's symbol.
12 earningsYield() =>
13 //@variable The most recent 12-month earnings per share reported for the symbol.
14 float eps = request.financial(syminfo.tickerid, "EARNINGS_PER_SHARE", "TTM")
15 //Return the Earnings Yield percentage.
16 100.0 * eps / close
17

(continues on next page)

4.14. Other timeframes and data 329

https://www.tradingview.com/pine-script-reference/v5/#fun_request.financial
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo.tickerid
https://www.tradingview.com/pine-script-reference/v5/#fun_str.format
https://www.tradingview.com/pine-script-reference/v5/#type_label

Pine Script™ v5 User Manual

(continued from previous page)
18 //@function Calculates the Price-to-Book (P/B) ratio for the chart's symbol.
19 priceBookRatio() =>
20 //@variable The most recent Book Value Per Share (BVPS) reported for the symbol.
21 float bookValuePerShare = request.financial(syminfo.tickerid, "BOOK_VALUE_PER_

↪→SHARE", "FQ")
22 // Return the P/B ratio.
23 close / bookValuePerShare
24

25 //@function Calculates the Price-to-Earnings (P/E) ratio for the chart's symbol.
26 priceEarningsRatio() =>
27 //@variable The most recent 12-month earnings per share reported for the symbol.
28 float eps = request.financial(syminfo.tickerid, "EARNINGS_PER_SHARE", "TTM")
29 // Return the P/E ratio.
30 close / eps
31

32 //@function Calculates the Price-to-Sales (P/S) ratio for the chart's symbol.
33 priceSalesRatio() =>
34 //@variable The most recent number of outstanding shares reported for the symbol.
35 float totalSharesOutstanding = request.financial(syminfo.tickerid, "TOTAL_SHARES_

↪→OUTSTANDING", "FQ")
36 //@variable The most recent 12-month total revenue reported for the symbol.
37 float totalRevenue = request.financial(syminfo.tickerid, "TOTAL_REVENUE", "TTM")
38 // Return the P/S ratio.
39 totalSharesOutstanding * close / totalRevenue
40

41 //@variable The text to display in label tooltips.
42 string tooltipText = str.format(
43 "Market Cap: {0} {1}\nEarnings Yield: {2}%\nP/B Ratio: {3}\nP/E Ratio: {4}\nP/S␣

↪→Ratio: {5}",
44 str.tostring(marketCap(), format.volume), syminfo.currency, earningsYield(),␣

↪→priceBookRatio(),
45 priceEarningsRatio(), priceSalesRatio()
46)
47

48 //@variable Displays a blank label with a tooltip containing the `tooltipText`.
49 label info = label.new(chart.point.now(high), tooltip = tooltipText)

Note that:
• Since not all companies publish quarterly financial reports, onemay need to change the “FQ” in these functions
to match the minimum reporting period for a specific company, as the request.financial() calls will return na
when “FQ” data isn’t available.

Financial IDs

Below is an overview of all financial metrics one can request via request.financial(), along with the periods in which
reports may be available. We’ve divided this information into four tables corresponding to the categories displayed in the
“Financials” section of the “Indicators” menu:

• Income statements

• Balance sheet

• Cash flow

• Statistics

Each table has the following three columns:

330 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_request.financial
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_request.financial

Pine Script™ v5 User Manual

• The first column contains descriptions of each metric with links to Help Center pages for additional information.
• The second column lists the possible period arguments allowed for the metric. Note that all available values may
not be compatible with specific ticker IDs, e.g., while “FQ” may be a possible argument, it will not work if the
issuing company does not publish quarterly data.

• The third column lists the “string” IDs for the financial_id argument in request.financial().

Note: The tables in these sections are quite lengthy, as there are many financial_id arguments available. Use the
“Click to show/hide” option above each table to toggle its visibility.

Income statements

This table lists the available metrics that provide information about a company’s income, costs, profits and losses.

Financial period financial_id

After tax other income/expense FQ, FH, FY, TTM AFTER_TAX_OTHER_INCOME
Average basic shares outstanding FQ, FH, FY BASIC_SHARES_OUTSTANDING
Basic earnings per share (Basic EPS) FQ, FH, FY, TTM EARNINGS_PER_SHARE_BASIC
Cost of goods sold FQ, FH, FY, TTM COST_OF_GOODS
Deprecation and amortization FQ, FH, FY, TTM DEP_AMORT_EXP_INCOME_S
Diluted earnings per share (Diluted EPS) FQ, FH, FY, TTM EARNINGS_PER_SHARE_DILUTED
Diluted net income available to common stockholders FQ, FH, FY, TTM DILUTED_NET_INCOME
Diluted shares outstanding FQ, FH, FY DILUTED_SHARES_OUTSTANDING
Dilution adjustment FQ, FH, FY, TTM DILUTION_ADJUSTMENT
Discontinued operations FQ, FH, FY, TTM DISCONTINUED_OPERATIONS
EBIT FQ, FH, FY, TTM EBIT
EBITDA FQ, FH, FY, TTM EBITDA
Equity in earnings FQ, FH, FY, TTM EQUITY_IN_EARNINGS
Gross profit FQ, FH, FY, TTM GROSS_PROFIT
Interest capitalized FQ, FH, FY, TTM INTEREST_CAPITALIZED
Interest expense on debt FQ, FH, FY, TTM INTEREST_EXPENSE_ON_DEBT
Interest expense, net of interest capitalized FQ, FH, FY, TTM NON_OPER_INTEREST_EXP
Miscellaneous non-operating expense FQ, FH, FY, TTM OTHER_INCOME
Net income FQ, FH, FY, TTM NET_INCOME
Net income before discontinued operations FQ, FH, FY, TTM NET_INCOME_BEF_DISC_OPER
Non-controlling/minority interest FQ, FH, FY, TTM MINORITY_INTEREST_EXP
Non-operating income, excl. interest expenses FQ, FH, FY, TTM NON_OPER_INCOME
Non-operating income, total FQ, FH, FY, TTM TOTAL_NON_OPER_INCOME
Non-operating interest income FQ, FH, FY, TTM NON_OPER_INTEREST_INCOME
Operating expenses (excl. COGS) FQ, FH, FY, TTM OPERATING_EXPENSES
Operating income FQ, FH, FY, TTM OPER_INCOME
Other cost of goods sold FQ, FH, FY, TTM COST_OF_GOODS_EXCL_DEP_AMORT
Other operating expenses, total FQ, FH, FY, TTM OTHER_OPER_EXPENSE_TOTAL
Preferred dividends FQ, FH, FY, TTM PREFERRED_DIVIDENDS
Pretax equity in earnings FQ, FH, FY, TTM PRETAX_EQUITY_IN_EARNINGS
Pretax income FQ, FH, FY, TTM PRETAX_INCOME
Research & development FQ, FH, FY, TTM RESEARCH_AND_DEV
Selling/general/admin expenses, other FQ, FH, FY, TTM SELL_GEN_ADMIN_EXP_OTHER
Selling/general/admin expenses, total FQ, FH, FY, TTM SELL_GEN_ADMIN_EXP_TOTAL
Taxes FQ, FH, FY, TTM INCOME_TAX

continues on next page

4.14. Other timeframes and data 331

https://www.tradingview.com/pine-script-reference/v5/#fun_request.financial
https://www.tradingview.com/support/solutions/43000563497
https://www.tradingview.com/support/solutions/43000670320
https://www.tradingview.com/support/solutions/43000563520
https://www.tradingview.com/support/solutions/43000553618
https://www.tradingview.com/support/solutions/43000563477
https://www.tradingview.com/support/solutions/43000553616
https://www.tradingview.com/support/solutions/43000563516
https://www.tradingview.com/support/solutions/43000670322
https://www.tradingview.com/support/solutions/43000563504
https://www.tradingview.com/support/solutions/43000563502
https://www.tradingview.com/support/solutions/43000670329
https://www.tradingview.com/support/solutions/43000553610
https://www.tradingview.com/support/solutions/43000563487
https://www.tradingview.com/support/solutions/43000553611
https://www.tradingview.com/support/solutions/43000563468
https://www.tradingview.com/support/solutions/43000563467
https://www.tradingview.com/support/solutions/43000563466
https://www.tradingview.com/support/solutions/43000563479
https://www.tradingview.com/support/solutions/43000553617
https://www.tradingview.com/support/solutions/43000563500
https://www.tradingview.com/support/solutions/43000563495
https://www.tradingview.com/support/solutions/43000563471
https://www.tradingview.com/support/solutions/43000563465
https://www.tradingview.com/support/solutions/43000563473
https://www.tradingview.com/support/solutions/43000563463
https://www.tradingview.com/support/solutions/43000563464
https://www.tradingview.com/support/solutions/43000563478
https://www.tradingview.com/support/solutions/43000563483
https://www.tradingview.com/support/solutions/43000563506
https://www.tradingview.com/support/solutions/43000563474
https://www.tradingview.com/support/solutions/43000563462
https://www.tradingview.com/support/solutions/43000553612
https://www.tradingview.com/support/solutions/43000553614
https://www.tradingview.com/support/solutions/43000553613
https://www.tradingview.com/support/solutions/43000563492

Pine Script™ v5 User Manual

Table 1 – continued from previous page
Financial period financial_id

Total operating expenses FQ, FH, FY, TTM TOTAL_OPER_EXPENSE
Total revenue FQ, FH, FY, TTM TOTAL_REVENUE
Unusual income/expense FQ, FH, FY, TTM UNUSUAL_EXPENSE_INC

Balance sheet

This table lists the metrics that provide information about a company’s capital structure.

Financial period financial_id

Accounts payable FQ, FH, FY ACCOUNTS_PAYABLE
Accounts receivable - trade, net FQ, FH, FY ACCOUNTS_RECEIVABLES_NET
Accrued payroll FQ, FH, FY ACCRUED_PAYROLL
Accumulated depreciation, total FQ, FH, FY ACCUM_DEPREC_TOTAL
Additional paid-in capital/Capital surplus FQ, FH, FY ADDITIONAL_PAID_IN_CAPITAL
Book value per share FQ, FH, FY BOOK_VALUE_PER_SHARE
Capital and operating lease obligations FQ, FH, FY CAPITAL_OPERATING_LEASE_OBLIGATIONS
Capitalized lease obligations FQ, FH, FY CAPITAL_LEASE_OBLIGATIONS
Cash & equivalents FQ, FH, FY CASH_N_EQUIVALENTS
Cash and short term investments FQ, FH, FY CASH_N_SHORT_TERM_INVEST
Common equity, total FQ, FH, FY COMMON_EQUITY_TOTAL
Common stock par/Carrying value FQ, FH, FY COMMON_STOCK_PAR
Current portion of LT debt and capital leases FQ, FH, FY CURRENT_PORT_DEBT_CAPITAL_LEASES
Deferred income, current FQ, FH, FY DEFERRED_INCOME_CURRENT
Deferred income, non-current FQ, FH, FY DEFERRED_INCOME_NON_CURRENT
Deferred tax assets FQ, FH, FY DEFERRED_TAX_ASSESTS
Deferred tax liabilities FQ, FH, FY DEFERRED_TAX_LIABILITIES
Dividends payable FY DIVIDENDS_PAYABLE
Goodwill, net FQ, FH, FY GOODWILL
Gross property/plant/equipment FQ, FH, FY PPE_TOTAL_GROSS
Income tax payable FQ, FH, FY INCOME_TAX_PAYABLE
Inventories - finished goods FQ, FH, FY INVENTORY_FINISHED_GOODS
Inventories - progress payments & other FQ, FH, FY INVENTORY_PROGRESS_PAYMENTS
Inventories - raw materials FQ, FH, FY INVENTORY_RAW_MATERIALS
Inventories - work in progress FQ, FH, FY INVENTORY_WORK_IN_PROGRESS
Investments in unconsolidated subsidiaries FQ, FH, FY INVESTMENTS_IN_UNCONCSOLIDATE
Long term debt FQ, FH, FY LONG_TERM_DEBT
Long term debt excl. lease liabilities FQ, FH, FY LONG_TERM_DEBT_EXCL_CAPITAL_LEASE
Long term investments FQ, FH, FY LONG_TERM_INVESTMENTS
Minority interest FQ, FH, FY MINORITY_INTEREST
Net debt FQ, FH, FY NET_DEBT
Net intangible assets FQ, FH, FY INTANGIBLES_NET
Net property/plant/equipment FQ, FH, FY PPE_TOTAL_NET
Note receivable - long term FQ, FH, FY LONG_TERM_NOTE_RECEIVABLE
Notes payable FY NOTES_PAYABLE_SHORT_TERM_DEBT
Operating lease liabilities FQ, FH, FY OPERATING_LEASE_LIABILITIES
Other common equity FQ, FH, FY OTHER_COMMON_EQUITY
Other current assets, total FQ, FH, FY OTHER_CURRENT_ASSETS_TOTAL
Other current liabilities FQ, FH, FY OTHER_CURRENT_LIABILITIES

continues on next page

332 Chapter 4. Concepts

https://www.tradingview.com/support/solutions/43000553615
https://www.tradingview.com/support/solutions/43000553619
https://www.tradingview.com/support/solutions/43000563476
https://www.tradingview.com/support/solutions/43000563619
https://www.tradingview.com/support/solutions/43000563740
https://www.tradingview.com/support/solutions/43000563628
https://www.tradingview.com/support/solutions/43000563673
https://www.tradingview.com/support/solutions/43000563874
https://www.tradingview.com/support/solutions/43000670330
https://www.tradingview.com/support/solutions/43000563522
https://www.tradingview.com/support/solutions/43000563527
https://www.tradingview.com/support/solutions/43000563709
https://www.tradingview.com/support/solutions/43000563702
https://www.tradingview.com/support/solutions/43000563866
https://www.tradingview.com/support/solutions/43000563873
https://www.tradingview.com/support/solutions/43000563557
https://www.tradingview.com/support/solutions/43000563631
https://www.tradingview.com/support/solutions/43000563540
https://www.tradingview.com/support/solutions/43000563683
https://www.tradingview.com/support/solutions/43000563536
https://www.tradingview.com/support/solutions/43000563624
https://www.tradingview.com/support/solutions/43000563688
https://www.tradingview.com/support/solutions/43000563667
https://www.tradingview.com/support/solutions/43000563621
https://www.tradingview.com/support/solutions/43000563749
https://www.tradingview.com/support/solutions/43000563748
https://www.tradingview.com/support/solutions/43000563753
https://www.tradingview.com/support/solutions/43000563746
https://www.tradingview.com/support/solutions/43000563645
https://www.tradingview.com/support/solutions/43000553621
https://www.tradingview.com/support/solutions/43000563521
https://www.tradingview.com/support/solutions/43000563639
https://www.tradingview.com/support/solutions/43000563884
https://www.tradingview.com/support/solutions/43000665310
https://www.tradingview.com/support/solutions/43000563686
https://www.tradingview.com/support/solutions/43000563657
https://www.tradingview.com/support/solutions/43000563641
https://www.tradingview.com/support/solutions/43000563600
https://www.tradingview.com/support/solutions/43000563532
https://www.tradingview.com/support/solutions/43000563877
https://www.tradingview.com/support/solutions/43000563761
https://www.tradingview.com/support/solutions/43000563635

Pine Script™ v5 User Manual

Table 2 – continued from previous page
Financial period financial_id

Other intangibles, net FQ, FH, FY OTHER_INTANGIBLES_NET
Other investments FQ, FH, FY OTHER_INVESTMENTS
Other long term assets, total FQ, FH, FY LONG_TERM_OTHER_ASSETS_TOTAL
Other non-current liabilities, total FQ, FH, FY OTHER_LIABILITIES_TOTAL
Other receivables FQ, FH, FY OTHER_RECEIVABLES
Other short term debt FY OTHER_SHORT_TERM_DEBT
Paid in capital FQ, FH, FY PAID_IN_CAPITAL
Preferred stock, carrying value FQ, FH, FY PREFERRED_STOCK_CARRYING_VALUE
Prepaid expenses FQ, FH, FY PREPAID_EXPENSES
Provision for risks & charge FQ, FH, FY PROVISION_F_RISKS
Retained earnings FQ, FH, FY RETAINED_EARNINGS
Shareholders’ equity FQ, FH, FY SHRHLDRS_EQUITY
Short term debt FQ, FH, FY SHORT_TERM_DEBT
Short term debt excl. current portion of LT debt FQ, FH, FY SHORT_TERM_DEBT_EXCL_CURRENT_PORT
Short term investments FQ, FH, FY SHORT_TERM_INVEST
Tangible book value per share FQ, FH, FY BOOK_TANGIBLE_PER_SHARE
Total assets FQ, FH, FY TOTAL_ASSETS
Total current assets FQ, FH, FY TOTAL_CURRENT_ASSETS
Total current liabilities FQ, FH, FY TOTAL_CURRENT_LIABILITIES
Total debt FQ, FH, FY TOTAL_DEBT
Total equity FQ, FH, FY TOTAL_EQUITY
Total inventory FQ, FH, FY TOTAL_INVENTORY
Total liabilities FQ, FH, FY TOTAL_LIABILITIES
Total liabilities & shareholders’ equities FQ, FH, FY TOTAL_LIABILITIES_SHRHLDRS_EQUITY
Total non-current assets FQ, FH, FY TOTAL_NON_CURRENT_ASSETS
Total non-current liabilities FQ, FH, FY TOTAL_NON_CURRENT_LIABILITIES
Total receivables, net FQ, FH, FY TOTAL_RECEIVABLES_NET
Treasury stock - common FQ, FH, FY TREASURY_STOCK_COMMON

Cash flow

This table lists the available metrics that provide information about how cash flows through a company.

Financial period financial_id

Amortization FQ, FH, FY, TTM AMORTIZATION
Capital expenditures FQ, FH, FY, TTM CAPITAL_EXPENDITURES
Capital expenditures - fixed assets FQ, FH, FY, TTM CAPITAL_EXPENDITURES_FIXED_ASSETS
Capital expenditures - other assets FQ, FH, FY, TTM CAPITAL_EXPENDITURES_OTHER_ASSETS
Cash from financing activities FQ, FH, FY, TTM CASH_F_FINANCING_ACTIVITIES
Cash from investing activities FQ, FH, FY, TTM CASH_F_INVESTING_ACTIVITIES
Cash from operating activities FQ, FH, FY, TTM CASH_F_OPERATING_ACTIVITIES
Change in accounts payable FQ, FH, FY, TTM CHANGE_IN_ACCOUNTS_PAYABLE
Change in accounts receivable FQ, FH, FY, TTM CHANGE_IN_ACCOUNTS_RECEIVABLE
Change in accrued expenses FQ, FH, FY, TTM CHANGE_IN_ACCRUED_EXPENSES
Change in inventories FQ, FH, FY, TTM CHANGE_IN_INVENTORIES
Change in other assets/liabilities FQ, FH, FY, TTM CHANGE_IN_OTHER_ASSETS
Change in taxes payable FQ, FH, FY, TTM CHANGE_IN_TAXES_PAYABLE
Changes in working capital FQ, FH, FY, TTM CHANGES_IN_WORKING_CAPITAL

continues on next page

4.14. Other timeframes and data 333

https://www.tradingview.com/support/solutions/43000563689
https://www.tradingview.com/support/solutions/43000563649
https://www.tradingview.com/support/solutions/43000563693
https://www.tradingview.com/support/solutions/43000563545
https://www.tradingview.com/support/solutions/43000563741
https://www.tradingview.com/support/solutions/43000563614
https://www.tradingview.com/support/solutions/43000563871
https://www.tradingview.com/support/solutions/43000563879
https://www.tradingview.com/support/solutions/43000563757
https://www.tradingview.com/support/solutions/43000563535
https://www.tradingview.com/support/solutions/43000563867
https://www.tradingview.com/support/solutions/43000557442
https://www.tradingview.com/support/solutions/43000563554
https://www.tradingview.com/support/solutions/43000563563
https://www.tradingview.com/support/solutions/43000563716
https://www.tradingview.com/support/solutions/43000597072
https://www.tradingview.com/support/solutions/43000553623
https://www.tradingview.com/support/solutions/43000557441
https://www.tradingview.com/support/solutions/43000557437
https://www.tradingview.com/support/solutions/43000553622
https://www.tradingview.com/support/solutions/43000553625
https://www.tradingview.com/support/solutions/43000563745
https://www.tradingview.com/support/solutions/43000553624
https://www.tradingview.com/support/solutions/43000553626
https://www.tradingview.com/support/solutions/43000557440
https://www.tradingview.com/support/solutions/43000557436
https://www.tradingview.com/support/solutions/43000563738
https://www.tradingview.com/support/solutions/43000563875
https://www.tradingview.com/support/solutions/43000564143
https://www.tradingview.com/support/solutions/43000564166
https://www.tradingview.com/support/solutions/43000564167
https://www.tradingview.com/support/solutions/43000564168
https://www.tradingview.com/support/solutions/43000553629
https://www.tradingview.com/support/solutions/43000553628
https://www.tradingview.com/support/solutions/43000553627
https://www.tradingview.com/support/solutions/43000564150
https://www.tradingview.com/support/solutions/43000564148
https://www.tradingview.com/support/solutions/43000564151
https://www.tradingview.com/support/solutions/43000564153
https://www.tradingview.com/support/solutions/43000564154
https://www.tradingview.com/support/solutions/43000564149
https://www.tradingview.com/support/solutions/43000564147

Pine Script™ v5 User Manual

Table 3 – continued from previous page
Financial period financial_id

Common dividends paid FQ, FH, FY, TTM COMMON_DIVIDENDS_CASH_FLOW
Deferred taxes (cash flow) FQ, FH, FY, TTM CASH_FLOW_DEFERRED_TAXES
Depreciation & amortization (cash flow) FQ, FH, FY, TTM CASH_FLOW_DEPRECATION_N_AMORTIZATION
Depreciation/depletion FQ, FH, FY, TTM DEPRECIATION_DEPLETION
Financing activities - other sources FQ, FH, FY, TTM OTHER_FINANCING_CASH_FLOW_SOURCES
Financing activities - other uses FQ, FH, FY, TTM OTHER_FINANCING_CASH_FLOW_USES
Free cash flow FQ, FH, FY, TTM FREE_CASH_FLOW
Funds from operations FQ, FH, FY, TTM FUNDS_F_OPERATIONS
Investing activities - other sources FQ, FH, FY, TTM OTHER_INVESTING_CASH_FLOW_SOURCES
Investing activities - other uses FQ, FH, FY OTHER_INVESTING_CASH_FLOW_USES
Issuance of long term debt FQ, FH, FY, TTM SUPPLYING_OF_LONG_TERM_DEBT
Issuance/retirement of debt, net FQ, FH, FY, TTM ISSUANCE_OF_DEBT_NET
Issuance/retirement of long term debt FQ, FH, FY, TTM ISSUANCE_OF_LONG_TERM_DEBT
Issuance/retirement of other debt FQ, FH, FY, TTM ISSUANCE_OF_OTHER_DEBT
Issuance/retirement of short term debt FQ, FH, FY, TTM ISSUANCE_OF_SHORT_TERM_DEBT
Issuance/retirement of stock, net FQ, FH, FY, TTM ISSUANCE_OF_STOCK_NET
Net income (cash flow) FQ, FH, FY, TTM NET_INCOME_STARTING_LINE
Non-cash items FQ, FH, FY, TTM NON_CASH_ITEMS
Other financing cash flow items, total FQ, FH, FY, TTM OTHER_FINANCING_CASH_FLOW_ITEMS_TOTAL
Other investing cash flow items, total FQ, FH, FY OTHER_INVESTING_CASH_FLOW_ITEMS_TOTAL
Preferred dividends paid FQ, FH, FY PREFERRED_DIVIDENDS_CASH_FLOW
Purchase of investments FQ, FH, FY, TTM PURCHASE_OF_INVESTMENTS
Purchase/acquisition of business FQ, FH, FY, TTM PURCHASE_OF_BUSINESS
Purchase/sale of business, net FQ, FH, FY PURCHASE_SALE_BUSINESS
Purchase/sale of investments, net FQ, FH, FY, TTM PURCHASE_SALE_INVESTMENTS
Reduction of long term debt FQ, FH, FY, TTM REDUCTION_OF_LONG_TERM_DEBT
Repurchase of common & preferred stock FQ, FH, FY, TTM PURCHASE_OF_STOCK
Sale of common & preferred stock FQ, FH, FY, TTM SALE_OF_STOCK
Sale of fixed assets & businesses FQ, FH, FY, TTM SALES_OF_BUSINESS
Sale/maturity of investments FQ, FH, FY SALES_OF_INVESTMENTS
Total cash dividends paid FQ, FH, FY, TTM TOTAL_CASH_DIVIDENDS_PAID

Statistics

This table contains a variety of statistical metrics, including commonly used financial ratios.

Financial period financial_id

Accruals FQ, FH, FY ACCRUALS_RATIO
Altman Z-score FQ, FH, FY ALTMAN_Z_SCORE
Asset turnover FQ, FH, FY ASSET_TURNOVER
Beneish M-score FQ, FH, FY BENEISH_M_SCORE
Buyback yield % FQ, FH, FY BUYBACK_YIELD
COGS to revenue ratio FQ, FH, FY COGS_TO_REVENUE
Cash conversion cycle FQ, FY CASH_CONVERSION_CYCLE
Cash to debt ratio FQ, FH, FY CASH_TO_DEBT
Current ratio FQ, FH, FY CURRENT_RATIO
Days inventory FQ, FY DAYS_INVENT
Days payable FQ, FY DAYS_PAY

continues on next page

334 Chapter 4. Concepts

https://www.tradingview.com/support/solutions/43000564185
https://www.tradingview.com/support/solutions/43000564144
https://www.tradingview.com/support/solutions/43000563892
https://www.tradingview.com/support/solutions/43000564142
https://www.tradingview.com/support/solutions/43000564181
https://www.tradingview.com/support/solutions/43000564182
https://www.tradingview.com/support/solutions/43000553630
https://www.tradingview.com/support/solutions/43000563886
https://www.tradingview.com/support/solutions/43000564164
https://www.tradingview.com/support/solutions/43000564165
https://www.tradingview.com/support/solutions/43000564176
https://www.tradingview.com/support/solutions/43000564172
https://www.tradingview.com/support/solutions/43000564175
https://www.tradingview.com/support/solutions/43000564178
https://www.tradingview.com/support/solutions/43000564173
https://www.tradingview.com/support/solutions/43000564169
https://www.tradingview.com/support/solutions/43000563888
https://www.tradingview.com/support/solutions/43000564146
https://www.tradingview.com/support/solutions/43000564179
https://www.tradingview.com/support/solutions/43000564163
https://www.tradingview.com/support/solutions/43000564186
https://www.tradingview.com/support/solutions/43000564162
https://www.tradingview.com/support/solutions/43000564159
https://www.tradingview.com/support/solutions/43000564156
https://www.tradingview.com/support/solutions/43000564160
https://www.tradingview.com/support/solutions/43000564177
https://www.tradingview.com/support/solutions/43000564171
https://www.tradingview.com/support/solutions/43000564170
https://www.tradingview.com/support/solutions/43000564158
https://www.tradingview.com/support/solutions/43000564161
https://www.tradingview.com/support/solutions/43000564183
https://www.tradingview.com/support/solutions/43000597073
https://www.tradingview.com/support/solutions/43000597092
https://www.tradingview.com/support/solutions/43000597022
https://www.tradingview.com/support/solutions/43000597835
https://www.tradingview.com/support/solutions/43000597088
https://www.tradingview.com/support/solutions/43000597026
https://www.tradingview.com/support/solutions/43000597089
https://www.tradingview.com/support/solutions/43000597023
https://www.tradingview.com/support/solutions/43000597051
https://www.tradingview.com/support/solutions/43000597028
https://www.tradingview.com/support/solutions/43000597029

Pine Script™ v5 User Manual

Table 4 – continued from previous page
Financial period financial_id

Days sales outstanding FQ, FY DAY_SALES_OUT
Debt to EBITDA ratio FQ, FH, FY DEBT_TO_EBITDA
Debt to assets ratio FQ, FH, FY DEBT_TO_ASSET
Debt to equity ratio FQ, FH, FY DEBT_TO_EQUITY
Debt to revenue ratio FQ, FH, FY DEBT_TO_REVENUE
Dividend payout ratio % FQ, FH, FY, TTM DIVIDEND_PAYOUT_RATIO
Dividend yield % FQ, FH, FY DIVIDENDS_YIELD
Dividends per share - common stock primary issue FQ, FH, FY, TTM DPS_COMMON_STOCK_PRIM_ISSUE
EBITDA margin % FQ, FH, FY, TTM EBITDA_MARGIN
EPS basic one year growth FQ, FH, FY, TTM EARNINGS_PER_SHARE_BASIC_ONE_YEAR_GROWTH
EPS diluted one year growth FQ, FH, FY EARNINGS_PER_SHARE_DILUTED_ONE_YEAR_GROWTH
EPS estimates FQ, FH, FY EARNINGS_ESTIMATE
Effective interest rate on debt % FQ, FH, FY EFFECTIVE_INTEREST_RATE_ON_DEBT
Enterprise value FQ, FH, FY ENTERPRISE_VALUE
Enterprise value to EBIT ratio FQ, FH, FY EV_EBIT
Enterprise value to EBITDA ratio FQ, FH, FY ENTERPRISE_VALUE_EBITDA
Enterprise value to revenue ratio FQ, FH, FY EV_REVENUE
Equity to assets ratio FQ, FH, FY EQUITY_TO_ASSET
Float shares outstanding FY FLOAT_SHARES_OUTSTANDING
Free cash flow margin % FQ, FH, FY FREE_CASH_FLOW_MARGIN
Fulmer H factor FQ, FY FULMER_H_FACTOR
Goodwill to assets ratio FQ, FH, FY GOODWILL_TO_ASSET
Graham’s number FQ, FY GRAHAM_NUMBERS
Gross margin % FQ, FH, FY, TTM GROSS_MARGIN
Gross profit to assets ratio FQ, FY GROSS_PROFIT_TO_ASSET
Interest coverage FQ, FH, FY INTERST_COVER
Inventory to revenue ratio FQ, FH, FY INVENT_TO_REVENUE
Inventory turnover FQ, FH, FY INVENT_TURNOVER
KZ index FY KZ_INDEX
Long term debt to total assets ratio FQ, FH, FY LONG_TERM_DEBT_TO_ASSETS
Net current asset value per share FQ, FY NCAVPS_RATIO
Net income per employee FY NET_INCOME_PER_EMPLOYEE
Net margin % FQ, FH, FY, TTM NET_MARGIN
Number of employees FY NUMBER_OF_EMPLOYEES
Operating earnings yield % FQ, FH, FY OPERATING_EARNINGS_YIELD
Operating margin % FQ, FH, FY OPERATING_MARGIN
PEG ratio FQ, FY PEG_RATIO
Piotroski F-score FQ, FH, FY PIOTROSKI_F_SCORE
Price earnings ratio forward FQ, FY PRICE_EARNINGS_FORWARD
Price sales ratio forward FQ, FY PRICE_SALES_FORWARD
Quality ratio FQ, FH, FY QUALITY_RATIO
Quick ratio FQ, FH, FY QUICK_RATIO
Research & development to revenue ratio FQ, FH, FY RESEARCH_AND_DEVELOP_TO_REVENUE
Return on assets % FQ, FH, FY RETURN_ON_ASSETS
Return on common equity % FQ, FH, FY RETURN_ON_COMMON_EQUITY
Return on equity % FQ, FH, FY RETURN_ON_EQUITY
Return on equity adjusted to book value % FQ, FH, FY RETURN_ON_EQUITY_ADJUST_TO_BOOK
Return on invested capital % FQ, FH, FY RETURN_ON_INVESTED_CAPITAL
Return on tangible assets % FQ, FH, FY RETURN_ON_TANG_ASSETS
Return on tangible equity % FQ, FH, FY RETURN_ON_TANG_EQUITY

continues on next page

4.14. Other timeframes and data 335

https://www.tradingview.com/support/solutions/43000597030
https://www.tradingview.com/support/solutions/43000597032
https://www.tradingview.com/support/solutions/43000597031
https://www.tradingview.com/support/solutions/43000597078
https://www.tradingview.com/support/solutions/43000597033
https://www.tradingview.com/support/solutions/43000597738
https://www.tradingview.com/support/solutions/43000597817
https://www.tradingview.com/support/solutions/43000670334
https://www.tradingview.com/support/solutions/43000597075
https://www.tradingview.com/support/solutions/43000597069
https://www.tradingview.com/support/solutions/43000597071
https://www.tradingview.com/support/solutions/43000597066
https://www.tradingview.com/support/solutions/43000597034
https://www.tradingview.com/support/solutions/43000597077
https://www.tradingview.com/support/solutions/43000597063
https://www.tradingview.com/support/solutions/43000597064
https://www.tradingview.com/support/solutions/43000597065
https://www.tradingview.com/support/solutions/43000597035
https://www.tradingview.com/support/solutions/43000670341
https://www.tradingview.com/support/solutions/43000597813
https://www.tradingview.com/support/solutions/43000597847
https://www.tradingview.com/support/solutions/43000597036
https://www.tradingview.com/support/solutions/43000597084
https://www.tradingview.com/support/solutions/43000597811
https://www.tradingview.com/support/solutions/43000597087
https://www.tradingview.com/support/solutions/43000597037
https://www.tradingview.com/support/solutions/43000597047
https://www.tradingview.com/support/solutions/43000597046
https://www.tradingview.com/support/solutions/43000597844
https://www.tradingview.com/support/solutions/43000597048
https://www.tradingview.com/support/solutions/43000597085
https://www.tradingview.com/support/solutions/43000597082
https://www.tradingview.com/support/solutions/43000597074
https://www.tradingview.com/support/solutions/43000597080
https://www.tradingview.com/support/solutions/43000684072
https://www.tradingview.com/support/solutions/43000597076
https://www.tradingview.com/support/solutions/43000597090
https://www.tradingview.com/support/solutions/43000597734
https://www.tradingview.com/support/solutions/43000597831
https://www.tradingview.com/support/solutions/43000597832
https://www.tradingview.com/support/solutions/43000597086
https://www.tradingview.com/support/solutions/43000597050
https://www.tradingview.com/support/solutions/43000597739
https://www.tradingview.com/support/solutions/43000597054
https://www.tradingview.com/support/solutions/43000656797
https://www.tradingview.com/support/solutions/43000597021
https://www.tradingview.com/support/solutions/43000597055
https://www.tradingview.com/support/solutions/43000597056
https://www.tradingview.com/support/solutions/43000597052
https://www.tradingview.com/support/solutions/43000597053

Pine Script™ v5 User Manual

Table 4 – continued from previous page
Financial period financial_id

Revenue estimates FQ, FH, FY SALES_ESTIMATES
Revenue one year growth FQ, FH, FY, TTM REVENUE_ONE_YEAR_GROWTH
Revenue per employee FY REVENUE_PER_EMPLOYEE
Shares buyback ratio % FQ, FH, FY SHARE_BUYBACK_RATIO
Sloan ratio % FQ, FH, FY SLOAN_RATIO
Springate score FQ, FY SPRINGATE_SCORE
Sustainable growth rate FQ, FY SUSTAINABLE_GROWTH_RATE
Tangible common equity ratio FQ, FH, FY TANGIBLE_COMMON_EQUITY_RATIO
Tobin’s Q (approximate) FQ, FH, FY TOBIN_Q_RATIO
Total common shares outstanding FQ, FH, FY TOTAL_SHARES_OUTSTANDING
Zmijewski score FQ, FY ZMIJEWSKI_SCORE

4.14.12 `request.economic()`

The request.economic() function provides scripts with the ability to retrieve economic data for a specified country or
region, including information about the state of the economy (GDP, inflation rate, etc.) or of a particular industry (steel
production, ICU beds, etc.).
Below is the signature for this function:

request.economic(country_code, field, gaps, ignore_invalid_symbol) → series float

The country_code parameter accepts a “simple string” representing the identifier of the country or region to request
economic data for (e.g., “US”, “EU”, etc.). See the Country/region codes section for a complete list of codes this function
supports. Note that the economic metrics available depend on the country or region specified in the function call.
The field parameter specifies the metric the function will request. The Field codes section covers all accessible metrics
and the countries/regions they’re available for.
For a detailed explanation on the last two parameters of this function, see the Common characteristics section at the top
of this page.
This simple example requests the growth rate of the Gross Domestic Product (“GDPQQ”) for the United States (“US”)
using request.economic(), then plots its value on the chart with a gradient color:

336 Chapter 4. Concepts

https://www.tradingview.com/support/solutions/43000597067
https://www.tradingview.com/support/solutions/43000597068
https://www.tradingview.com/support/solutions/43000597081
https://www.tradingview.com/support/solutions/43000597057
https://www.tradingview.com/support/solutions/43000597058
https://www.tradingview.com/support/solutions/43000597848
https://www.tradingview.com/support/solutions/43000597736
https://www.tradingview.com/support/solutions/43000597079
https://www.tradingview.com/support/solutions/43000597834
https://www.tradingview.com/support/solutions/43000670331
https://www.tradingview.com/support/solutions/43000597850
https://www.tradingview.com/pine-script-reference/v5/#fun_request.economic
https://www.tradingview.com/pine-script-reference/v5/#fun_request.economic
https://www.tradingview.com/pine-script-reference/v5/#fun_color.from_gradient

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Requesting economic data demo")
3

4 //@variable The GDP growth rate for the US economy.
5 float gdpqq = request.economic("US", "GDPQQ")
6

7 //@variable The all-time maximum growth rate.
8 float maxRate = ta.max(gdpqq)
9 //@variable The all-time minimum growth rate.
10 float minRate = ta.min(gdpqq)
11

12 //@variable The color of the `gdpqq` plot.
13 color rateColor = switch
14 gdpqq >= 0 => color.from_gradient(gdpqq, 0, maxRate, color.purple, color.blue)
15 => color.from_gradient(gdpqq, minRate, 0, color.red, color.purple)
16

17 // Plot the results.
18 plot(gdpqq, "US GDP Growth Rate", rateColor, style = plot.style_area)

Note that:
• This example does not include a gaps argument in the request.economic() call, so the function uses the
default barmerge.gaps_off. In other words, it returns the last retrieved value when new data isn’t yet available.

Note: The tables in the sections below are rather large, as there are numerous country_code and field arguments
available. Use the “Click to show/hide” option above each table to toggle its visibility.

Country/region codes

The table in this section lists all country/region codes available for use with request.economic(). The first column of
the table contains the “string” values that represent the country or region code, and the second column contains the
corresponding country/region names.
It’s important to note that the value used as the country_code argument determines which field codes are accessible
to the function.

country_code Country/region name
AF Afghanistan
AL Albania
DZ Algeria
AD Andorra
AO Angola
AG Antigua and Barbuda
AR Argentina
AM Armenia
AW Aruba
AU Australia
AT Austria
AZ Azerbaijan
BS Bahamas
BH Bahrain
BD Bangladesh

continues on next page

4.14. Other timeframes and data 337

https://www.tradingview.com/pine-script-reference/v5/#fun_request.economic
https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.gaps_off
https://www.tradingview.com/pine-script-reference/v5/#fun_request.economic

Pine Script™ v5 User Manual

Table 5 – continued from previous page
country_code Country/region name
BB Barbados
BY Belarus
BE Belgium
BZ Belize
BJ Benin
BM Bermuda
BT Bhutan
BO Bolivia
BA Bosnia and Herzegovina
BW Botswana
BR Brazil
BN Brunei
BG Bulgaria
BF Burkina Faso
BI Burundi
KH Cambodia
CM Cameroon
CA Canada
CV Cape Verde
KY Cayman Islands
CF Central African Republic
TD Chad
CL Chile
CN China
CO Colombia
KM Comoros
CG Congo
CR Costa Rica
HR Croatia
CU Cuba
CY Cyprus
CZ Czech Republic
DK Denmark
DJ Djibouti
DM Dominica
DO Dominican Republic
TL East Timor
EC Ecuador
EG Egypt
SV El Salvador
GQ Equatorial Guinea
ER Eritrea
EE Estonia
ET Ethiopia
EU Euro area
FO Faroe Islands
FJ Fiji
FI Finland
FR France
GA Gabon

continues on next page

338 Chapter 4. Concepts

Pine Script™ v5 User Manual

Table 5 – continued from previous page
country_code Country/region name
GM Gambia
GE Georgia
DE Germany
GH Ghana
GR Greece
GL Greenland
GD Grenada
GT Guatemala
GN Guinea
GW Guinea Bissau
GY Guyana
HT Haiti
HN Honduras
HK Hong Kong
HU Hungary
IS Iceland
IN India
ID Indonesia
IR Iran
IQ Iraq
IE Ireland
IM Isle of Man
IL Israel
IT Italy
CI Ivory Coast
JM Jamaica
JP Japan
JO Jordan
KZ Kazakhstan
KE Kenya
KI Kiribati
XK Kosovo
KW Kuwait
KG Kyrgyzstan
LA Laos
LV Latvia
LB Lebanon
LS Lesotho
LR Liberia
LY Libya
LI Liechtenstein
LT Lithuania
LU Luxembourg
MO Macau
MK Macedonia
MG Madagascar
MW Malawi
MY Malaysia
MV Maldives
ML Mali

continues on next page

4.14. Other timeframes and data 339

Pine Script™ v5 User Manual

Table 5 – continued from previous page
country_code Country/region name
MT Malta
MR Mauritania
MU Mauritius
MX Mexico
MD Moldova
MC Monaco
MN Mongolia
ME Montenegro
MA Morocco
MZ Mozambique
MM Myanmar
NA Namibia
NP Nepal
NL Netherlands
NC New Caledonia
NZ New Zealand
NI Nicaragua
NE Niger
NG Nigeria
KP North Korea
NO Norway
OM Oman
PK Pakistan
PS Palestine
PA Panama
PG Papua New Guinea
PY Paraguay
PE Peru
PH Philippines
PL Poland
PT Portugal
PR Puerto Rico
QA Qatar
CD Republic of the Congo
RO Romania
RU Russia
RW Rwanda
WS Samoa
SM San Marino
ST Sao Tome and Principe
SA Saudi Arabia
SN Senegal
RS Serbia
SC Seychelles
SL Sierra Leone
SG Singapore
SK Slovakia
SI Slovenia
SB Solomon Islands
SO Somalia

continues on next page

340 Chapter 4. Concepts

Pine Script™ v5 User Manual

Table 5 – continued from previous page
country_code Country/region name
ZA South Africa
KR South Korea
SS South Sudan
ES Spain
LK Sri Lanka
LC St Lucia
VC St Vincent and the Grenadines
SD Sudan
SR Suriname
SZ Swaziland
SE Sweden
CH Switzerland
SY Syria
TW Taiwan
TJ Tajikistan
TZ Tanzania
TH Thailand
TG Togo
TO Tonga
TT Trinidad and Tobago
TN Tunisia
TR Turkey
TM Turkmenistan
UG Uganda
UA Ukraine
AE United Arab Emirates
GB United Kingdom
US United States
UY Uruguay
UZ Uzbekistan
VU Vanuatu
VE Venezuela
VN Vietnam
YE Yemen
ZM Zambia
ZW Zimbabwe

Field codes

The table in this section lists the field codes available for use with request.economic(). The first column contains the
“string” values used as the field argument, and the second column contains names of each metric and links to our Help
Center with additional information, including the countries/regions they’re available for.

field Metric
AA Asylum Applications
ACR API Crude Runs
AE Auto Exports
AHE Average Hourly Earnings

continues on next page

4.14. Other timeframes and data 341

https://www.tradingview.com/pine-script-reference/v5/#fun_request.economic
https://www.tradingview.com/support/solutions/43000650926
https://www.tradingview.com/support/solutions/43000650920
https://www.tradingview.com/support/solutions/43000650927
https://www.tradingview.com/support/solutions/43000650928

Pine Script™ v5 User Manual

Table 6 – continued from previous page
field Metric
AHO API Heating Oil
AWH Average Weekly Hours
BBS Banks Balance Sheet
BCLI Business Climate Indicator
BCOI Business Confidence Index
BI Business Inventories
BLR Bank Lending Rate
BOI NFIB Business Optimism Index
BOT Balance Of Trade
BP Building Permits
BR Bankruptcies
CA Current Account
CAG Current Account To GDP
CAP Car Production
CAR Car Registrations
CBBS Central Bank Balance Sheet
CCC Claimant Count Change
CCI Consumer Confidence Index
CCOS Cushing Crude Oil Stocks
CCP Core Consumer Prices
CCPI Core CPI
CCPT Consumer Confidence Price Trends
CCR Consumer Credit
CCS Credit Card Spending
CEP Cement Production
CF Capital Flows
CFNAI Chicago Fed National Activity Index
CI API Crude Imports
CIND Coincident Index
CIR Core Inflation Rate, YoY
CJC Continuing Jobless Claims
CN API Cushing Number
COI Crude Oil Imports
COIR Crude Oil Imports from Russia
CONSTS Construction Spending
COP Crude Oil Production
COR Crude Oil Rigs
CORD Construction Orders, YoY
CORPI Corruption Index
CORR Corruption Rank
COSC Crude Oil Stocks Change
COUT Construction Output, YoY
CP Copper Production
CPCEPI Core PCE Price Index
CPI Consumer Price Index
CPIHU CPI Housing Utilities
CPIM CPI Median
CPIT CPI Transportation
CPITM CPI Trimmed Mean
CPMI Chicago PMI

continues on next page

342 Chapter 4. Concepts

https://www.tradingview.com/support/solutions/43000650924
https://www.tradingview.com/support/solutions/43000650929
https://www.tradingview.com/support/solutions/43000650932
https://www.tradingview.com/support/solutions/43000650935
https://www.tradingview.com/support/solutions/43000650936
https://www.tradingview.com/support/solutions/43000650937
https://www.tradingview.com/support/solutions/43000650933
https://www.tradingview.com/support/solutions/43000651133
https://www.tradingview.com/support/solutions/43000650930
https://www.tradingview.com/support/solutions/43000650934
https://www.tradingview.com/support/solutions/43000650931
https://www.tradingview.com/support/solutions/43000650988
https://www.tradingview.com/support/solutions/43000650987
https://www.tradingview.com/support/solutions/43000650945
https://www.tradingview.com/support/solutions/43000650946
https://www.tradingview.com/support/solutions/43000650952
https://www.tradingview.com/support/solutions/43000650959
https://www.tradingview.com/support/solutions/43000650966
https://www.tradingview.com/support/solutions/43000650989
https://www.tradingview.com/support/solutions/43000650974
https://www.tradingview.com/support/solutions/43000650973
https://www.tradingview.com/support/solutions/43000650967
https://www.tradingview.com/support/solutions/43000650968
https://www.tradingview.com/support/solutions/43000650982
https://www.tradingview.com/support/solutions/43000650951
https://www.tradingview.com/support/solutions/43000650944
https://www.tradingview.com/support/solutions/43000650957
https://www.tradingview.com/support/solutions/43000650918
https://www.tradingview.com/support/solutions/43000650960
https://www.tradingview.com/support/solutions/43000650975
https://www.tradingview.com/support/solutions/43000650971
https://www.tradingview.com/support/solutions/43000650921
https://www.tradingview.com/support/solutions/43000650983
https://www.tradingview.com/support/solutions/43000679670
https://www.tradingview.com/support/solutions/43000650965
https://www.tradingview.com/support/solutions/43000650984
https://www.tradingview.com/support/solutions/43000650985
https://www.tradingview.com/support/solutions/43000650963
https://www.tradingview.com/support/solutions/43000650980
https://www.tradingview.com/support/solutions/43000650981
https://www.tradingview.com/support/solutions/43000650986
https://www.tradingview.com/support/solutions/43000650964
https://www.tradingview.com/support/solutions/43000650972
https://www.tradingview.com/support/solutions/43000650976
https://www.tradingview.com/support/solutions/43000650969
https://www.tradingview.com/support/solutions/43000650939
https://www.tradingview.com/support/solutions/43000650940
https://www.tradingview.com/support/solutions/43000650941
https://www.tradingview.com/support/solutions/43000650942
https://www.tradingview.com/support/solutions/43000650958

Pine Script™ v5 User Manual

Table 6 – continued from previous page
field Metric
CPPI Core Producer Price Index
CPR Corporate Profits
CRLPI Cereals Price Index
CRR Cash Reserve Ratio
CS Consumer Spending
CSC API Crude Oil Stock Change
CSHPI Case Shiller Home Price Index
CSHPIMM Case Shiller Home Price Index, MoM
CSHPIYY Case Shiller Home Price Index, YoY
CSS Chain Store Sales
CTR Corporate Tax Rate
CU Capacity Utilization
DFMI Dallas Fed Manufacturing Index
DFP Distillate Fuel Production
DFS Distillate Stocks
DFSI Dallas Fed Services Index
DFSRI Dallas Fed Services Revenues Index
DG Deposit Growth
DGO Durable Goods Orders
DGOED Durable Goods Orders Excluding Defense
DGOET Durable Goods Orders Excluding Transportation
DIR Deposit Interest Rate
DPI Disposable Personal Income
DRPI Dairy Price Index
DS API Distillate Stocks
DT CBI Distributive Trades
EC ADP Employment Change
ED External Debt
EDBR Ease Of Doing Business Ranking
EHS Existing Home Sales
ELP Electricity Production
EMC Employment Change
EMCI Employment Cost Index
EMP Employed Persons
EMR Employment Rate
EOI Economic Optimism Index
EP Export Prices
ESI ZEW Economic Sentiment Index
EWS Economy Watchers Survey
EXP Exports
EXPYY Exports, YoY
FAI Fixed Asset Investment
FBI Foreign Bond Investment
FDI Foreign Direct Investment
FE Fiscal Expenditure
FER Foreign Exchange Reserves
FI Food Inflation, YoY
FO Factory Orders
FOET Factory Orders Excluding Transportation
FPI Food Price Index

continues on next page

4.14. Other timeframes and data 343

https://www.tradingview.com/support/solutions/43000650977
https://www.tradingview.com/support/solutions/43000650978
https://www.tradingview.com/support/solutions/43000679669
https://www.tradingview.com/support/solutions/43000650950
https://www.tradingview.com/support/solutions/43000650970
https://www.tradingview.com/support/solutions/43000650919
https://www.tradingview.com/support/solutions/43000650947
https://www.tradingview.com/support/solutions/43000650948
https://www.tradingview.com/support/solutions/43000650949
https://www.tradingview.com/support/solutions/43000650954
https://www.tradingview.com/support/solutions/43000650979
https://www.tradingview.com/support/solutions/43000650943
https://www.tradingview.com/support/solutions/43000650990
https://www.tradingview.com/support/solutions/43000650996
https://www.tradingview.com/support/solutions/43000650997
https://www.tradingview.com/support/solutions/43000650991
https://www.tradingview.com/support/solutions/43000650992
https://www.tradingview.com/support/solutions/43000650993
https://www.tradingview.com/support/solutions/43000651000
https://www.tradingview.com/support/solutions/43000650998
https://www.tradingview.com/support/solutions/43000650999
https://www.tradingview.com/support/solutions/43000650994
https://www.tradingview.com/support/solutions/43000650995
https://www.tradingview.com/support/solutions/43000679668
https://www.tradingview.com/support/solutions/43000650922
https://www.tradingview.com/support/solutions/43000650938
https://www.tradingview.com/support/solutions/43000650917
https://www.tradingview.com/support/solutions/43000651012
https://www.tradingview.com/support/solutions/43000651001
https://www.tradingview.com/support/solutions/43000651009
https://www.tradingview.com/support/solutions/43000651004
https://www.tradingview.com/support/solutions/43000651006
https://www.tradingview.com/support/solutions/43000651007
https://www.tradingview.com/support/solutions/43000651005
https://www.tradingview.com/support/solutions/43000651008
https://www.tradingview.com/support/solutions/43000651002
https://www.tradingview.com/support/solutions/43000651011
https://www.tradingview.com/support/solutions/43000651213
https://www.tradingview.com/support/solutions/43000651003
https://www.tradingview.com/support/solutions/43000651010
https://www.tradingview.com/support/solutions/43000679671
https://www.tradingview.com/support/solutions/43000651016
https://www.tradingview.com/support/solutions/43000651018
https://www.tradingview.com/support/solutions/43000651019
https://www.tradingview.com/support/solutions/43000651015
https://www.tradingview.com/support/solutions/43000651020
https://www.tradingview.com/support/solutions/43000651017
https://www.tradingview.com/support/solutions/43000651014
https://www.tradingview.com/support/solutions/43000651013
https://www.tradingview.com/support/solutions/43000679667

Pine Script™ v5 User Manual

Table 6 – continued from previous page
field Metric
FSI Foreign Stock Investment
FTE Full Time Employment
FYGDPG Full Year GDP Growth
GASP Gasoline Prices
GBP Government Budget
GBV Government Budget Value
GCI Competitiveness Index
GCR Competitiveness Rank
GD Government Debt
GDG Government Debt To GDP
GDP Gross Domestic Product
GDPA GDP From Agriculture
GDPC GDP From Construction
GDPCP GDP Constant Prices
GDPD GDP Deflator
GDPGA GDP Growth Annualized
GDPMAN GDP From Manufacturing
GDPMIN GDP From Mining
GDPPA GDP From Public Administration
GDPPC GDP Per Capita
GDPPCP GDP Per Capita, PPP
GDPQQ GDP Growth Rate
GDPS GDP From Services
GDPSA GDP Sales
GDPT GDP From Transport
GDPU GDP From Utilities
GDPYY GDP, YoY
GDTPI Global Dairy Trade Price Index
GFCF Gross Fixed Capital Formation
GNP Gross National Product
GP Gold Production
GPA Government Payrolls
GPRO Gasoline Production
GR Government Revenues
GRES Gold Reserves
GS API Gasoline Stocks
GSC Grain Stocks Corn
GSCH Gasoline Stocks Change
GSG Government Spending To GDP
GSP Government Spending
GSS Grain Stocks Soy
GSW Grain Stocks Wheat
GTB Goods Trade Balance
HB Hospital Beds
HDG Households Debt To GDP
HDI Households Debt To Income
HICP Harmonised Index of Consumer Prices
HIRMM Harmonised Inflation Rate, MoM
HIRYY Harmonised Inflation Rate, YoY
HMI NAHB Housing Market Index

continues on next page

344 Chapter 4. Concepts

https://www.tradingview.com/support/solutions/43000651021
https://www.tradingview.com/support/solutions/43000651022
https://www.tradingview.com/support/solutions/43000679672
https://www.tradingview.com/support/solutions/43000651040
https://www.tradingview.com/support/solutions/43000651050
https://www.tradingview.com/support/solutions/43000651049
https://www.tradingview.com/support/solutions/43000650961
https://www.tradingview.com/support/solutions/43000650962
https://www.tradingview.com/support/solutions/43000651052
https://www.tradingview.com/support/solutions/43000651051
https://www.tradingview.com/support/solutions/43000651038
https://www.tradingview.com/support/solutions/43000651025
https://www.tradingview.com/support/solutions/43000651026
https://www.tradingview.com/support/solutions/43000651023
https://www.tradingview.com/support/solutions/43000651024
https://www.tradingview.com/support/solutions/43000651033
https://www.tradingview.com/support/solutions/43000651027
https://www.tradingview.com/support/solutions/43000651028
https://www.tradingview.com/support/solutions/43000651029
https://www.tradingview.com/support/solutions/43000651035
https://www.tradingview.com/support/solutions/43000651036
https://www.tradingview.com/support/solutions/43000651034
https://www.tradingview.com/support/solutions/43000651030
https://www.tradingview.com/support/solutions/43000651037
https://www.tradingview.com/support/solutions/43000651031
https://www.tradingview.com/support/solutions/43000651032
https://www.tradingview.com/support/solutions/43000651039
https://www.tradingview.com/support/solutions/43000651043
https://www.tradingview.com/support/solutions/43000651060
https://www.tradingview.com/support/solutions/43000651061
https://www.tradingview.com/support/solutions/43000651044
https://www.tradingview.com/support/solutions/43000651053
https://www.tradingview.com/support/solutions/43000651041
https://www.tradingview.com/support/solutions/43000651054
https://www.tradingview.com/support/solutions/43000651045
https://www.tradingview.com/support/solutions/43000650923
https://www.tradingview.com/support/solutions/43000651057
https://www.tradingview.com/support/solutions/43000651042
https://www.tradingview.com/support/solutions/43000651055
https://www.tradingview.com/support/solutions/43000651056
https://www.tradingview.com/support/solutions/43000651058
https://www.tradingview.com/support/solutions/43000651059
https://www.tradingview.com/support/solutions/43000651046
https://www.tradingview.com/support/solutions/43000651067
https://www.tradingview.com/support/solutions/43000651068
https://www.tradingview.com/support/solutions/43000651069
https://www.tradingview.com/support/solutions/43000651062
https://www.tradingview.com/support/solutions/43000679673
https://www.tradingview.com/support/solutions/43000679674
https://www.tradingview.com/support/solutions/43000651132

Pine Script™ v5 User Manual

Table 6 – continued from previous page
field Metric
HOR Home Ownership Rate
HOS Heating Oil Stocks
HOSP Hospitals
HPI House Price Index
HPIMM House Price Index, MoM
HPIYY House Price Index, YoY
HS Home Loans
HSP Household Spending
HST Housing Starts
IC Changes In Inventories
ICUB ICU Beds
IE Inflation Expectations
IFOCC IFO Assessment Of The Business Situation
IFOE IFO Business Developments Expectations
IJC Initial Jobless Claims
IMP Imports
IMPYY Imports, YoY
INBR Interbank Rate
INTR Interest Rate
IPA IP Addresses
IPMM Industrial Production, MoM
IPRI Import Prices
IPYY Industrial Production, YoY
IRMM Inflation Rate, MoM
IRYY Inflation Rate, YoY
IS Industrial Sentiment
ISP Internet Speed
JA Job Advertisements
JAR Jobs To Applications Ratio
JC Challenger Job Cuts
JC4W Jobless Claims, 4-Week Average
JO Job Offers
JV Job Vacancies
KFMI Kansas Fed Manufacturing Index
LB Loans To Banks
LC Labor Costs
LEI Leading Economic Index
LFPR Labor Force Participation Rate
LG Loan Growth, YoY
LIVRR Liquidity Injections Via Reverse Repo
LMIC LMI Logistics Managers Index Current
LMICI LMI Inventory Costs
LMIF LMI Logistics Managers Index Future
LMITP LMI Transportation Prices
LMIWP LMI Warehouse Prices
LPS Loans To Private Sector
LR Central Bank Lending Rate
LTUR Long Term Unemployment Rate
LWF Living Wage Family
LWI Living Wage Individual

continues on next page

4.14. Other timeframes and data 345

https://www.tradingview.com/support/solutions/43000651065
https://www.tradingview.com/support/solutions/43000651063
https://www.tradingview.com/support/solutions/43000651066
https://www.tradingview.com/support/solutions/43000651071
https://www.tradingview.com/support/solutions/43000679678
https://www.tradingview.com/support/solutions/43000679679
https://www.tradingview.com/support/solutions/43000651064
https://www.tradingview.com/support/solutions/43000651070
https://www.tradingview.com/support/solutions/43000651072
https://www.tradingview.com/support/solutions/43000650956
https://www.tradingview.com/support/solutions/43000651073
https://www.tradingview.com/support/solutions/43000651081
https://www.tradingview.com/support/solutions/43000651074
https://www.tradingview.com/support/solutions/43000651075
https://www.tradingview.com/support/solutions/43000651084
https://www.tradingview.com/support/solutions/43000651076
https://www.tradingview.com/support/solutions/43000679681
https://www.tradingview.com/support/solutions/43000651085
https://www.tradingview.com/support/solutions/43000651086
https://www.tradingview.com/support/solutions/43000651088
https://www.tradingview.com/support/solutions/43000651078
https://www.tradingview.com/support/solutions/43000651077
https://www.tradingview.com/support/solutions/43000651079
https://www.tradingview.com/support/solutions/43000651082
https://www.tradingview.com/support/solutions/43000651083
https://www.tradingview.com/support/solutions/43000651080
https://www.tradingview.com/support/solutions/43000651087
https://www.tradingview.com/support/solutions/43000651091
https://www.tradingview.com/support/solutions/43000651090
https://www.tradingview.com/support/solutions/43000650955
https://www.tradingview.com/support/solutions/43000651089
https://www.tradingview.com/support/solutions/43000651092
https://www.tradingview.com/support/solutions/43000651093
https://www.tradingview.com/support/solutions/43000651094
https://www.tradingview.com/support/solutions/43000651104
https://www.tradingview.com/support/solutions/43000651101
https://www.tradingview.com/support/solutions/43000651102
https://www.tradingview.com/support/solutions/43000651100
https://www.tradingview.com/support/solutions/43000651106
https://www.tradingview.com/support/solutions/43000651103
https://www.tradingview.com/support/solutions/43000651096
https://www.tradingview.com/support/solutions/43000651095
https://www.tradingview.com/support/solutions/43000651097
https://www.tradingview.com/support/solutions/43000651098
https://www.tradingview.com/support/solutions/43000651099
https://www.tradingview.com/support/solutions/43000651105
https://www.tradingview.com/support/solutions/43000650953
https://www.tradingview.com/support/solutions/43000651107
https://www.tradingview.com/support/solutions/43000679691
https://www.tradingview.com/support/solutions/43000679702

Pine Script™ v5 User Manual

Table 6 – continued from previous page
field Metric
M0 Money Supply M0
M1 Money Supply M1
M2 Money Supply M2
M3 Money Supply M3
MA Mortgage Approvals
MAPL Mortgage Applications
MCE Michigan Consumer Expectations
MCEC Michigan Current Economic Conditions
MD Medical Doctors
ME Military Expenditure
MGDPYY Monthly GDP, YoY
MIE1Y Michigan Inflation Expectations
MIE5Y Michigan 5 Year Inflation Expectations
MIP Mining Production, YoY
MMI MBA Mortgage Market Index
MO Machinery Orders
MP Manufacturing Payrolls
MPI Meat Price Index
MPRMM Manufacturing Production, MoM
MPRYY Manufacturing Production, YoY
MR Mortgage Rate
MRI MBA Mortgage Refinance Index
MS Manufacturing Sales
MTO Machine Tool Orders
MW Minimum Wages
NDCGOEA Orders For Non-defense Capital Goods Excluding Aircraft
NEGTB Goods Trade Deficit With Non-EU Countries
NFP Nonfarm Payrolls
NGI Natural Gas Imports
NGIR Natural Gas Imports from Russia
NGSC Natural Gas Stocks Change
NHPI Nationwide House Price Index
NHS New Home Sales
NHSMM New Home Sales, MoM
NMPMI Non-Manufacturing PMI
NO New Orders
NODXMM Non-Oil Domestic Exports, MoM
NODXYY Non-Oil Domestic Exports, YoY
NOE Non-Oil Exports
NPP Nonfarm Payrolls Private
NURS Nurses
NYESMI NY Empire State Manufacturing Index
OE Oil Exports
OPI Oils Price Index
PCEPI PCE Price Index
PDG Private Debt To GDP
PFMI Philadelphia Fed Manufacturing Index
PHSIMM Pending Home Sales Index, MoM
PHSIYY Pending Home Sales Index, YoY
PI Personal Income

continues on next page

346 Chapter 4. Concepts

https://www.tradingview.com/support/solutions/43000651125
https://www.tradingview.com/support/solutions/43000651126
https://www.tradingview.com/support/solutions/43000651127
https://www.tradingview.com/support/solutions/43000651128
https://www.tradingview.com/support/solutions/43000651130
https://www.tradingview.com/support/solutions/43000651129
https://www.tradingview.com/support/solutions/43000651119
https://www.tradingview.com/support/solutions/43000651120
https://www.tradingview.com/support/solutions/43000651117
https://www.tradingview.com/support/solutions/43000651122
https://www.tradingview.com/support/solutions/43000679714
https://www.tradingview.com/support/solutions/43000651121
https://www.tradingview.com/support/solutions/43000651118
https://www.tradingview.com/support/solutions/43000651124
https://www.tradingview.com/support/solutions/43000651108
https://www.tradingview.com/support/solutions/43000651111
https://www.tradingview.com/support/solutions/43000651113
https://www.tradingview.com/support/solutions/43000679666
https://www.tradingview.com/support/solutions/43000651114
https://www.tradingview.com/support/solutions/43000651115
https://www.tradingview.com/support/solutions/43000651131
https://www.tradingview.com/support/solutions/43000651109
https://www.tradingview.com/support/solutions/43000651116
https://www.tradingview.com/support/solutions/43000651112
https://www.tradingview.com/support/solutions/43000651123
https://www.tradingview.com/support/solutions/43000651148
https://www.tradingview.com/support/solutions/43000651047
https://www.tradingview.com/support/solutions/43000651141
https://www.tradingview.com/support/solutions/43000679719
https://www.tradingview.com/support/solutions/43000679721
https://www.tradingview.com/support/solutions/43000651136
https://www.tradingview.com/support/solutions/43000651135
https://www.tradingview.com/support/solutions/43000651137
https://www.tradingview.com/support/solutions/43000651138
https://www.tradingview.com/support/solutions/43000651143
https://www.tradingview.com/support/solutions/43000651139
https://www.tradingview.com/support/solutions/43000651144
https://www.tradingview.com/support/solutions/43000651145
https://www.tradingview.com/support/solutions/43000651142
https://www.tradingview.com/support/solutions/43000651140
https://www.tradingview.com/support/solutions/43000651146
https://www.tradingview.com/support/solutions/43000651134
https://www.tradingview.com/support/solutions/43000651147
https://www.tradingview.com/support/solutions/43000679665
https://www.tradingview.com/support/solutions/43000651149
https://www.tradingview.com/support/solutions/43000651160
https://www.tradingview.com/support/solutions/43000651158
https://www.tradingview.com/support/solutions/43000651152
https://www.tradingview.com/support/solutions/43000651153
https://www.tradingview.com/support/solutions/43000651155

Pine Script™ v5 User Manual

Table 6 – continued from previous page
field Metric
PIN Private Investment
PIND MBA Purchase Index
PITR Personal Income Tax Rate
POP Population
PPI Producer Price Index
PPII Producer Price Index Input
PPIMM Producer Price Inflation, MoM
PPIYY Producer Prices Index, YoY
PRI API Product Imports
PROD Productivity
PS Personal Savings
PSC Private Sector Credit
PSP Personal Spending
PTE Part Time Employment
PUAC Pandemic Unemployment Assistance Claims
RAM Retirement Age Men
RAW Retirement Age Women
RCR Refinery Crude Runs
REM Remittances
RFMI Richmond Fed Manufacturing Index
RFMSI Richmond Fed Manufacturing Shipments Index
RFSI Richmond Fed Services Index
RI Redbook Index
RIEA Retail Inventories Excluding Autos
RPI Retail Price Index
RR Repo Rate
RRR Reverse Repo Rate
RSEA Retail Sales Excluding Autos
RSEF Retail Sales Excluding Fuel
RSMM Retail Sales, MoM
RSYY Retail Sales, YoY
RTI Reuters Tankan Index
SBSI Small Business Sentiment Index
SFHP Single Family Home Prices
SP Steel Production
SPI Sugar Price Index
SS Services Sentiment
SSR Social Security Rate
SSRC Social Security Rate For Companies
SSRE Social Security Rate For Employees
STR Sales Tax Rate
TA Tourist Arrivals
TAXR Tax Revenue
TCB Treasury Cash Balance
TCPI Tokyo CPI
TI Terrorism Index
TII Tertiary Industry Index
TOT Terms Of Trade
TR Tourism Revenues
TVS Total Vehicle Sales

continues on next page

4.14. Other timeframes and data 347

https://www.tradingview.com/support/solutions/43000651161
https://www.tradingview.com/support/solutions/43000651110
https://www.tradingview.com/support/solutions/43000651154
https://www.tradingview.com/support/solutions/43000651159
https://www.tradingview.com/support/solutions/43000651165
https://www.tradingview.com/support/solutions/43000651164
https://www.tradingview.com/support/solutions/43000679724
https://www.tradingview.com/support/solutions/43000651163
https://www.tradingview.com/support/solutions/43000650925
https://www.tradingview.com/support/solutions/43000651166
https://www.tradingview.com/support/solutions/43000651156
https://www.tradingview.com/support/solutions/43000651162
https://www.tradingview.com/support/solutions/43000651157
https://www.tradingview.com/support/solutions/43000651151
https://www.tradingview.com/support/solutions/43000651150
https://www.tradingview.com/support/solutions/43000651177
https://www.tradingview.com/support/solutions/43000651178
https://www.tradingview.com/support/solutions/43000651168
https://www.tradingview.com/support/solutions/43000651169
https://www.tradingview.com/support/solutions/43000651181
https://www.tradingview.com/support/solutions/43000651182
https://www.tradingview.com/support/solutions/43000651183
https://www.tradingview.com/support/solutions/43000651167
https://www.tradingview.com/support/solutions/43000651171
https://www.tradingview.com/support/solutions/43000651172
https://www.tradingview.com/support/solutions/43000651170
https://www.tradingview.com/support/solutions/43000651180
https://www.tradingview.com/support/solutions/43000651173
https://www.tradingview.com/support/solutions/43000651174
https://www.tradingview.com/support/solutions/43000651175
https://www.tradingview.com/support/solutions/43000651176
https://www.tradingview.com/support/solutions/43000651179
https://www.tradingview.com/support/solutions/43000651187
https://www.tradingview.com/support/solutions/43000651186
https://www.tradingview.com/support/solutions/43000651191
https://www.tradingview.com/support/solutions/43000679563
https://www.tradingview.com/support/solutions/43000651185
https://www.tradingview.com/support/solutions/43000651190
https://www.tradingview.com/support/solutions/43000651188
https://www.tradingview.com/support/solutions/43000651189
https://www.tradingview.com/support/solutions/43000651184
https://www.tradingview.com/support/solutions/43000651199
https://www.tradingview.com/support/solutions/43000651192
https://www.tradingview.com/support/solutions/43000651200
https://www.tradingview.com/support/solutions/43000651196
https://www.tradingview.com/support/solutions/43000651194
https://www.tradingview.com/support/solutions/43000651195
https://www.tradingview.com/support/solutions/43000651193
https://www.tradingview.com/support/solutions/43000651198
https://www.tradingview.com/support/solutions/43000651197

Pine Script™ v5 User Manual

Table 6 – continued from previous page
field Metric
UC Unemployment Change
UP Unemployed Persons
UR Unemployment Rate
WAG Wages
WES Weapons Sales
WG Wage Growth, YoY
WHS Wages High Skilled
WI Wholesale Inventories
WLS Wages Low Skilled
WM Wages In Manufacturing
WPI Wholesale Price Index
WS Wholesale Sales
YUR Youth Unemployment Rate
ZCC ZEW Current Conditions

4.14.13 `request.seed()`

TradingView aggregates a vast amount of data from its many providers, including price and volume information on
tradable instruments, financials, economic data, and more, which users can retrieve in Pine Script™ using the functions
discussed in the sections above, as well as multiple built-in variables.
To further expand the horizons of possible data one can analyze on TradingView, we have Pine Seeds, which allows users
to supply custom user-maintained EOD data feeds via GitHub for use on TradingView charts and within Pine Script™
code.

Note: This section contains only a brief overview of Pine Seeds. For in-depth information about Pine Seeds functionality,
setting up a repo, data formats, and more, consult the documentation here.

To retrieve data from a Pine Seeds data feed within a script, one can use the request.seed() function.
Below is the function’s signature:

request.seed(source, symbol, expression, ignore_invalid_symbol) → series <type>

The source parameter specifies the unique name of the user-maintained GitHub repository that contains the data feed.
For details on creating a repo, see this page.
The symbol parameter represents the file name from the “data/” directory of the source repository, excluding the
“.csv” file extension. See this page for information about the structure of the data stored in repositories.
The expression parameter is the series to evaluate using data extracted from the requested context. It is similar to
the equivalent in request.security() and request.security_lower_tf(). Data feeds stored in user-maintained repos contain
time, open, high, low, close, and volume information, meaning expressions used as the expression argument can use
the corresponding built-in variables, including variables derived from them (e.g., bar_index, ohlc4, etc.) to request their
values from the context of the custom data.

Note: As with request.security() and request.security_lower_tf(), request.seed() duplicates the scopes necessary to eval-
uate its expression in another context, which contributes toward compilation limits and script memory demands. See
the Limitations page’s section on scope count limits for more information.

348 Chapter 4. Concepts

https://www.tradingview.com/support/solutions/43000651202
https://www.tradingview.com/support/solutions/43000651201
https://www.tradingview.com/support/solutions/43000651203
https://www.tradingview.com/support/solutions/43000651205
https://www.tradingview.com/support/solutions/43000651207
https://www.tradingview.com/support/solutions/43000651206
https://www.tradingview.com/support/solutions/43000679725
https://www.tradingview.com/support/solutions/43000651208
https://www.tradingview.com/support/solutions/43000679727
https://www.tradingview.com/support/solutions/43000651204
https://www.tradingview.com/support/solutions/43000651209
https://www.tradingview.com/support/solutions/43000651210
https://www.tradingview.com/support/solutions/43000651211
https://www.tradingview.com/support/solutions/43000651212
https://github.com/tradingview-pine-seeds/docs
https://github.com/tradingview-pine-seeds/docs/blob/main/README.md
https://www.tradingview.com/pine-script-reference/v5/#fun_request.seed
https://github.com/tradingview-pine-seeds/docs/blob/main/repo.md
https://github.com/tradingview-pine-seeds/docs/blob/main/data.md
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_volume
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_ohlc4
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_request.seed

Pine Script™ v5 User Manual

The script below visualizes sample data from the seed_crypto_santiment demo repo. It uses two calls
to request.seed() to retrieve the close values from the repo’s BTC_SENTIMENT_POSITIVE_TOTAL and
BTC_SENTIMENT_NEGATIVE_TOTAL data feeds and plots the results on the chart as step lines:

1 //@version=5
2 indicator("Pine Seeds demo", format=format.volume)
3

4 //@variable The total positive sentiment for BTC extracted from the "seed_crypto_
↪→santiment" repository.

5 float positiveTotal = request.seed("seed_crypto_santiment", "BTC_SENTIMENT_POSITIVE_
↪→TOTAL", close)

6 //@variable The total negative sentiment for BTC extracted from the "seed_crypto_
↪→santiment" repository.

7 float negativeTotal = request.seed("seed_crypto_santiment", "BTC_SENTIMENT_NEGATIVE_
↪→TOTAL", close)

8

9 // Plot the data.
10 plot(positiveTotal, "Positive sentiment", color.teal, 2, plot.style_stepline)
11 plot(negativeTotal, "Negative sentiment", color.maroon, 2, plot.style_stepline)

Note that:
• This example requests data from the repo highlighted in the Pine Seeds documentation. It exists solely for
example purposes, and its data does not update on a regular basis.

• Unlike most other request.*() functions, request.seed() does not have a gaps parameter. It will always
return na values when no new data exists.

• Pine Seeds data is searchable from the chart’s symbol search bar. To load a data feed on the chart, enter the
“Repo:File” pair, similar to searching for an “Exchange:Symbol” pair.

4.14. Other timeframes and data 349

https://github.com/tradingview-pine-seeds/seed_crypto_santiment
https://www.tradingview.com/pine-script-reference/v5/#fun_request.seed
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://github.com/tradingview-pine-seeds/seed_crypto_santiment/blob/master/data/BTC_SENTIMENT_POSITIVE_TOTAL.csv
https://github.com/tradingview-pine-seeds/seed_crypto_santiment/blob/master/data/BTC_SENTIMENT_NEGATIVE_TOTAL.csv
https://www.tradingview.com/pine-script-reference/v5/#var_plot.style_stepline
https://github.com/tradingview-pine-seeds/docs/blob/main/README.md
https://www.tradingview.com/pine-script-reference/v5/#fun_request.seed
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

4.15 Plots

• Introduction

• `plot()` parameters

• Plotting conditionally

• Levels

• Offsets

• Plot count limit

• Scale

4.15.1 Introduction

The plot() function is the most frequently used function used to display information calculated using Pine scripts. It is
versatile and can plot different styles of lines, histograms, areas, columns (like volume columns), fills, circles or crosses.
The use of plot() to create fills is explained in the page on Fills.
This script showcases a few different uses of plot() in an overlay script:

1 //@version=5
2 indicator("`plot()`", "", true)
3 plot(high, "Blue `high` line")
4 plot(math.avg(close, open), "Crosses in body center", close > open ? color.lime :␣

↪→color.purple, 6, plot.style_cross)
5 plot(math.min(open, close), "Navy step line on body low point", color.navy, 3, plot.

↪→style_stepline)
6 plot(low, "Gray dot on `low`", color.gray, 3, plot.style_circles)
7

8 color VIOLET = #AA00FF
9 color GOLD = #CCCC00
10 ma = ta.alma(hl2, 40, 0.85, 6)

(continues on next page)

350 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_plot

Pine Script™ v5 User Manual

(continued from previous page)
11 var almaColor = color.silver
12 almaColor := ma > ma[2] ? GOLD : ma < ma[2] ? VIOLET : almaColor
13 plot(ma, "Two-color ALMA", almaColor, 2)

Note that:
• The first plot() call plots a 1-pixel blue line across the bar highs.
• The second plots crosses at the mid-point of bodies. The crosses are colored lime when the bar is up and purple
when it is down. The argument used for linewidth is 6 but it is not a pixel value; just a relative size.

• The third call plots a 3-pixel wide step line following the low point of bodies.
• The fourth call plot a gray circle at the bars’ low.
• The last plot requires some preparation. We first define our bull/bear colors, calculate an Arnaud Legoux Moving
Average, then make our color calculations. We initialize our color variable on bar zero only, using var. We initialize
it to color.silver, so on the dataset’s first bars, until one of our conditions causes the color to change, the line will
be silver. The conditions that change the color of the line require it to be higher/lower than its value two bars ago.
This makes for less noisy color transitions than if we merely looked for a higher/lower value than the previous one.

This script shows other uses of plot() in a pane:

1 //@version=5
2 indicator("Volume change", format = format.volume)
3

4 color GREEN = #008000
5 color GREEN_LIGHT = color.new(GREEN, 50)
6 color GREEN_LIGHTER = color.new(GREEN, 85)
7 color PINK = #FF0080
8 color PINK_LIGHT = color.new(PINK, 50)
9 color PINK_LIGHTER = color.new(PINK, 90)
10

11 bool barUp = ta.rising(close, 1)
12 bool barDn = ta.falling(close, 1)
13 float volumeChange = ta.change(volume)
14

15 volumeColor = barUp ? GREEN_LIGHTER : barDn ? PINK_LIGHTER : color.gray

(continues on next page)

4.15. Plots 351

https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/support/solutions/43000594683
https://www.tradingview.com/support/solutions/43000594683
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#var_color\{dot\}silver
https://www.tradingview.com/pine-script-reference/v5/#fun_plot

Pine Script™ v5 User Manual

(continued from previous page)
16 plot(volume, "Volume columns", volumeColor, style = plot.style_columns)
17

18 volumeChangeColor = barUp ? volumeChange > 0 ? GREEN : GREEN_LIGHT : volumeChange > 0␣
↪→? PINK : PINK_LIGHT

19 plot(volumeChange, "Volume change columns", volumeChangeColor, 12, plot.style_
↪→histogram)

20

21 plot(0, "Zero line", color.gray)

Note that:
• We are plotting normal volume values as wide columns above the zero line (see the style = plot.
style_columns in our plot() call).

• Before plotting the columns we calculate our volumeColor by using the values of the barUp and barDn
boolean variables. They become respectively true when the current bar’s close is higher/lower than the previous
one. Note that the “Volume” built-in does not use the same condition; it identifies an up bar with close > open.
We use the GREEN_LIGHTER and PINK_LIGHTER colors for the volume columns.

• Because the first plot plots columns, we do not use the linewidth parameter, as it has no effect on columns.
• Our script’s second plot is the change in volume, which we have calculated earlier using ta.change(volume).
This value is plotted as a histogram, for which the linewidth parameter controls the width of the column. We
make this width 12 so that histogram elements are thinner than the columns of the first plot. Positive/negative
volumeChange values plot above/below the zero line; no manipulation is required to achieve this effect.

• Before plotting the histogram of volumeChange values, we calculate its color value, which can be one of four
different colors. We use the bright GREEN or PINK colors when the bar is up/down AND the volume has increased
since the last bar (volumeChange > 0). Because volumeChange is positive in this case, the histogram’s
element will be plotted above the zero line. We use the bright GREEN_LIGHT or PINK_LIGHT colors when the
bar is up/down AND the volume has NOT increased since the last bar. Because volumeChange is negative in
this case, the histogram’s element will be plotted below the zero line.

• Finally, we plot a zero line. We could just as well have used hline(0) there.
• We use format = format.volume in our indicator() call so that large values displayed for this script are
abbreviated like those of the built-in “Volume” indicator.

plot() calls must always be placed in a line’s first position, which entails they are always in the script’s global scope. They
can’t be placed in user-defined functions or structures like if, for, etc. Calls to plot() can, however, be designed to plot
conditionally in two ways, which we cover in the Conditional plots section of this page.
A script can only plot in its own visual space, whether it is in a pane or on the chart as an overlay. Scripts running in a
pane can only color bars in the chart area.

4.15.2 `plot()` parameters

The plot() function has the following signature:

plot(series, title, color, linewidth, style, trackprice, histbase, offset, join,␣
↪→editable, show_last, display) → plot

The parameters of plot() are:
series

It is the only mandatory parameter. Its argument must be of “series int/float” type. Note that because the auto-
casting rules in Pine Script™ convert in the int 2/7 float 2/7 bool direction, a “bool” type variable cannot be used as

352 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#var_volume
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_plot

Pine Script™ v5 User Manual

is; it must be converted to an “int” or a “float” for use as an argument. For example, if newDay is of “bool” type,
then newDay ? 1 : 0 can be used to plot 1 when the variable is true, and zero when it is false.

title
Requires a “const string” argument, so it must be known at compile time. The string appears:

• In the script’s scale when the “Chart settings/Scales/Indicator Name Label” field is checked.
• In the Data Window.
• In the “Settings/Style” tab.
• In the dropdown of input.source() fields.
• In the “Condition” field of the “Create Alert” dialog box, when the script is selected.
• As the column header when exporting chart data to a CSV file.

color
Accepts “series color”, so can be calculated on the fly, bar by bar. Plotting with na as the color, or any color with
a transparency of 100, is one way to hide plots when they are not needed.

linewidth
Is the plotted element’s size, but it does not apply to all styles. When a line is plotted, the unit is pixels. It has no
impact when plot.style_columns is used.

style
The available arguments are:

• plot.style_line (the default): It plots a continous line using the linewidth argument in pixels for its width.
na values will not plot as a line, but they will be bridged when a value that is not na comes in. Non-na values
are only bridged if they are visible on the chart.

• plot.style_linebr: Allows the plotting of discontinuous lines by not plotting on na values, and not joining gaps,
i.e., bridging over na values.

• plot.style_stepline: Plots using a staircase effect. Transitions between changes in values are done using a
vertical line drawn in middle of bars, as opposed to a point-to-point diagonal joining the midpoints of bars.
Can also be used to achieve an effect similar to that of plot.style_linebr, but only if care is taken to plot no
color on na values.

• plot.style_area: plots a line of linewidth width, filling the area between the line and the histbase.
The color argument is used for both the line and the fill. You can make the line a different color by using
another plot() call. Positive values are plotted above the histbase, negative values below it.

• plot.style_areabr: This is similar to plot.style_area but it doesn’t bridge over na values. Another difference
is how the indicator’s scale is calculated. Only the plotted values serve in the calculation of the y range of
the script’s visual space. If only high values situated far away from the histbase are plotted, for example,
those values will be used to calculate the y scale of the script’s visual space. Positive values are plotted above
the histbase, negative values below it.

• plot.style_columns: Plots columns similar to those of the “Volume” built-in indicator. The linewidth
value does not affect the width of the columns. Positive values are plotted above the histbase, negative
values below it. Always includes the value of histbase in the y scale of the script’s visual space.

• plot.style_histogram: Plots columns similar to those of the “Volume” built-in indicator, except that the
linewidth value is used to determine the width of the histogram’s bars in pixels. Note that since
linewidth requires an “input int” value, the width of the histogram’s bars cannot vary bar to bar. Positive
values are plotted above the histbase, negative values below it. Always includes the value of histbase
in the y scale of the script’s visual space.

4.15. Plots 353

https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}source
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_plot\{dot\}style_columns
https://www.tradingview.com/pine-script-reference/v5/#var_plot\{dot\}style_line
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_plot\{dot\}style_linebr
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_plot\{dot\}style_stepline
https://www.tradingview.com/pine-script-reference/v5/#var_plot\{dot\}style_linebr
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_plot\{dot\}style_area
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#var_plot\{dot\}style_area
https://www.tradingview.com/pine-script-reference/v5/#var_plot\{dot\}style_area
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_plot\{dot\}style_columns
https://www.tradingview.com/pine-script-reference/v5/#var_plot\{dot\}style_histogram

Pine Script™ v5 User Manual

• plot.style_circles and plot.style_cross: These plot a shape that is not joined across bars unless join = true
is also used. For these styles, the linewidth argument becomes a relative sizing measure — its units are
not pixels.

trackprice
The default value of this is false. When it is true, a dotted line made up of small squares will be plotted the full
width of the script’s visual space. It is often used in conjuction with show_last = 1, offset = -99999
to hide the actual plot and only leave the residual dotted line.

histbase
It is the reference point used with plot.style_area, plot.style_columns and plot.style_histogram. It determines the
level separating positive and negative values of the series argument. It cannot be calculated dynamically, as an
“input int/float” is required.

offset
This allows shifting the plot in the past/future using a negative/positive offset in bars. The value cannot change
during the script’s execution.

join
This only affect styles plot.style_circles or plot.style_cross. When true, the shapes are joined by a one-pixel line.

editable
This boolean parameter controls whether or not the plot’s properties can be edited in the “Settings/Style” tab. Its
default value is true.

show_last
Allows control over how many of the last bars the plotted values are visible. An “input int” argument is required,
so it cannot be calculated dynamically.

display
The default is display.all. When it is set to display.none, plotted values will not affect the scale of the script’s visual
space. The plot will be invisible and will not appear in indicator values or the DataWindow. It can be useful in plots
destined for use as external inputs for other scripts, or for plots used with the {{plot("[plot_title]")}}
placeholder in alertcondition() calls, e.g.:

1 //@version=5
2 indicator("")
3 r = ta.rsi(close, 14)
4 xUp = ta.crossover(r, 50)
5 plot(r, "RSI", display = display.none)
6 alertcondition(xUp, "xUp alert", message = 'RSI is bullish at: {{plot("RSI")}}')

354 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#var_plot\{dot\}style_circles
https://www.tradingview.com/pine-script-reference/v5/#var_plot\{dot\}style_cross
https://www.tradingview.com/pine-script-reference/v5/#var_plot\{dot\}style_area
https://www.tradingview.com/pine-script-reference/v5/#var_plot\{dot\}style_columns
https://www.tradingview.com/pine-script-reference/v5/#var_plot\{dot\}style_histogram
https://www.tradingview.com/pine-script-reference/v5/#var_plot\{dot\}style_circles
https://www.tradingview.com/pine-script-reference/v5/#var_plot\{dot\}style_cross
https://www.tradingview.com/pine-script-reference/v5/#var_display\{dot\}all
https://www.tradingview.com/pine-script-reference/v5/#var_display\{dot\}none
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition

Pine Script™ v5 User Manual

4.15.3 Plotting conditionally

plot() calls cannot be used in conditional structures such as if, but they can be controlled by varying their plotted values,
or their color. When no plot is required, you can either plot na values, or plot values using na color or any color with 100
transparency (which also makes it invisible).

Value control

One way to control the display of plots is to plot na values when no plot is needed. Sometimes, values returned by functions
such as request.security() will return na values, when gaps = barmerge.gaps_on is used, for example. In both
these cases it is sometimes useful to plot discontinuous lines. This script shows a few ways to do it:

1 //@version=5
2 indicator("Discontinuous plots", "", true)
3 bool plotValues = bar_index % 3 == 0
4 plot(plotValues ? high : na, color = color.fuchsia, linewidth = 6, style = plot.style_

↪→linebr)
5 plot(plotValues ? high : na)
6 plot(plotValues ? math.max(open, close) : na, color = color.navy, linewidth = 6,␣

↪→style = plot.style_cross)
7 plot(plotValues ? math.min(open, close) : na, color = color.navy, linewidth = 6,␣

↪→style = plot.style_circles)
8 plot(plotValues ? low : na, color = plotValues ? color.green : na, linewidth = 6,␣

↪→style = plot.style_stepline)

Note that:
• We define the condition determining when we plot using bar_index % 3 == 0, which becomes true when
the remainder of the division of the bar index by 3 is zero. This will happen every three bars.

• In the first plot, we use plot.style_linebr, which plots the fuchsia line on highs. It is centered on the bar’s horizontal
midpoint.

• The second plot shows the result of plotting the same values, but without using special care to break the line. What’s
happening here is that the thin blue line of the plain plot() call is automatically bridged over na values (or gaps), so
the plot does not interrupt.

4.15. Plots 355

https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_plot\{dot\}style_linebr
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#var_na

Pine Script™ v5 User Manual

• We then plot navy blue crosses and circles on the body tops and bottoms. The plot.style_circles and plot.style_cross
style are a simple way to plot discontinuous values, e.g., for stop or take profit levels, or support & resistance levels.

• The last plot in green on the bar lows is done using plot.style_stepline. Note how its segments are wider than the
fuchsia line segments plotted with plot.style_linebr. Also note how on the last bar, it only plots halfway until the
next bar comes in.

• The plotting order of each plot is controlled by their order of appearance in the script. See
This script shows how you can restrict plotting to bars after a user-defined date. We use the input.time() function to create
an input widget allowing script users to select a date and time, using Jan 1st 2021 as its default value:

1 //@version=5
2 indicator("", "", true)
3 startInput = input.time(timestamp("2021-01-01"))
4 plot(time > startInput ? close : na)

Color control

The Conditional coloring section of the page on colors discusses color control for plots. We’ll look here at a few examples.
The value of the color parameter in plot() can be a constant, such as one of the built-in constant colors or a color literal.
In Pine Script™, the qualified type of such colors is called “const color” (see the Type system page). They are known at
compile time:

1 //@version=5
2 indicator("", "", true)
3 plot(close, color = color.gray)

The color of a plot can also be determined using information that is only known when the script begins execution on the
first historical bar of a chart (bar zero, i.e., bar_index == 0 or barstate.isfirst == true), as will be the
case when the information needed to determine a color depends on the chart the script is running on. Here, we calculate
a plot color using the syminfo.type built-in variable, which returns the type of the chart’s symbol. The qualified type of
plotColor in this case will be “simple color”:

1 //@version=5
2 indicator("", "", true)
3 plotColor = switch syminfo.type
4 "stock" => color.purple
5 "futures" => color.red
6 "index" => color.gray
7 "forex" => color.fuchsia
8 "crypto" => color.lime
9 "fund" => color.orange
10 "dr" => color.aqua
11 "cfd" => color.blue
12 plot(close, color = plotColor)
13 printTable(txt) => var table t = table.new(position.middle_right, 1, 1), table.cell(t,

↪→ 0, 0, txt, bgcolor = color.yellow)
14 printTable(syminfo.type)

Plot colors can also be chosen through a script’s inputs. In this case, the lineColorInput variable is of the “input
color” type:

1 //@version=5
2 indicator("", "", true)

(continues on next page)

356 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#var_plot\{dot\}style_circles
https://www.tradingview.com/pine-script-reference/v5/#var_plot\{dot\}style_cross
https://www.tradingview.com/pine-script-reference/v5/#var_plot\{dot\}style_stepline
https://www.tradingview.com/pine-script-reference/v5/#var_plot\{dot\}style_linebr
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}time
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}type

Pine Script™ v5 User Manual

(continued from previous page)
3 color lineColorInput = input(#1848CC, "Line color")
4 plot(close, color = lineColorInput)

Finally, plot colors can also be dynamic values, i.e., calculated values that can change on each bar. These values are of
the “series color” type:

1 //@version=5
2 indicator("", "", true)
3 plotColor = close >= open ? color.lime : color.red
4 plot(close, color = plotColor)

When plotting pivot levels, one common requirement is to avoid plotting level transitions. Using lines is one alternative,
but you can also use plot() like this:

1 //@version=5
2 indicator("Pivot plots", "", true)
3 pivotHigh = fixnan(ta.pivothigh(3,3))
4 plot(pivotHigh, "High pivot", ta.change(pivotHigh) ? na : color.olive, 3)
5 plotchar(ta.change(pivotHigh), "ta.change(pivotHigh)", "•", location.top, size = size.

↪→small)

Note that:
• We use pivotHigh = fixnan(ta.pivothigh(3,3)) to hold our pivot values. Because ta.pivothigh()
only returns a value when a new pivot is found, we use fixnan() to fill the gaps with the last pivot value returned.
The gaps here refer to the na values ta.pivothigh() returns when no new pivot is found.

• Our pivots are detected three bars after they occur because we use the argument 3 for both the leftbars and
rightbars parameters in our ta.pivothigh() call.

• The last plot is plotting a continuous value, but it is setting the plot’s color to na when the pivot’s value changes,
so the plot isn’t visible then. Because of this, a visible plot will only appear on the bar following the one where we
plotted using na color.

• The blue dot indicates when a new high pivot is detected and no plot is drawn between the preceding bar and that
one. Note how the pivot on the bar indicated by the arrow has just been detected in the realtime bar, three bars
later, and how no plot is drawn. The plot will only appear on the next bar, making the plot visible four bars after
the actual pivot.

4.15. Plots 357

https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}pivothigh
https://www.tradingview.com/pine-script-reference/v5/#fun_fixnan
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}pivothigh
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}pivothigh
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na

Pine Script™ v5 User Manual

4.15.4 Levels

Pine Script™ has an hline() function to plot horizontal lines (see the page on Levels). hline() is useful because it has some
line styles unavailable with plot(), but it also has some limitations, namely that it does not accept “series color”, and that
its price parameter requires an “input int/float”, so cannot vary during the script’s execution.
You can plot levels with plot() in a few different ways. This shows a CCI indicator with levels plotted using plot():

1 //@version=5
2 indicator("CCI levels with `plot()`")
3 plot(ta.cci(close, 20))
4 plot(0, "Zero", color.gray, 1, plot.style_circles)
5 plot(bar_index % 2 == 0 ? 100 : na, "100", color.lime, 1, plot.style_linebr)
6 plot(bar_index % 2 == 0 ? -100 : na, "-100", color.fuchsia, 1, plot.style_linebr)
7 plot(200, "200", color.green, 2, trackprice = true, show_last = 1, offset = -99999)
8 plot(-200, "-200", color.red, 2, trackprice = true, show_last = 1, offset = -99999)
9 plot(300, "300", color.new(color.green, 50), 1)
10 plot(-300, "-300", color.new(color.red, 50), 1)

Note that:
• The zero level is plotted using plot.style_circles.
• The 100 levels are plotted using a conditional value that only plots every second bar. In order to prevent the na
values from being bridged, we use the plot.style_linebr line style.

• The 200 levels are plotted using trackprice = true to plot a distinct pattern of small squares that extends
the full width of the script’s visual space. The show_last = 1 in there displays only the last plotted value,
which would appear as a one-bar straight line if the next trick wasn’t also used: the offset = -99999 pushes
that one-bar segment far away in the past so that it is never visible.

• The 300 levels are plotted using a continuous line, but a lighter transparency is used to make them less prominent.

358 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/support/solutions/43000502001
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#var_plot\{dot\}style_circles
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_plot\{dot\}style_linebr

Pine Script™ v5 User Manual

4.15.5 Offsets

The offset parameter specifies the shift used when the line is plotted (negative values shift in the past, positive values
shift into the future). For example:

1 //@version=5
2 indicator("", "", true)
3 plot(close, color = color.red, offset = -5)
4 plot(close, color = color.lime, offset = 5)

As can be seen in the screenshot, the red series has been shifted to the left (since the argument’s value is negative), while
the green series has been shifted to the right (its value is positive).

4.15.6 Plot count limit

Each script is limited to a maximum plot count of 64. All plot*() calls and alertcondition() calls count in the plot
count of a script. Some types of calls count for more than one in the total plot count.
plot() calls count for one in the total plot count if they use a “const color” argument for the color parameter, which
means it is known at compile time, e.g.:

plot(close, color = color.green)

When they use another qualified type, such as any one of these, they will count for two in the total plot count:

plot(close, color = syminfo.mintick > 0.0001 ? color.green : color.red) // "simple␣
↪→color"
plot(close, color = input.color(color.purple)) // "input color"
plot(close, color = close > open ? color.green : color.red) // "series color"
plot(close, color = color.new(color.silver, close > open ? 40 : 0)) // "series color"

4.15. Plots 359

https://www.tradingview.com/pine-script-reference/v5/#func_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_plot

Pine Script™ v5 User Manual

4.15.7 Scale

Not all values can be plotted everywhere. Your script’s visual space is always bound by upper and lower limits that are
dynamically adjusted with the values plotted. An RSI indicator will plot values between 0 and 100, which is why it is
usually displayed in a distinct pane — or area — above or below the chart. If RSI values were plotted as an overlay on
the chart, the effect would be to distort the symbol’s normal price scale, unless it just hapenned to be close to RSI’s 0 to
100 range. This shows an RSI signal line and a centerline at the 50 level, with the script running in a separate pane:

1 //@version=5
2 indicator("RSI")
3 myRSI = ta.rsi(close, 20)
4 bullColor = color.from_gradient(myRSI, 50, 80, color.new(color.lime, 70), color.

↪→new(color.lime, 0))
5 bearColor = color.from_gradient(myRSI, 20, 50, color.new(color.red, 0), color.

↪→new(color.red, 70))
6 myRSIColor = myRSI > 50 ? bullColor : bearColor
7 plot(myRSI, "RSI", myRSIColor, 3)
8 hline(50)

Note that the y axis of our script’s visual space is automatically sized using the range of values plotted, i.e., the values of
RSI. See the page on Colors for more information on the color.from_gradient() function used in the script.
If we try to plot the symbol’s close values in the same space by adding the following line to our script:

plot(close)

This is what happens:

The chart is on the BTCUSD symbol, whose close prices are around 40000 during this period. Plotting values in the
40000 range makes our RSI plots in the 0 to 100 range indiscernible. The same distorted plots would occur if we placed
the RSI indicator on the chart as an overlay.

360 Chapter 4. Concepts

https://www.tradingview.com/support/solutions/43000502338
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}from_gradient
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/support/solutions/43000502338

Pine Script™ v5 User Manual

Merging two indicators

If you are planning to merge two signals in one script, first consider the scale of each. It is impossible, for example, to
correctly plot an RSI and aMACD in the same script’s visual space because RSI has a fixed range (0 to 100) while MACD
doesn’t, as it plots moving averages calculated on price._
If both your indicators used fixed ranges, you can shift the values of one of them so they do not overlap. We could, for
example, plot both RSI (0 to 100) and the True Strength Indicator (TSI) (-100 to +100) by displacing one of them. Our
strategy here will be to compress and shift the TSI values so they plot over RSI:

1 //@version=5
2 indicator("RSI and TSI")
3 myRSI = ta.rsi(close, 20)
4 bullColor = color.from_gradient(myRSI, 50, 80, color.new(color.lime, 70), color.

↪→new(color.lime, 0))
5 bearColor = color.from_gradient(myRSI, 20, 50, color.new(color.red, 0), color.

↪→new(color.red, 70))
6 myRSIColor = myRSI > 50 ? bullColor : bearColor
7 plot(myRSI, "RSI", myRSIColor, 3)
8 hline(100)
9 hline(50)
10 hline(0)
11

12 // 1. Compress TSI's range from -100/100 to -50/50.
13 // 2. Shift it higher by 150, so its -50 min value becomes 100.
14 myTSI = 150 + (100 * ta.tsi(close, 13, 25) / 2)
15 plot(myTSI, "TSI", color.blue, 2)
16 plot(ta.ema(myTSI, 13), "TSI EMA", #FF006E)
17 hline(200)
18 hline(150)

Note that:
• We have added levels using hline to situate both signals.
• In order for both signal lines to oscillate on the same range of 100, we divide the TSI value by 2 because it has a
200 range (-100 to +100). We then shift this value up by 150 so it oscillates between 100 and 200, making 150 its
centerline.

• The manipulations we make here are typical of the compromises required to bring two indicators with different
scales in the same visual space, even when their values, contrary to MACD, are bounded in a fixed range.

4.15. Plots 361

https://www.tradingview.com/support/solutions/43000502338
https://www.tradingview.com/support/solutions/43000502344
https://www.tradingview.com/support/solutions/43000502338
https://www.tradingview.com/support/solutions/43000592290
https://www.tradingview.com/support/solutions/43000592290
https://www.tradingview.com/support/solutions/43000502338
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/support/solutions/43000592290
https://www.tradingview.com/support/solutions/43000502344
https://www.tradingview.com/

Pine Script™ v5 User Manual

4.16 Repainting

• Introduction

• Historical vs realtime calculations

• Plotting in the past

• Dataset variations

4.16.1 Introduction

We define repainting as: script behavior causing historical vs realtime calculations or plots to behave differently.
Repainting behavior is widespread and many factors can cause it. Following our definition, our estimate is that more than
95% of indicators in existence exhibit some form of repainting behavior. Commony used indicators such as MACD and
RSI, for example, show confirmed values on historical bars, but will fluctuate on a realtime, unconfirmed chart bar until
it closes. Therefore, they behave differently in historical and realtime states.
Not all repainting behavior is inherently useless or misleading, nor does such behavior prevent knowledgeable traders
from using indicators with such behavior. For example, who would think of discrediting a volume profile indicator solely
because it updates its values on realtime bars?
One may encounter any of the following forms of repainting in the scripts they use, depending on what a script’s calcu-
lations entail:

• Widespread but often acceptable: A script may use values that update with realtime price changes on the uncon-
firmed bar. For example, if one uses the close variable in calculations performed on an open chart bar, its values
will reflect the most recent price in the bar. However, the script will only commit a new data point to its historical
series once the bar closes. Another common case is using request.security() to fetch higher-timeframe data on
realtime bars, as explained in the Historical and realtime behavior section of the Other timeframes and data page.
As with the unconfirmed chart bar in the chart’s timeframe, request.security() can track unconfirmed values from
a higher-timeframe context on realtime bars, which can lead to repainting after the script restarts its execution.
There is often nothing wrong with using such scripts, provided you understand how they work. When electing to
use such scripts to issue alerts or trade orders, however, it’s important to understand the difference between their
realtime and historical behavior and decide for yourself whether it provides utility for your needs.

• Potentially misleading: Scripts that plot values into the past, calculate results on realtime bars that one cannot
replicate on historical bars, or relocate past events are potentially misleading. For example, Ichimoku, most scripts
based on pivots, most strategies using calc_on_every_tick = true, scripts using request.security() when
it behaves differently on realtime bars, many scripts using varip, many scripts using timenow, and some scripts that
use barstate.* variables can exhibit misleading repainting behavior.

• Unacceptable: Scripts that leak future information into the past, strategies that execute on non-standard charts,
and scripts using realtime intrabars to generate alerts or orders, are examples that can produce heavily misleading
repainting behavior.

362 Chapter 4. Concepts

https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#kw_varip
https://www.tradingview.com/pine-script-reference/v5/#var_timenow

Pine Script™ v5 User Manual

• Unavoidable: Revisions of the data feed from a provider and variations in the starting bar of the chart’s history
can cause repainting behavior that may be unavoidable in a script.

The first two types of repainting can be perfectly acceptable if:
1. You are aware of the behavior.
2. You can live with it, or
3. You can circumvent it.

It should now be clear that not all repainting behavior is wrong and requires avoiding at all costs. In many situations,
some forms of repainting may be exactly what a script needs. What’s important is to know when repainting behavior is
not acceptable for one’s needs. To avoid repainting that’s not acceptable, it’s important to understand how a tool works or
how you should design the tools you build. If you publish scripts, ensure you mention any potentially misleading behavior
along with the other limitations of your script in the publication’s description.

Note: Wewill not discuss the perils of using strategies on non-standard charts, as this problem is not related to repainting.
See the Backtesting on Non-Standard Charts: Caution! script for a discussion of the subject.

For script users

One can decide to use repainting indicators if they understand the behavior, and whether that behavior meets their analysis
requirements. Don’t be one of those newcomers who slap “repaint” sentences on published scripts in an attempt to discredit
them, as doing so reveals a lack of foundational knowledge on the subject.
Simply asking whether a script repaints is relatively meaningless, given that there are forms of repainting behavior that
are perfectly acceptable in a script. Therefore, such a question will not beget a meaningful answer. One should instead
ask specific questions about a script’s potential repainting behavior, such as:

• Does the script calculate/display in the same way on historical and realtime bars?
• Do alerts from the script wait for the end of a realtime bar before triggering?
• Do signal markers shown by the script wait for the end of a realtime bar before showing?
• Does the script plot/draw values into the past?
• Does the strategy use calc_on_every_tick = true?
• Do the script’s request.security() calls leak future information into the past on historical bars?

What’s important is that you understand how the tools you use work, and whether their behavior is compatible with your
objectives, repainting or not. As you will learn if you read this page, repainting is a complex matter. It has many faces
and many causes. Even if you don’t program in Pine Script™, this page will help you understand the array of causes that
can lead to repainting, and hopefully enable more meaningful discussions with script authors.

For Pine Script™ programmers

As discussed above, not all forms of repainting behavior must be avoided at all costs, nor is all potential repainting behavior
necessarily avoidable. We hope this page helps you better understand the dynamics at play so that you can design your
trading tools with these behaviors in mind. This page’s content should help make you aware of common coding mistakes
that produce misleading repainting results.
Whatever your design decisions are, if you publish your script, explain the script to traders so they can understand how it
behaves.
This page covers three broad categories of repainting causes:

4.16. Repainting 363

https://www.tradingview.com/script/q9laJNG9-Backtesting-on-Non-Standard-Charts-Caution-PineCoders-FAQ/
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security

Pine Script™ v5 User Manual

• Historical vs realtime calculations

• Plotting in the past

• Dataset variations

4.16.2 Historical vs realtime calculations

Fluid data values

Historical data does not include records of intermediary price movements on bars; only open, high, low and close values
(OHLC).
On realtime bars (bars running when the instrument’s market is open), however, the high, low and close values are not
fixed; they can change values many times before the realtime bar closes and its HLC values are fixed. They are fluid.
This leads to a script sometimes working differently on historical data and in real time, where only the open price will not
change during the bar.
Any script using values like high, low and close in realtime is subject to producing calculations that may not be repeatable
on historical bars — thus repaint.
Let’s look at this simple script. It detects crosses of the close value (in the realtime bar, this corresponds to the current
price of the instrument) over and under an EMA:

1 //@version=5
2 indicator("Repainting", "", true)
3 ma = ta.ema(close, 5)
4 xUp = ta.crossover(close, ma)
5 xDn = ta.crossunder(close, ma)
6 plot(ma, "MA", color.black, 2)
7 bgcolor(xUp ? color.new(color.lime, 80) : xDn ? color.new(color.fuchsia, 80) : na)

Note that:
• The script uses bgcolor() to color the background green when close crosses over the EMA, and red on crosses
under the EMA.

• The screen snapshot shows the script in realtime on a 30sec chart. A cross over the EMA has been detected,
thus the background of the realtime bar is green.

364 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/support/solutions/43000592270
https://www.tradingview.com/pine-script-reference/v5/#fun_bgcolor
https://www.tradingview.com/pine-script-reference/v5/#var_close

Pine Script™ v5 User Manual

• The problem here is that nothing guarantees this condition will hold true until the end of the realtime bar.
The arrow points to the timer showing that 21 seconds remain in the realtime bar, and anything could happen
until then.

• We are witnessing a repainting script.
To prevent this repainting, we must rewrite our script so that it does not use values that fluctuate during the realtime bar.
This will require using values from a bar that has elapsed (typically the preceding bar), or the open price, which does not
vary in realtime.
We can achieve this in many ways. This method adds a and barstate.isconfirmed condition to our cross
detections, which requires the script to be executing on the bar’s last iteration, when it closes and prices are confirmed. It
is a simple way to avoid repainting:

1 //@version=5
2 indicator("Repainting", "", true)
3 ma = ta.ema(close, 5)
4 xUp = ta.crossover(close, ma) and barstate.isconfirmed
5 xDn = ta.crossunder(close, ma) and barstate.isconfirmed
6 plot(ma, "MA", color.black, 2)
7 bgcolor(xUp ? color.new(color.lime, 80) : xDn ? color.new(color.fuchsia, 80) : na)

This uses the crosses detected on the previous bar:

1 //@version=5
2 indicator("Repainting", "", true)
3 ma = ta.ema(close, 5)
4 xUp = ta.crossover(close, ma)[1]
5 xDn = ta.crossunder(close, ma)[1]
6 plot(ma, "MA", color.black, 2)
7 bgcolor(xUp ? color.new(color.lime, 80) : xDn ? color.new(color.fuchsia, 80) : na)

This uses only confirmed close and EMA values for its calculations:

1 //@version=5
2 indicator("Repainting", "", true)
3 ma = ta.ema(close[1], 5)
4 xUp = ta.crossover(close[1], ma)
5 xDn = ta.crossunder(close[1], ma)
6 plot(ma, "MA", color.black, 2)
7 bgcolor(xUp ? color.new(color.lime, 80) : xDn ? color.new(color.fuchsia, 80) : na)

This detects crosses between the realtime bar’s open and the value of the EMA from the previous bars. Notice that the
EMA is calculated using close, so it repaints. We must ensure we use a confirmed value to detect crosses, thus ma[1] in
the cross detection logic:

1 //@version=5
2 indicator("Repainting", "", true)
3 ma = ta.ema(close, 5)
4 xUp = ta.crossover(open, ma[1])
5 xDn = ta.crossunder(open, ma[1])
6 plot(ma, "MA", color.black, 2)
7 bgcolor(xUp ? color.new(color.lime, 80) : xDn ? color.new(color.fuchsia, 80) : na)

All these methods have one thing in common: while they prevent repainting, they will also trigger signals later
than repainting scripts. This is an inevitable compromise if one wants to avoid repainting. You can’t have your
cake and eat it too.

4.16. Repainting 365

https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_close

Pine Script™ v5 User Manual

Repainting `request.security()` calls

The request.security() function behaves differently on historical and realtime bars. On historical bars, it only returns
confirmed values from its requested context, wheras it can return unconfirmed values on realtime bars. When the script
restarts its execution, the bars that had a realtime state become historical bars, and will therefore only contain the values it
confirmed on those bars. If the values returned by request.security() fluctuate on realtime bars without confirmation from
the context, the script will repaint them when it restarts its execution. See the Historical and realtime behavior section of
the Other timeframes and data page for a detailed explanation.
One can ensure higher-timeframe data requests only return confirmed values on all bars, regardless of bar state,
by offsetting the expression argument by at least one bar with the history-referencing operator [] and using
barmerge.lookahead_on for the lookahead argument in the request.security() call, as explained here.
The script below demonstrates the difference between repainting and non-repainting HTF data requests. It contains two
request.security() calls. The first function call requests close data from the higherTimeframe without additional
specification, and the second call requests the same series with an offset and barmerge.lookahead_on.
As we see on all realtime bars (the ones with an orange background), the repaintingClose contains values that fluc-
tuate without confirmation from the higherTimeframe, meaning it will repaint when the script restarts its execution.
The nonRepaintingClose, on the other hand, behaves the same on realtime and historical bars, i.e., it only changes
its value when new, confirmed data is available:

1 //@version=5
2 indicator("Repainting vs non-repainting `request.security()` demo", overlay = true)
3

4 //@variable The timeframe to request data from.
5 string higherTimeframe = input.timeframe("30", "Timeframe")
6

7 if timeframe.in_seconds() > timeframe.in_seconds(higherTimeframe)
8 runtime.error("The 'Timeframe' input is smaller than the chart's timeframe.␣

↪→Choose a higher timeframe.")
9

10 //@variable The current `close` requested from the `higherTimeframe`. Fluctuates␣
↪→without confirmation on realtime bars.

11 float repaintingClose = request.security(syminfo.tickerid, higherTimeframe, close)
12 //@variable The last confirmed `close` requested from the `higherTimeframe`.
13 // Behaves the same on historical and realtime bars.
14 float nonRepaintingClose = request.security(
15 syminfo.tickerid, higherTimeframe, close[1], lookahead = barmerge.lookahead_on

(continues on next page)

366 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#op_{[}{]}
https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.lookahead_on
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_barmerge.lookahead_on
https://www.tradingview.com/pine-script-reference/v5/#var_barstate.isrealtime

Pine Script™ v5 User Manual

(continued from previous page)
16)
17

18 // Plot the values.
19 plot(repaintingClose, "Repainting close", color.new(color.purple, 50), 8)
20 plot(nonRepaintingClose, "Non-repainting close", color.teal, 3)
21 // Plot a shape when a new `higherTimeframe` starts.
22 plotshape(timeframe.change(higherTimeframe), "Timeframe change marker", shape.square,␣

↪→location.top, size = size.small)
23 // Color the background on realtime bars.
24 bgcolor(barstate.isrealtime ? color.new(color.orange, 60) : na, title = "Realtime bar␣

↪→highlight")

Note that:
• We used the plotshape() function to mark the chart when there’s a change on the higherTimeframe.
• This script produces a runtime error if the higherTimeframe is lower than the chart’s timeframe.
• On historical bars, the repaintingClose has a new value at the end of each timeframe, and the non-
RepaintingClose has a new value at the start of each timeframe.

For the sake of easy reusability, below is a simple a noRepaintSecurity() function that one can apply in their
scripts to request non-repainting higher-timeframe values:

1 //@function Requests non-repainting `expression` values from the context of the␣
↪→`symbol` and `timeframe`.

2 noRepaintSecurity(symbol, timeframe, expression) =>
3 request.security(symbol, timeframe, expression[1], lookahead = barmerge.lookahead_

↪→on)

Note that:
• The [1] offset to the series and the use of lookahead = barmerge.lookahead_on are interde-
pendent. One cannot be removed without compromising the integrity of the function.

• Unlike a plain request.security() call, this wrapper function cannot accept tuple expression arguments.
For multi-element use cases, one can pass a user-defined type whose fields contain the desired elements to
request.

Using `request.security()` at lower timeframes

Some scripts use request.security() to request data from a timeframe lower than the chart’s timeframe. This can be useful
when functions specifically designed to handle intrabars at lower timeframes are sent down the timeframe. When this
type of user-defined function requires the detection of the intrabars’ first bar, as most do, the technique will only work
on historical bars. This is due to the fact that realtime intrabars are not yet sorted. The impact of this is that such scripts
cannot reproduce in real time their behavior on historical bars. Any logic generating alerts, for example, will be flawed,
and constant refreshing will be required to recalculate elapsed realtime bars as historical bars.
When used at lower timeframes than the chart’s without specialized functions able to distinguish between intrabars, re-
quest.security() will only return the value of the last intrabar in the dilation of the chart’s bar, which is usually not useful,
and will also not reproduce in real time, so lead to repainting.
For all these reasons, unless you understand the subtleties of using request.security() at lower timeframes than the chart’s,
it is best to avoid using the function at those timeframes. Higher-quality scripts will have logic to detect such anomalies
and prevent the display of results which would be invalid when a lower timeframe is used.
For more reliable lower-timeframe data requests, use request.security_lower_tf(), as explained in this section of the Other
timeframes and data page.

4.16. Repainting 367

https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_timeframe.change
https://www.tradingview.com/pine-script-reference/v5/#fun_runtime.error
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf

Pine Script™ v5 User Manual

Future leak with `request.security()`

When request.security() is used with lookahead = barmerge.lookahead_on to fetch prices without offsetting
the series by [1], it will return data from the future on historical bars, which is dangerously misleading.
While historical bars will magically display future prices before they should be known, no lookahead is possible in realtime
because the future there is unknown, as it should, so no future bars exist.
This is an example:

1 // FUTURE LEAK! DO NOT USE!
2 //@version=5
3 indicator("Future leak", "", true)
4 futureHigh = request.security(syminfo.tickerid, "1D", high, lookahead = barmerge.

↪→lookahead_on)
5 plot(futureHigh)

Note how the higher timeframe line is showing the timeframe’s high value before it occurs. The solution to avoid this
effect is to use the function as demonstrated in this section.
Using lookahead to produce misleading results is not allowed in script publications, as explained in the lookahead section
of the Other timeframes and data page. Script publications that use this misleading technique will be moderated.

`varip`

Scripts using the varip declaration mode for variables (see our section on varip for more information) save information
across realtime updates, which cannot be reproduced on historical bars where only OHLC information is available. Such
scripts may be useful in realtime, including to generate alerts, but their logic cannot be backtested, nor can their plots on
historical bars reflect calculations that will be done in realtime.

368 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#op_varip

Pine Script™ v5 User Manual

Bar state built-ins

Scripts using bar states may or may not repaint. As we have seen in the previous section, using barstate.isconfirmed is
actually one way to avoid repainting that will reproduce on historical bars, which are always “confirmed”. Uses of other
bar states such as barstate.isnew, however, will lead to repainting. The reason is that on historical bars, barstate.isnew is
true on the bar’s close, yet in realtime, it is true on the bar’s open. Using the other bar state variables will usually
cause some type of behavioral discrepancy between historical and realtime bars.

`timenow`

The timenow built-in returns the current time. Scripts using this variable cannot show consistent historical and realtime
behavior, so they necessarily repaint.

Strategies

Strategies using calc_on_every_tick = true execute on each realtime update, while strategies run on the close
of historical bars. They will most probably not generate the same order executions, and so repaint. Note that when this
happens, it also invalidates backtesting results, as they are not representative of the strategy’s behavior in realtime.

4.16.3 Plotting in the past

Scripts detecting pivots after 5 bars have elapsed will often go back in the past to plot pivot levels or values on the actual
pivot, 5 bars in the past. This will often cause unsuspecting traders looking at plots on historical bars to infer that when
the pivot happens in realtime, the same plots will apppear on the pivot when it occurs, as opposed to when it is detected.
Let’s look at a script showing the price of high pivots by placing the price in the past, 5 bars after the pivot was detected:

1 //@version=5
2 indicator("Plotting in the past", "", true)
3 pHi = ta.pivothigh(5, 5)
4 if not na(pHi)
5 label.new(bar_index[5], na, str.tostring(pHi, format.mintick) + "\n ", yloc =␣

↪→yloc.abovebar, style = label.style_none, textcolor = color.black, size = size.
↪→normal)

Note that:

4.16. Repainting 369

https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}isconfirmed
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}isnew
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}isnew
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#open
https://www.tradingview.com/pine-script-reference/v5/#var_timenow
https://www.tradingview.com/pine-script-reference/v5/#var_close

Pine Script™ v5 User Manual

• This script repaints because an elapsed realtime bar showing no price may get a price placed on it if it is identified
as a pivot, 5 bars after the actual pivot occurs.

• The display looks great, but it can be misleading.
The best solution to this problem when developing script for others is to plot without an offset by default, but give the
option for script users to turn on plotting in the past through inputs, so they are necessarily aware of what the script is
doing, e.g.:

1 //@version=5
2 indicator("Plotting in the past", "", true)
3 plotInThePast = input(false, "Plot in the past")
4 pHi = ta.pivothigh(5, 5)
5 if not na(pHi)
6 label.new(bar_index[plotInThePast ? 5 : 0], na, str.tostring(pHi, format.mintick)␣

↪→+ "\n ", yloc = yloc.abovebar, style = label.style_none, textcolor = color.black,␣
↪→size = size.normal)

4.16.4 Dataset variations

Starting points

Scripts begin executing on the chart’s first historical bar, and then execute on each bar sequentially, as is explained in this
manual’s page on Pine Script™’s execution model. If the first bar changes, then the script will often not calculate the same
way it did when the dataset began at a different point in time.
The following factors have an impact on the quantity of bars you see on your charts, and their starting point:

• The type of account you hold
• The historical data available from the data supplier
• The alignment requirements of the dataset, which determine its starting point

These are the account-specific bar limits:
• 20000 historical bars for the Premium plan.
• 10000 historical bars for Pro and Pro+ plans.
• 5000 historical bars for other plans.

Starting points are determined using the following rules, which depend on the chart’s timeframe:
• 1, 5, 10, 15, 30 seconds: aligns to the beginning of a day.
• 1 - 14 minutes: aligns to the beginning of a week.
• 15 - 29 minutes: aligns to the beginning of a month.
• 30 - 1439 minutes: aligns to the beginning of a year.
• 1440 minutes and higher: aligns to the first available historical data point.

As time goes by, these factors cause your chart’s history to start at different points in time. This often has an impact on
your scripts calculations, because changes in calculation results in early bars can ripple through all the other bars in the
dataset. Using functions like ta.valuewhen(), ta.barssince() or ta.ema(), for example, will yield results that vary with early
history.

370 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}valuewhen
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}barssince
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}ema

Pine Script™ v5 User Manual

Revision of historical data

Historical and realtime bars are built using two different data feeds supplied by exchanges/brokers: historical data, and
realtime data. When realtime bars elapse, exchanges/brokers sometimes make what are usually small adjustments to bar
prices, which are then written to their historical data. When the chart is refreshed or the script is re-executed on those
elapsed realtime bars, they will then be built and calculated using the historical data, which will contain those usually
small price revisions, if any have been made.
Historical data may also be revised for other reasons, e.g., for stock splits.

4.17 Sessions

• Introduction

• Session strings

• Session states

• Using sessions with `request.security()`

4.17.1 Introduction

Session information is usable in three different ways in Pine Script™:
1. Session strings containing from-to start times and day information that can be used in functions such as time()

and time_close() to detect when bars are in a particular time period, with the option of limiting valid sessions to
specific days. The input.session() function provides a way to allow script users to define session values through a
script’s “Inputs” tab (see the Session input section for more information).

2. Session states built-in variables such as session.ismarket can identify which session a bar belongs to.
3. When fetching data with request.security() you can also choose to return data from regular sessions only or extended

sessions. In this case, the definition of regular and extended sessions is that of the exchange. It is part of the
instrument’s properties — not user-defined, as in point #1. This notion of regular and extended sessions is the same
one used in the chart’s interface, in the “Chart Settings/Symbol/Session” field, for example.

The following sections cover both methods of using session information in Pine Script™.
Note that:

• Not all user accounts on TradingView have access to extended session information.
• There is no special “session” type in Pine Script™. Instead, session strings are of “string” type but must conform
to the session string syntax.

4.17. Sessions 371

https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#fun_time_close
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}session
https://www.tradingview.com/pine-script-reference/v5/#var_session\{dot\}ismarket
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security

Pine Script™ v5 User Manual

4.17.2 Session strings

Session string specifications

Session strings used with time() and time_close() must have a specific format. Their syntax is:

<time_period>:<days>

Where:
• <time_period> uses times in “hhmm” format, with “hh” in 24-hour format, so 1700 for 5PM. The time periods
are in the “hhmm-hhmm” format, and a comma can separate multiple time periods to specify combinations of
discrete periods.

For example, - <days> is a set of digits from 1 to 7 that specifies on which days the session is valid.
1 is Sunday, 7 is Saturday.

Note: The default days are: 1234567, which is different in Pine Script™ v5 than in earlier versions where 23456
(weekdays) is used. For v5 code to reproduce the behavior from previous versions, it should explicitly mention weekdays,
as in "0930-1700:23456".

These are examples of session strings:
"24x7"

A 7-day, 24-hour session beginning at midnight.
"0000-0000:1234567"

Equivalent to the previous example.
"0000-0000"

Equivalent to the previous two examples because the default days are 1234567.
"0000-0000:23456"

The same as the previous example, but only Monday to Friday.
"2000-1630:1234567"

An overnight session that begins at 20:00 and ends at 16:30 the next day. It is valid on all days of the week.
"0930-1700:146"

A session that begins at 9:30 and ends at 17:00 on Sundays (1), Wednesdays (4), and Fridays (6).
"1700-1700:23456"

An overnight session. The Monday session starts Sunday at 17:00 and ends Monday at 17:00. It is valid Monday
through Friday.

"1000-1001:26"
A weird session that lasts only one minute on Mondays (2) and Fridays (6).

"0900-1600,1700-2000"
A session that begins at 9:00, breaks from 16:00 to 17:00, and continues until 20:00. Applies to every day of the
week.

372 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#fun_time_close

Pine Script™ v5 User Manual

Using session strings

Session properties defined with session strings are independent of the exchange-defined sessions determining when an
instrument can be traded. Programmers have complete liberty in creating whatever session definitions suit their purpose,
which is usually to detect when bars belong to specific time periods. This is accomplished in Pine Script™ by using one
of the following two signatures of the time() function:

time(timeframe, session, timezone) → series int
time(timeframe, session) → series int

Here, we use time() with a session argument to display the market’s opening high and low values on an intraday chart:

1 //@version=5
2 indicator("Opening high/low", overlay = true)
3

4 sessionInput = input.session("0930-0935")
5

6 sessionBegins(sess) =>
7 t = time("", sess)
8 timeframe.isintraday and (not barstate.isfirst) and na(t[1]) and not na(t)
9

10 var float hi = na
11 var float lo = na
12 if sessionBegins(sessionInput)
13 hi := high
14 lo := low
15

16 plot(lo, "lo", color.fuchsia, 2, plot.style_circles)
17 plot(hi, "hi", color.lime, 2, plot.style_circles)

Note that:
• We use a session input to allow users to specify the time they want to detect. We are only looking for the session’s
beginning time on bars, so we use a five-minute gap between the beginning and end time of our "0930-0935"
default value.

• We create a sessionBegins() function to detect the beginning of a session. Its time("", sess) call uses
an empty string for the function’s timeframe parameter, which means it uses the chart’s timeframe, whatever
that is. The function returns true when:

– The chart uses an intraday timeframe (seconds or minutes).
– The script isn’t on the chart’s first bar, which we ensure with (not barstate.isfirst). This check

4.17. Sessions 373

https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_low

Pine Script™ v5 User Manual

prevents the code from always detecting a session beginning on the first bar because na(t[1]) and not
na(t) is always true there.

– The time() call has returned na on the previous bar because it wasn’t in the session’s time period, and it has
returned a value that is not na on the current bar, which means the bar is in the session’s time period.

4.17.3 Session states

Three built-in variables allow you to distinguish the type of session the current bar belongs to. They are only helpful on
intraday timeframes:

• session.ismarket returns true when the bar belongs to regular trading hours.
• session.ispremarket returns true when the bar belongs to the extended session preceding regular trading hours.
• session.ispostmarket returns true when the bar belongs to the extended session following regular trading hours.

4.17.4 Using sessions with `request.security()`

When your TradingView account provides access to extended sessions, you can choose to see their bars with the “Set-
tings/Symbol/Session” field. There are two types of sessions:

• regular (which does not include pre- and post-market data), and
• extended (which includes pre- and post-market data).

Scripts using the request.security() function to access data can return extended session data or not. This is an example
where only regular session data is fetched:

1 //@version=5
2 indicator("Example 1: Regular Session Data")
3 regularSessionData = request.security("NASDAQ:AAPL", timeframe.period, close,␣

↪→barmerge.gaps_on)
4 plot(regularSessionData, style = plot.style_linebr)

If you want the request.security() call to return extended session data, you must first use the ticker.new() function to build
the first argument of the request.security() call:

374 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_session\{dot\}ismarket
https://www.tradingview.com/pine-script-reference/v5/#var_session\{dot\}ispremarket
https://www.tradingview.com/pine-script-reference/v5/#var_session\{dot\}ispostmarket
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Example 2: Extended Session Data")
3 t = ticker.new("NASDAQ", "AAPL", session.extended)
4 extendedSessionData = request.security(t, timeframe.period, close, barmerge.gaps_on)
5 plot(extendedSessionData, style = plot.style_linebr)

Note that the previous chart’s gaps in the script’s plot are now filled. Also, keep in mind that our example scripts do not
produce the background coloring on the chart; it is due to the chart’s settings showing extended hours.
The ticker.new() function has the following signature:

ticker.new(prefix, ticker, session, adjustment) → simple string

Where:
• prefix is the exchange prefix, e.g., "NASDAQ"
• ticker is a symbol name, e.g., "AAPL"
• session can be session.extended or session.regular. Note that this is not a session string.
• adjustment adjusts prices using different criteria: adjustment.none, adjustment.splits,
adjustment.dividends.

Our first example could be rewritten as:

1 //@version=5
2 indicator("Example 1: Regular Session Data")
3 t = ticker.new("NASDAQ", "AAPL", session.regular)
4 regularSessionData = request.security(t, timeframe.period, close, barmerge.gaps_on)
5 plot(regularSessionData, style = plot.style_linebr)

If you want to use the same session specifications used for the chart’s main symbol, omit the third argument in ticker.new();
it is optional. If you want your code to declare your intention explicitly, use the syminfo.session built-in variable. It holds
the session type of the chart’s main symbol:

1 //@version=5
2 indicator("Example 1: Regular Session Data")
3 t = ticker.new("NASDAQ", "AAPL", syminfo.session)
4 regularSessionData = request.security(t, timeframe.period, close, barmerge.gaps_on)
5 plot(regularSessionData, style = plot.style_linebr)

4.17. Sessions 375

https://www.tradingview.com/pine-script-reference/v5/#fun_ticker\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}session
https://www.tradingview.com/

Pine Script™ v5 User Manual

4.18 Strategies

• Introduction

• A simple strategy example

• Applying a strategy to a chart

• Strategy tester

• Broker emulator

• Orders and entries

• Position sizing

• Closing a market position

• OCA groups

• Currency

• Altering calculation behavior

• Simulating trading costs

• Risk management

• Margin

• Strategy Alerts

• Notes on testing strategies

4.18.1 Introduction

Pine Script™ strategies simulate the execution of trades on historical and real-time data to facilitate the backtesting and
forward testing of trading systems. They include many of the same capabilities as Pine Script™ indicators while providing
the ability to place, modify, and cancel hypothetical orders and analyze the results.
When a script uses the strategy() function for its declaration, it gains access to the strategy.* namespace, where it
can call functions and variables for simulating orders and accessing essential strategy information. Additionally, the script
will display information and simulated results externally in the “Strategy Tester” tab.

376 Chapter 4. Concepts

https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy

Pine Script™ v5 User Manual

4.18.2 A simple strategy example

The following script is a simple strategy that simulates the entry of long or short positions upon the crossing of two moving
averages:

1 //@version=5
2 strategy("test", overlay = true)
3

4 // Calculate two moving averages with different lengths.
5 float fastMA = ta.sma(close, 14)
6 float slowMA = ta.sma(close, 28)
7

8 // Enter a long position when `fastMA` crosses over `slowMA`.
9 if ta.crossover(fastMA, slowMA)
10 strategy.entry("buy", strategy.long)
11

12 // Enter a short position when `fastMA` crosses under `slowMA`.
13 if ta.crossunder(fastMA, slowMA)
14 strategy.entry("sell", strategy.short)
15

16 // Plot the moving averages.
17 plot(fastMA, "Fast MA", color.aqua)
18 plot(slowMA, "Slow MA", color.orange)

Note that:
• The strategy("test" overlay = true) line declares that the script is a strategy named “test”
with visual outputs overlaid on the main chart pane.

• strategy.entry() is the command that the script uses to simulate “buy” and “sell” orders. When the script
places an order, it also plots the order id on the chart and an arrow to indicate the direction.

• Two plot() functions plot the moving averages with two different colors for visual reference.

4.18.3 Applying a strategy to a chart

To test a strategy, apply it to the chart. You can use a built-in strategy from the “Indicators & Strategies” dialog box or
write your own in the Pine Editor. Click “Add to chart” from the “Pine Editor” tab to apply a script to the chart:

After a strategy script is compiled and applied to a chart, it will plot order marks on the main chart pane and display
simulated performance results in the “Strategy Tester” tab below:

4.18. Strategies 377

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry
https://www.tradingview.com/pine-script-reference/v5/#fun_plot

Pine Script™ v5 User Manual

Note: The results from a strategy applied to non-standard charts (Heikin Ashi, Renko, Line Break, Kagi, Point & Figure,
and Range) do not reflect actual market conditions by default. Strategy scripts will use the synthetic price values from these
charts during simulation, which often do not align with actual market prices and will thus produce unrealistic backtest
results. We therefore highly recommend using standard chart types for backtesting strategies. Alternatively, on Heikin
Ashi charts, users can simulate orders using actual prices by enabling the “Fill orders using standard OHLC” option in
the Strategy properties.

4.18.4 Strategy tester

The Strategy Tester module is available to all scripts declared with the strategy() function. Users can access this module
from the “Strategy Tester” tab below their charts, where they can conveniently visualize their strategies and analyze
hypothetical performance results.

378 Chapter 4. Concepts

https://www.tradingview.com/support/solutions/43000619436
https://www.tradingview.com/support/solutions/43000502284
https://www.tradingview.com/support/solutions/43000502273
https://www.tradingview.com/support/solutions/43000502272
https://www.tradingview.com/support/solutions/43000502276
https://www.tradingview.com/support/solutions/43000474007
https://www.tradingview.com/support/solutions/43000628599
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy

Pine Script™ v5 User Manual

Overview

The Overview tab of the Strategy Tester presents essential performance metrics and equity and drawdown curves over
a simulated sequence of trades, providing a quick look at strategy performance without diving into granular detail. The
chart in this section shows the strategy’s equity curve as a baseline plot centered at the initial value, the buy and hold
equity curve as a line plot, and the drawdown curve as a histogram plot. Users can toggle these plots and scale them as
absolute values or percentages using the options below the chart.

Note that:
• The overview chart uses two scales; the left is for the equity curves, and the right is for the drawdown curve.
• When a user clicks a point on these plots, this will direct the main chart view to the point where the trade was
closed.

Performance summary

The Performance Summary tab of the module presents a comprehensive overview of a strategy’s performance metrics. It
displays three columns: one for all trades, one for all longs, and one for all shorts, to provide traders with more detailed
insights on a strategy’s long, short, and overall simulated trading performance.

4.18. Strategies 379

https://www.tradingview.com/support/solutions/43000681733
https://www.tradingview.com/support/solutions/43000681735
https://www.tradingview.com/support/solutions/43000681736
https://www.tradingview.com/support/solutions/43000681736
https://www.tradingview.com/support/solutions/43000681734
https://www.tradingview.com/support/solutions/43000681683

Pine Script™ v5 User Manual

List of trades

The List of Trades tab provides a granular look at the trades simulated by a strategy with essential information, including
the date and time of execution, the type of order used (entry or exit), the number of contracts/shares/lots/units traded,
and the price, as well as some key trade performance metrics.

Note that:

380 Chapter 4. Concepts

https://www.tradingview.com/support/solutions/43000681737

Pine Script™ v5 User Manual

• Users can navigate the times of specific trades on their charts by clicking on them in this list.
• By clicking the “Trade #” field above the list, users can organize the trades in ascending order starting from
the first or descending order starting from the last.

Properties

The Properties tab provides detailed information about a strategy’s configuration and the dataset to which it is applied. It
includes the strategy’s date range, symbol information, script settings, and strategy properties.

• Date Range - Includes the range of dates with simulated trades and the total available backtesting range.
• Symbol Info - Contains the symbol name and broker/exchange, the chart’s timeframe and type, the tick size, the
point value for the chart, and the base currency.

• Strategy Inputs - Outlines the various parameters and variables used in the strategy script available in the “Inputs”
tab of the script settings.

• Strategy Properties - Provides an overview of the configuration of the trading strategy. It includes essential details
such as the initial capital, base currency, order size, margin, pyramiding, commission, and slippage. Additionally,
this section highlights any modifications made to strategy calculation behavior.

4.18.5 Broker emulator

TradingView utilizes a broker emulator to simulate the performance of trading strategies. Unlike in real-life trading, the
emulator strictly uses available chart prices for order simulation. Consequently, the simulation can only place historical
trades after a bar closes, and it can only place real-time trades on a new price tick. For more information on this behavior,
please refer to the Pine Script™ Execution model.
Since the emulator can only use chart data, it makes assumptions about intrabar price movement. It uses a bar’s open,
high, and low prices to infer intrabar activity while calculating order fills with the following logic:

• If the high price is closer to the opening price than the low price, it assumes that the price moved in this order on
the bar: open → high → low → close.

• If the low price is closer to the opening price than the high price, it assumes that the price moved in this order on
the bar: open → low → high → close.

• The broker emulator assumes no gaps exist between prices within bars; in the “eyes” of the emulator, the full range
of intrabar prices is available for order execution.

4.18. Strategies 381

Pine Script™ v5 User Manual

Bar magnifier

Premium account holders can override the broker emulator’s intrabar assumptions via the use_bar_magnifier pa-
rameter of the strategy() function or the “Use bar magnifier” input in the “Properties” tab of the script settings. The Bar
Magnifier inspects data on timeframes smaller than the chart’s to obtain more granular information about price action
within a bar, thus allowing more precise order fills during simulation.
To demonstrate, the following script places a “Buy” limit order at the entryPrice and an “Exit” limit order at the
exitPrice when the time value crosses the orderTime, and draws two horizontal lines to visualize the order prices.
The script also highlights the background using the orderColor to indicate when the strategy placed the orders:

1 //@version=5
2 strategy("Bar Magnifier Demo", overlay = true, use_bar_magnifier = false)
3

4 //@variable The UNIX timestamp to place the order at.
5 int orderTime = timestamp("UTC", 2023, 3, 22, 18)

(continues on next page)

382 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/support/solutions/43000669285
https://www.tradingview.com/support/solutions/43000669285
https://www.tradingview.com/pine-script-reference/v5/#var_time

Pine Script™ v5 User Manual

(continued from previous page)
6

7 //@variable Returns `color.orange` when `time` crosses the `orderTime`, false␣
↪→otherwise.

8 color orderColor = na
9

10 // Entry and exit prices.
11 float entryPrice = hl2 - (high - low)
12 float exitPrice = entryPrice + (high - low) * 0.25
13

14 // Entry and exit lines.
15 var line entryLine = na
16 var line exitLine = na
17

18 if ta.cross(time, orderTime)
19 // Draw new entry and exit lines.
20 entryLine := line.new(bar_index, entryPrice, bar_index + 1, entryPrice, color =␣

↪→color.green, width = 2)
21 exitLine := line.new(bar_index, exitPrice, bar_index + 1, exitPrice, color =␣

↪→color.red, width = 2)
22

23 // Update order highlight color.
24 orderColor := color.new(color.orange, 80)
25

26 // Place limit orders at the `entryPrice` and `exitPrice`.
27 strategy.entry("Buy", strategy.long, limit = entryPrice)
28 strategy.exit("Exit", "Buy", limit = exitPrice)
29

30 // Update lines while the position is open.
31 else if strategy.position_size > 0.0
32 entryLine.set_x2(bar_index + 1)
33 exitLine.set_x2(bar_index + 1)
34

35 bgcolor(orderColor)

As we see in the chart above, the broker emulator assumed that intrabar prices moved from open to high, then high to
low, then low to close on the bar the “Buy” order filled on, meaning the emulator assumed that the “Exit” order couldn’t
fill on the same bar. However, after including use_bar_magnifier = true in the declaration statement, we see
a different story:

4.18. Strategies 383

Pine Script™ v5 User Manual

Note: The maximum amount of intrabars that a script can request is 200,000. Some symbols with lengthier history may
not have full intrabar coverage for their beginning chart bars with this limitation, meaning that simulated trades on those
bars will not be affected by the bar magnifier.

4.18.6 Orders and entries

Just like in real-life trading, Pine strategies use orders to manage positions. In this context, an order is a command to
simulate a market action, and a trade is the result after the order fills. Thus, to enter or exit positions using Pine, users
must create orders with parameters that specify how they’ll behave.
To take a closer look at how orders work and how they become trades, let’s write a simple strategy script:

1 //@version=5
2 strategy("My strategy", overlay = true, margin_long = 100, margin_short = 100)
3

4 //@function Displays text passed to `txt` when called.
5 debugLabel(txt) =>
6 label.new(
7 bar_index, high, text = txt, color=color.lime, style = label.style_label_

↪→lower_right,
8 textcolor = color.black, size = size.large
9)
10

11 longCondition = bar_index % 20 == 0 // true on every 20th bar
12 if (longCondition)
13 debugLabel("Long entry order created")
14 strategy.entry("My Long Entry Id", strategy.long)
15 strategy.close_all()

In this script, we’ve defined a longCondition that is true whenever the bar_index is divisible by 20, i.e., every
20th bar. The strategy uses this condition within an if structure to simulate an entry order with strategy.entry() and draws
a label at the entry price with the user-defined debugLabel() function. The script calls strategy.close_all() from the

384 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}close_all

Pine Script™ v5 User Manual

global scope to simulate a market order that closes any open position. Let’s see what happens once we add the script to
our chart:

The blue arrows on the chart indicate entry locations, and the purple ones mark the points where the strategy closed
positions. Notice that the labels precede the actual entry point rather than occurring on the same bar - this is orders in
action. By default, Pine strategies wait for the next available price tick before filling orders, as filling an order on the same
tick isn’t realistic. Also, they recalculate on the close of every historical bar, meaning the next available tick to fill an
order at is the open of the next bar in this case. As a result, by default, all orders are delayed by one chart bar.
It’s important to note that although the script calls strategy.close_all() from the global scope, forcing execution on ev-
ery bar, the function call does nothing if the strategy isn’t simulating an open position. If there is an open position, the
command issues a market order to close it, which executes on the next available tick. For example, when the longCon-
dition is true on bar 20, the strategy places an entry order to fill at the next tick, which is at the open of bar 21. Once
the script recalculates its values on that bar’s close, the function places an order to close the position, which fills at the
open of bar 22.

Order types

Pine Script™ strategies allow users to simulate different order types for their particular needs. The main notable types
are market, limit, stop, and stop-limit.

Market orders

Market orders are the most basic type of orders. They command a strategy to buy or sell a security as soon as possible,
regardless of the price. Consequently, they always execute on the next available price tick. By default, all strategy.
*() functions that generate orders specifically produce market orders.
The following script simulates a long market order when the bar_index is divisible by 2 * cycleLength. Oth-
erwise, it simulates a short market order when the bar_index is divisible by cycleLength, resulting in a strategy
with alternating long and short trades once every cycleLength bars:

4.18. Strategies 385

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}close_all

Pine Script™ v5 User Manual

1 //@version=5
2 strategy("Market order demo", overlay = true, margin_long = 100, margin_short = 100)
3

4 //@variable Number of bars between long and short entries.
5 cycleLength = input.int(10, "Cycle length")
6

7 //@function Displays text passed to `txt` when called.
8 debugLabel(txt, lblColor) => label.new(
9 bar_index, high, text = txt, color = lblColor, textcolor = color.white,
10 style = label.style_label_lower_right, size = size.large
11)
12

13 //@variable Returns `true` every `2 * cycleLength` bars.
14 longCondition = bar_index % (2 * cycleLength) == 0
15 //@variable Returns `true` every `cycleLength` bars.
16 shortCondition = bar_index % cycleLength == 0
17

18 // Generate a long market order with a `color.green` label on `longCondition`.
19 if longCondition
20 debugLabel("Long market order created", color.green)
21 strategy.entry("My Long Entry Id", strategy.long)
22 // Otherwise, generate a short market order with a `color.red` label on␣

↪→`shortCondition`.
23 else if shortCondition
24 debugLabel("Short market order created", color.red)
25 strategy.entry("My Short Entry Id", strategy.short)

386 Chapter 4. Concepts

Pine Script™ v5 User Manual

Limit orders

Limit orders command a strategy to enter a position at a specific price or better (lower than specified for long orders and
higher for short ones). When the current market price is better than the order command’s limit parameter, the order
will fill without waiting for the market price to reach the limit level.
To simulate limit orders in a script, pass a price value to an order placement command with a limit parameter. The
following example places a limit order 800 ticks below the bar close 100 bars before the last_bar_index:

1 //@version=5
2 strategy("Limit order demo", overlay = true, margin_long = 100, margin_short = 100)
3

4 //@function Displays text passed to `txt` and a horizontal line at `price` when␣
↪→called.

5 debugLabel(price, txt) =>
6 label.new(
7 bar_index, price, text = txt, color = color.teal, textcolor = color.white,
8 style = label.style_label_lower_right, size = size.large
9)
10 line.new(
11 bar_index, price, bar_index + 1, price, color = color.teal, extend = extend.

↪→right,
12 style = line.style_dashed
13)
14

15 // Generate a long limit order with a label and line 100 bars before the `last_bar_
↪→index`.

16 if last_bar_index - bar_index == 100
17 limitPrice = close - syminfo.mintick * 800
18 debugLabel(limitPrice, "Long Limit order created")
19 strategy.entry("Long", strategy.long, limit = limitPrice)

Note how the script placed the label and started the line several bars before the trade. As long as the price remained
above the limitPrice value, the order could not fill. Once the market price reached the limit, the strategy executed
the trade mid-bar. If we had set the limitPrice to 800 ticks above the bar close rather than below, the order would
fill immediately since the price is already at a better value:

4.18. Strategies 387

Pine Script™ v5 User Manual

1 //@version=5
2 strategy("Limit order demo", overlay = true, margin_long = 100, margin_short = 100)
3

4 //@function Displays text passed to `txt` and a horizontal line at `price` when␣
↪→called.

5 debugLabel(price, txt) =>
6 label.new(
7 bar_index, price, text = txt, color = color.teal, textcolor = color.white,
8 style = label.style_label_lower_right, size = size.large
9)
10 line.new(
11 bar_index, price, bar_index + 1, price, color = color.teal, extend = extend.

↪→right,
12 style = line.style_dashed
13)
14

15 // Generate a long limit order with a label and line 100 bars before the `last_bar_
↪→index`.

16 if last_bar_index - bar_index == 100
17 limitPrice = close + syminfo.mintick * 800
18 debugLabel(limitPrice, "Long Limit order created")
19 strategy.entry("Long", strategy.long, limit = limitPrice)

Stop and stop-limit orders

Stop orders command a strategy to simulate another order after price reaches the specified stop price or a worse value
(higher than specified for long orders and lower for short ones). They are essentially the opposite of limit orders. When
the current market price is worse than the stop parameter, the strategy will trigger the subsequent order without waiting
for the current price to reach the stop level. If the order placement command includes a limit argument, the subsequent
order will be a limit order at the specified value. Otherwise, it will be a market order.
The script below places a stop order 800 ticks above the close 100 bars ago. In this example, the strategy entered a
long position when the market price crossed the stop price some bars after it placed the order. Notice that the initial
price at the time of the order was better than the one passed to stop. An equivalent limit order would have filled on the

388 Chapter 4. Concepts

Pine Script™ v5 User Manual

following chart bar:

1 //@version=5
2 strategy("Stop order demo", overlay = true, margin_long = 100, margin_short = 100)
3

4 //@function Displays text passed to `txt` when called and shows the `price` level on␣
↪→the chart.

5 debugLabel(price, txt) =>
6 label.new(
7 bar_index, high, text = txt, color = color.teal, textcolor = color.white,
8 style = label.style_label_lower_right, size = size.large
9)
10 line.new(bar_index, high, bar_index, price, style = line.style_dotted, color =␣

↪→color.teal)
11 line.new(
12 bar_index, price, bar_index + 1, price, color = color.teal, extend = extend.

↪→right,
13 style = line.style_dashed
14)
15

16 // Generate a long stop order with a label and lines 100 bars before the last bar.
17 if last_bar_index - bar_index == 100
18 stopPrice = close + syminfo.mintick * 800
19 debugLabel(stopPrice, "Long Stop order created")
20 strategy.entry("Long", strategy.long, stop = stopPrice)

Order placement commands that use both limit and stop arguments produce stop-limit orders. This order type waits
for the price to cross the stop level, then places a limit order at the specified limit price.
Let’s modify our previous script to simulate and visualize a stop-limit order. In this example, we use the low value
from 100 bars ago as the limit price in the entry command. This script also displays a label and price level to indicate
when the strategy crosses the stopPrice, i.e., when the strategy activates the limit order. Notice how the market price
initially reaches the limit level, but the strategy doesn’t simulate a trade because the price must cross the stopPrice to
place the pending limit order at the limitPrice:

4.18. Strategies 389

Pine Script™ v5 User Manual

1 //@version=5
2 strategy("Stop-Limit order demo", overlay = true, margin_long = 100, margin_short =␣

↪→100)
3

4 //@function Displays text passed to `txt` when called and shows the `price` level on␣
↪→the chart.

5 debugLabel(price, txt, lblColor, lineWidth = 1) =>
6 label.new(
7 bar_index, high, text = txt, color = lblColor, textcolor = color.white,
8 style = label.style_label_lower_right, size = size.large
9)
10 line.new(bar_index, close, bar_index, price, style = line.style_dotted, color =␣

↪→lblColor, width = lineWidth)
11 line.new(
12 bar_index, price, bar_index + 1, price, color = lblColor, extend = extend.

↪→right,
13 style = line.style_dashed, width = lineWidth
14)
15

16 var float stopPrice = na
17 var float limitPrice = na
18

19 // Generate a long stop-limit order with a label and lines 100 bars before the last␣
↪→bar.

20 if last_bar_index - bar_index == 100
21 stopPrice := close + syminfo.mintick * 800
22 limitPrice := low
23 debugLabel(limitPrice, "", color.gray)
24 debugLabel(stopPrice, "Long Stop-Limit order created", color.teal)
25 strategy.entry("Long", strategy.long, stop = stopPrice, limit = limitPrice)
26

27 // Draw a line and label once the strategy activates the limit order.
28 if high >= stopPrice
29 debugLabel(limitPrice, "Limit order activated", color.green, 2)
30 stopPrice := na

390 Chapter 4. Concepts

Pine Script™ v5 User Manual

Order placement commands

Pine Script™ strategies feature several functions to simulate the placement of orders, known as order placement com-
mands. Each command serves a unique purpose and behaves differently from the others.

`strategy.entry()`

This command simulates entry orders. By default, strategies place market orders when calling this function, but they can
also create stop, limit, and stop-limit orders when utilizing the stop and limit parameters.
To simplify opening positions, strategy.entry() features several unique behaviors. One such behavior is that this command
can reverse an open market position without additional function calls. When an order placed using strategy.entry() fills,
the function will automatically calculate the amount the strategy needs to close the open market position and trade qty
contracts/shares/lots/units in the opposite direction by default. For example, if a strategy has an open position of 15 shares
in the strategy.long direction and calls strategy.entry() to place a market order in the strategy.short direction, the amount
the strategy will trade to place the order is 15 shares plus the qty of the new short order.
The example below demonstrates a strategy that uses only strategy.entry() calls to place entry orders. It creates a long
market order with a qty value of 15 shares once every 100 bars and a short market order with a qty of 5 once every
25 bars. The script highlights the background blue and red for occurrences of the respective buyCondition and
sellCondition:

1 //@version=5
2 strategy("Entry demo", "test", overlay = true)
3

4 //@variable Is `true` on every 100th bar.
5 buyCondition = bar_index % 100 == 0
6 //@variable Is `true` on every 25th bar except for those that are divisible by 100.
7 sellCondition = bar_index % 25 == 0 and not buyCondition
8

9 if buyCondition
10 strategy.entry("buy", strategy.long, qty = 15)
11 if sellCondition
12 strategy.entry("sell", strategy.short, qty = 5)

(continues on next page)

4.18. Strategies 391

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}long
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}short
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry

Pine Script™ v5 User Manual

(continued from previous page)
13

14 bgcolor(buyCondition ? color.new(color.blue, 90) : na)
15 bgcolor(sellCondition ? color.new(color.red, 90) : na)

As we see in the chart above, the order marks show that the strategy traded 20 shares on each order fill rather than 15 and
5. Since strategy.entry() automatically reverses positions, unless otherwise specified via the strategy.risk.allow_entry_in()
function, it adds the open position size (15 for long entries) to the new order’s size (5 for short entries) when it changes
the direction, resulting in a traded quantity of 20 shares.
Notice that in the above example, although the sellCondition occurs three times before another buyCondition,
the strategy only places a “sell” order on the first occurrence. Another unique behavior of the strategy.entry() command
is that it’s affected by a script’s pyramiding setting. Pyramiding specifies the number of consecutive orders the strategy
can fill in the same direction. Its value is 1 by default, meaning the strategy only allows one consecutive order to fill in
either direction. Users can set the strategy pyramiding values via the pyramiding parameter of the strategy() function
call or the “Pyramiding” input in the “Properties” tab of the script settings.
If we addpyramiding = 3 to our previous script’s declaration statement, the strategy will allow up to three consecutive
trades in the same direction, meaning it can simulate new market orders on each occurrence of sellCondition:

`strategy.order()`

This command simulates a basic order. Unlike most order placement commands, which contain internal logic to simplify
interfacing with strategies, strategy.order() uses the specified parameters without accounting for most additional strategy
settings. Orders placed by strategy.order() can open new positions and modify or close existing ones.
The following script uses only strategy.order() calls to create and modify entries. The strategy simulates a long market
order for 15 units every 100 bars, then three short orders for five units every 25 bars. The script highlights the background
blue and red to indicate when the strategy simulates “buy” and “sell” orders:

392 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}risk\{dot\}allow_entry_in
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}order
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}order
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}order

Pine Script™ v5 User Manual

1 //@version=5
2 strategy("Order demo", "test", overlay = true)
3

4 //@variable Is `true` on every 100th bar.
5 buyCond = bar_index % 100 == 0
6 //@variable Is `true` on every 25th bar except for those that are divisible by 100.
7 sellCond = bar_index % 25 == 0 and not buyCond
8

9 if buyCond
10 strategy.order("buy", strategy.long, qty = 15) // Enter a long position of 15␣

↪→units.
11 if sellCond
12 strategy.order("sell", strategy.short, qty = 5) // Exit 5 units from the long␣

↪→position.
13

14 bgcolor(buyCond ? color.new(color.blue, 90) : na)
15 bgcolor(sellCond ? color.new(color.red, 90) : na)

This particular strategy will never simulate a short position, as unlike strategy.entry(), strategy.order() does not automat-
ically reverse positions. When using this command, the resulting market position is the net sum of the current market
position and the filled order quantity. After the strategy fills the “buy” order for 15 units, it executes three “sell” orders
that reduce the open position by five units each, and 15 - 5 * 3 = 0. The same script would behave differently using
strategy.entry(), as per the example shown in the section above.

4.18. Strategies 393

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}order
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry

Pine Script™ v5 User Manual

`strategy.exit()`

This command simulates exit orders. It’s unique in that it allows a strategy to exit a market position or form multiple exits
in the form of stop-loss, take-profit, and trailing stop orders via the loss, stop, profit, limit, and trail_*
parameters.
The most basic use of the strategy.exit() command is the creation of levels where the strategy will exit a position due to
losing too much money (stop-loss), earning enough money (take-profit), or both (bracket).
The stop-loss and take-profit functionalities of this command are associated with two parameters. The function’s loss
and profit parameters specify stop-loss and take-profit values as a defined number of ticks away from the entry order’s
price, while its stop and limit parameters provide specific stop-loss and take-profit price values. The absolute param-
eters in the function call supersede the relative ones. If a strategy.exit() call contains profit and limit arguments,
the command will prioritize the limit value and ignore the profit value. Likewise, it will only consider the stop
value when the function call contains stop and loss arguments.

Note: Despite sharing the same names with parameters from strategy.entry() and strategy.order() commands, thelimit
and stop parameters work differently in strategy.exit(). In the first case, using limit and stop in the command will
create a single stop-limit order that opens a limit order after crossing the stop price. In the second case, the command
will create a separate limit and stop order to exit from an open position.

All exit orders from strategy.exit() with a from_entry argument are bound to the id of a corresponding entry order;
strategies cannot simulate exit orders when there is no open market position or active entry order associated with a
from_entry ID.
The following strategy places a “buy” entry order via strategy.entry() and a stop-loss and take-profit order via the strat-
egy.exit() command every 100 bars. Notice that the script calls strategy.exit() twice. The “exit1” command references
a “buy1” entry order, and “exit2” references the “buy” order. The strategy will only simulate exit orders from “exit2”
because “exit1” references an order ID that doesn’t exist:

1 //@version=5
2 strategy("Exit demo", "test", overlay = true)
3

(continues on next page)

394 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}order
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit

Pine Script™ v5 User Manual

(continued from previous page)
4 //@variable Is `true` on every 100th bar.
5 buyCondition = bar_index % 100 == 0
6

7 //@variable Stop-loss price for exit commands.
8 var float stopLoss = na
9 //@variable Take-profit price for exit commands.
10 var float takeProfit = na
11

12 // Place orders upon `buyCondition`.
13 if buyCondition
14 if strategy.position_size == 0.0
15 stopLoss := close * 0.99
16 takeProfit := close * 1.01
17 strategy.entry("buy", strategy.long)
18 strategy.exit("exit1", "buy1", stop = stopLoss, limit = takeProfit) // Does␣

↪→nothing. "buy1" order doesn't exist.
19 strategy.exit("exit2", "buy", stop = stopLoss, limit = takeProfit)
20

21 // Set `stopLoss` and `takeProfit` to `na` when price touches either, i.e., when the␣
↪→strategy simulates an exit.

22 if low <= stopLoss or high >= takeProfit
23 stopLoss := na
24 takeProfit := na
25

26 plot(stopLoss, "SL", color.red, style = plot.style_circles)
27 plot(takeProfit, "TP", color.green, style = plot.style_circles)

Note that:
• Limit and stop orders from each exit command do not necessarily fill at the specified prices. Strategies can
fill limit orders at better prices and stop orders at worse prices, depending on the range of values available to
the broker emulator.

If a user does not provide a from_entry argument in the strategy.exit() call, the function will create exit orders for
each open entry.
In this example, the strategy creates “buy1” and “buy2” entry orders and calls strategy.exit() without a from_entry
argument every 100 bars. As we can see from the order marks on the chart, once the market price reaches the stopLoss
or takeProfit values, the strategy fills an exit order for both “buy1” and “buy2” entries:

4.18. Strategies 395

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit

Pine Script™ v5 User Manual

1 //@version=5
2 strategy("Exit all demo", "test", overlay = true, pyramiding = 2)
3

4 //@variable Is `true` on every 100th bar.
5 buyCondition = bar_index % 100 == 0
6

7 //@variable Stop-loss price for exit commands.
8 var float stopLoss = na
9 //@variable Take-profit price for exit commands.
10 var float takeProfit = na
11

12 // Place orders upon `buyCondition`.
13 if buyCondition
14 if strategy.position_size == 0.0
15 stopLoss := close * 0.99
16 takeProfit := close * 1.01
17 strategy.entry("buy1", strategy.long)
18 strategy.entry("buy2", strategy.long)
19 strategy.exit("exit", stop = stopLoss, limit = takeProfit) // Places orders to␣

↪→exit all open entries.
20

21 // Set `stopLoss` and `takeProfit` to `na` when price touches either, i.e., when the␣
↪→strategy simulates an exit.

22 if low <= stopLoss or high >= takeProfit
23 stopLoss := na
24 takeProfit := na
25

26 plot(stopLoss, "SL", color.red, style = plot.style_circles)
27 plot(takeProfit, "TP", color.green, style = plot.style_circles)

It is possible for a strategy to exit from the same entry ID more than once, which facilitates the formation of multi-level
exit strategies. When performing multiple exit commands, each order’s quantity must be a portion of the traded quantity,
with their sum not exceeding the open position. If the qty of the function is less than the size of the current market
position, the strategy will simulate a partial exit. If the qty value exceeds the open position quantity, it will reduce the
order since it cannot fill more contracts/shares/lots/units than the open position.

396 Chapter 4. Concepts

Pine Script™ v5 User Manual

In the example below, we’ve modified our previous “Exit demo” script to simulate two stop-loss and take-profit orders per
entry. The strategy places a “buy” order with a qty of two shares, “exit1” stop-loss and take-profit orders with a qty of
one share, and “exit2” stop-loss and take profit orders with a qty of three shares:

1 //@version=5
2 strategy("Multiple exit demo", "test", overlay = true)
3

4 //@variable Is `true` on every 100th bar.
5 buyCondition = bar_index % 100 == 0
6

7 //@variable Stop-loss price for "exit1" commands.
8 var float stopLoss1 = na
9 //@variable Stop-loss price for "exit2" commands.
10 var float stopLoss2 = na
11 //@variable Take-profit price for "exit1" commands.
12 var float takeProfit1 = na
13 //@variable Take-profit price for "exit2" commands.
14 var float takeProfit2 = na
15

16 // Place orders upon `buyCondition`.
17 if buyCondition
18 if strategy.position_size == 0.0
19 stopLoss1 := close * 0.99
20 stopLoss2 := close * 0.98
21 takeProfit1 := close * 1.01
22 takeProfit2 := close * 1.02
23 strategy.entry("buy", strategy.long, qty = 2)
24 strategy.exit("exit1", "buy", stop = stopLoss1, limit = takeProfit1, qty = 1)
25 strategy.exit("exit2", "buy", stop = stopLoss2, limit = takeProfit2, qty = 3)
26

27 // Set `stopLoss1` and `takeProfit1` to `na` when price touches either.
28 if low <= stopLoss1 or high >= takeProfit1
29 stopLoss1 := na
30 takeProfit1 := na
31 // Set `stopLoss2` and `takeProfit2` to `na` when price touches either.

(continues on next page)

4.18. Strategies 397

Pine Script™ v5 User Manual

(continued from previous page)
32 if low <= stopLoss2 or high >= takeProfit2
33 stopLoss2 := na
34 takeProfit2 := na
35

36 plot(stopLoss1, "SL1", color.red, style = plot.style_circles)
37 plot(stopLoss2, "SL2", color.red, style = plot.style_circles)
38 plot(takeProfit1, "TP1", color.green, style = plot.style_circles)
39 plot(takeProfit2, "TP2", color.green, style = plot.style_circles)

As we can see from the order marks on the chart, the strategy filled “exit2” orders despite the specified qty value
exceeding the traded amount. Rather than using this quantity, the script reduced the orders’ sizes to match the remaining
position.
Note that:

• All orders generated from a strategy.exit() call belong to the same strategy.oca.reduce group, meaning that
when either order fills, the strategy reduces all others to match the open position.

It’s important to note that orders produced by this command reserve a portion of the open market position to exit. strat-
egy.exit() cannot place an order to exit a portion of the position already reserved for exit by another exit command.
The following script simulates a “buy” market order for 20 shares 100 bars ago with “limit” and “stop” orders of 19 and
20 shares respectively. As we see on the chart, the strategy executed the “stop” order first. However, the traded quantity
was only one share. Since the script placed the “limit” order first, the strategy reserved its qty (19 shares) to close the
open position, leaving only one share to be closed by the “stop” order:

1 //@version=5
2 strategy("Reserved exit demo", "test", overlay = true)
3

4 //@variable "stop" exit order price.
5 var float stop = na
6 //@variable "limit" exit order price
7 var float limit = na
8 //@variable Is `true` 100 bars before the `last_bar_index`.
9 longCondition = last_bar_index - bar_index == 100

(continues on next page)

398 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit

Pine Script™ v5 User Manual

(continued from previous page)
10

11 if longCondition
12 stop := close * 0.99
13 limit := close * 1.01
14 strategy.entry("buy", strategy.long, 20)
15 strategy.exit("limit", limit = limit, qty = 19)
16 strategy.exit("stop", stop = stop, qty = 20)
17

18 bool showPlot = strategy.position_size != 0
19 plot(showPlot ? stop : na, "Stop", color.red, 2, plot.style_linebr)
20 plot(showPlot ? limit : na, "Limit 1", color.green, 2, plot.style_linebr)

Another key feature of the strategy.exit() function is that it can create trailing stops, i.e., stop-loss orders that trail behind
the market price by a specified amount whenever the price moves to a better value in the favorable direction. These orders
have two components: the activation level and the trail offset. The activation level is the value the market price must cross
to activate the trailing stop calculation, expressed in ticks via the trail_points parameter or as a price value via the
trail_price parameter. If an exit call contains both arguments, the trail_price argument takes precedence.
The trail offset is the distance the stop will follow behind the market price, expressed in ticks via the trail_offset
parameter. For strategy.exit() to create and activate trailing stops, the function call must contain trail_offset and
either trail_price or trail_points arguments.
The example below shows a trailing stop in action and visualizes its behavior. The strategy simulates a long entry order
on the bar 100 bars before the last bar on the chart, then a trailing stop on the next bar. The script has two inputs: one
controls the activation level offset (i.e., the amount past the entry price required to activate the stop), and the other controls
the trail offset (i.e., the distance to follow behind the market price when it moves to a better value in the desired direction).
The green dashed line on the chart shows the level the market price must cross to trigger the trailing stop order. After
the price crosses this level, the script plots a blue line to signify the trailing stop. When the price rises to a new high
value, which is favorable for the strategy since it means the position’s value is increasing, the stop also rises to maintain a
distance of trailingStopOffset ticks behind the current price. When the price decreases or doesn’t reach a new
high point, the stop value stays the same. Eventually, the price crosses below the stop, triggering the exit:

1 //@version=5
2 strategy("Trailing stop order demo", overlay = true, margin_long = 100, margin_short␣

(continues on next page)

4.18. Strategies 399

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit

Pine Script™ v5 User Manual

(continued from previous page)
↪→= 100)

3

4 //@variable Offset used to determine how far above the entry price (in ticks) the␣
↪→activation level will be located.

5 activationLevelOffset = input(1000, "Activation Level Offset (in ticks)")
6 //@variable Offset used to determine how far below the high price (in ticks) the␣

↪→trailing stop will trail the chart.
7 trailingStopOffset = input(2000, "Trailing Stop Offset (in ticks)")
8

9 //@function Displays text passed to `txt` when called and shows the `price` level on␣
↪→the chart.

10 debugLabel(price, txt, lblColor, hasLine = false) =>
11 label.new(
12 bar_index, price, text = txt, color = lblColor, textcolor = color.white,
13 style = label.style_label_lower_right, size = size.large
14)
15 if hasLine
16 line.new(
17 bar_index, price, bar_index + 1, price, color = lblColor, extend =␣

↪→extend.right,
18 style = line.style_dashed
19)
20

21 //@variable The price at which the trailing stop activation level is located.
22 var float trailPriceActivationLevel = na
23 //@variable The price at which the trailing stop itself is located.
24 var float trailingStop = na
25 //@variable Caclulates the value that Trailing Stop would have if it were active at␣

↪→the moment.
26 theoreticalStopPrice = high - trailingStopOffset * syminfo.mintick
27

28 // Generate a long market order to enter 100 bars before the last bar.
29 if last_bar_index - bar_index == 100
30 strategy.entry("Long", strategy.long)
31

32 // Generate a trailing stop 99 bars before the last bar.
33 if last_bar_index - bar_index == 99
34 trailPriceActivationLevel := open + syminfo.mintick * activationLevelOffset
35 strategy.exit(
36 "Trailing Stop", from_entry = "Long", trail_price =␣

↪→trailPriceActivationLevel,
37 trail_offset = trailingStopOffset
38)
39 debugLabel(trailPriceActivationLevel, "Trailing Stop Activation Level", color.

↪→green, true)
40

41 // Visualize the trailing stop mechanic in action.
42 // If there is an open trade, check whether the Activation Level has been achieved.
43 // If it has been achieved, track the trailing stop by assigning its value to a␣

↪→variable.
44 if strategy.opentrades == 1
45 if na(trailingStop) and high > trailPriceActivationLevel
46 debugLabel(trailPriceActivationLevel, "Activation level crossed", color.green)
47 trailingStop := theoreticalStopPrice
48 debugLabel(trailingStop, "Trailing Stop Activated", color.blue)
49

50 else if theoreticalStopPrice > trailingStop
(continues on next page)

400 Chapter 4. Concepts

Pine Script™ v5 User Manual

(continued from previous page)
51 trailingStop := theoreticalStopPrice
52

53 // Visualize the movement of the trailing stop.
54 plot(trailingStop, "Trailing Stop")

`strategy.close()` and `strategy.close_all()`

These commands simulate exit positions using market orders. The functions close trades upon being called rather than at
a specific price.
The example below demonstrates a simple strategy that places a “buy” order via strategy.entry() once every 50 bars that
it closes with a market order using strategy.close() 25 bars afterward:

1 //@version=5
2 strategy("Close demo", "test", overlay = true)
3

4 //@variable Is `true` on every 50th bar.
5 buyCond = bar_index % 50 == 0
6 //@variable Is `true` on every 25th bar except for those that are divisible by 50.
7 sellCond = bar_index % 25 == 0 and not buyCond
8

9 if buyCond
10 strategy.entry("buy", strategy.long)
11 if sellCond
12 strategy.close("buy")
13

14 bgcolor(buyCond ? color.new(color.blue, 90) : na)
15 bgcolor(sellCond ? color.new(color.red, 90) : na)

Unlike most other order placement commands, the id parameter of strategy.close() references an existing entry ID to
close. If the specified id does not exist, the command will not execute an order. If a position was formed from multiple
entries with the same ID, the command will exit all entries simultaneously.

4.18. Strategies 401

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}close
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}close

Pine Script™ v5 User Manual

To demonstrate, the following script places a “buy” order once every 25 bars. The script closes all “buy” entries once
every 100 bars. We’ve included pyramiding = 3 in the strategy() declaration statement to allow the strategy to
simulate up to three orders in the same direction:

1 //@version=5
2 strategy("Multiple close demo", "test", overlay = true, pyramiding = 3)
3

4 //@variable Is `true` on every 100th bar.
5 sellCond = bar_index % 100 == 0
6 //@variable Is `true` on every 25th bar except for those that are divisible by 100.
7 buyCond = bar_index % 25 == 0 and not sellCond
8

9 if buyCond
10 strategy.entry("buy", strategy.long)
11 if sellCond
12 strategy.close("buy")
13

14 bgcolor(buyCond ? color.new(color.blue, 90) : na)
15 bgcolor(sellCond ? color.new(color.red, 90) : na)

For cases where a script has multiple entries with different IDs, the strategy.close_all() command can come in handy since
it closes all entries, irrespective of their IDs.
The script below places “A”, “B”, and “C” entry orders sequentially based on the number of open trades, then closes all
of them with a single market order:

402 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}close_all

Pine Script™ v5 User Manual

1 //@version=5
2 strategy("Close multiple ID demo", "test", overlay = true, pyramiding = 3)
3

4 switch strategy.opentrades
5 0 => strategy.entry("A", strategy.long)
6 1 => strategy.entry("B", strategy.long)
7 2 => strategy.entry("C", strategy.long)
8 3 => strategy.close_all()

`strategy.cancel()` and `strategy.cancel_all()`

These commands allow a strategy to cancel pending orders, i.e., those generated by strategy.exit() or by strategy.order()
or strategy.entry() when they use limit or stop arguments.
The following strategy simulates a “buy” limit order 500 ticks below the closing price 100 bars ago, then cancels the order
on the next bar. The script draws a horizontal line at the limitPrice and colors the background green and orange to
indicate when the limit order is placed and canceled respectively. As we can see, nothing happened once the market price
crossed the limitPrice because the strategy already canceled the order:

4.18. Strategies 403

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}order
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry

Pine Script™ v5 User Manual

1 //@version=5
2 strategy("Cancel demo", "test", overlay = true)
3

4 //@variable Draws a horizontal line at the `limit` price of the "buy" order.
5 var line limitLine = na
6

7 //@variable Returns `color.green` when the strategy places the "buy" order, `color.
↪→orange` when it cancels the order.

8 color bgColor = na
9

10 if last_bar_index - bar_index == 100
11 float limitPrice = close - syminfo.mintick * 500
12 strategy.entry("buy", strategy.long, limit = limitPrice)
13 limitLine := line.new(bar_index, limitPrice, bar_index + 1, limitPrice, extend =␣

↪→extend.right)
14 bgColor := color.new(color.green, 50)
15

16 if last_bar_index - bar_index == 99
17 strategy.cancel("buy")
18 bgColor := color.new(color.orange, 50)
19

20 bgcolor(bgColor)

As with strategy.close(), the id parameter of strategy.cancel() refers to the ID of an existing entry. This command will
do nothing if the id parameter references an ID that doesn’t exist. When there are multiple pending orders with the same
ID, this command will cancel all of them at once.
In this example, we’ve modified the previous script to place a “buy” limit order on three consecutive bars starting from
100 bars ago. The strategy cancels all of them after the bar_index is 97 bars away from the most recent bar, resulting
in it doing nothing when the price crosses any of the lines:

404 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}close
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}cancel

Pine Script™ v5 User Manual

1 //@version=5
2 strategy("Multiple cancel demo", "test", overlay = true, pyramiding = 3)
3

4 //@variable Draws a horizontal line at the `limit` price of the "buy" order.
5 var line limitLine = na
6

7 //@variable Returns `color.green` when the strategy places the "buy" order, `color.
↪→orange` when it cancels the order.

8 color bgColor = na
9

10 if last_bar_index - bar_index <= 100 and last_bar_index - bar_index >= 98
11 float limitPrice = close - syminfo.mintick * 500
12 strategy.entry("buy", strategy.long, limit = limitPrice)
13 limitLine := line.new(bar_index, limitPrice, bar_index + 1, limitPrice, extend =␣

↪→extend.right)
14 bgColor := color.new(color.green, 50)
15

16 if last_bar_index - bar_index == 97
17 strategy.cancel("buy")
18 bgColor := color.new(color.orange, 50)
19

20 bgcolor(bgColor)

Note that:
• We added pyramiding = 3 to the script’s declaration statement to allow three strategy.entry() orders to
fill. Alternatively, the script would achieve the same output by using strategy.order() since it isn’t sensitive to
the pyramiding setting.

It’s important to note that neither strategy.cancel() nor strategy.cancel_all() can cancel market orders, as the strategy
executes them immediately upon the next tick. Strategies cannot cancel orders after they’ve been filled. To close an open
position, use strategy.close() or strategy.close_all().
This example simulates a “buy” market order 100 bars ago, then attempts to cancel all pending orders on the next bar.
Since the strategy already filled the “buy” order, the strategy.cancel_all() command does nothing in this case, as there are
no pending orders to cancel:

4.18. Strategies 405

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}order
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}cancel
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}cancel_all
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}close
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}close_all
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}cancel_all

Pine Script™ v5 User Manual

1 //@version=5
2 strategy("Cancel market demo", "test", overlay = true)
3

4 //@variable Returns `color.green` when the strategy places the "buy" order, `color.
↪→orange` when it tries to cancel.

5 color bgColor = na
6

7 if last_bar_index - bar_index == 100
8 strategy.entry("buy", strategy.long)
9 bgColor := color.new(color.green, 50)
10

11 if last_bar_index - bar_index == 99
12 strategy.cancel_all()
13 bgColor := color.new(color.orange, 50)
14

15 bgcolor(bgColor)

4.18.7 Position sizing

Pine Script™ strategies feature two ways to control the sizes of simulated trades:
• Set a default fixed quantity type and value for all orders using the default_qty_type and de-
fault_qty_value arguments in the strategy() function, which also sets the default values in the “Properties”
tab of the script settings.

• Specify the qty argument when calling strategy.entry(). When a user supplies this argument to the function, the
script ignores the strategy’s default quantity value and type.

The following example simulates “Buy” orders of longAmount size whenever the low price equals the lowest value,
and “Sell” orders of shortAmount size when the high price equals the highest value:

406 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry

Pine Script™ v5 User Manual

1 //@version=5
2 strategy("Buy low, sell high", overlay = true, default_qty_type = strategy.cash,␣

↪→default_qty_value = 5000)
3

4 int length = input.int(20, "Length")
5 float longAmount = input.float(4.0, "Long Amount")
6 float shortAmount = input.float(2.0, "Short Amount")
7

8 float highest = ta.highest(length)
9 float lowest = ta.lowest(length)
10

11 switch
12 low == lowest => strategy.entry("Buy", strategy.long, longAmount)
13 high == highest => strategy.entry("Sell", strategy.short, shortAmount)

Notice that in the above example, although we’ve specified the default_qty_type and default_qty_value
arguments in the declaration statement, the script does not use these defaults for the simulated orders. Instead, it sizes
them as a longAmount and shortAmount of units. If we want the script to use the default type and value, we must
remove the qty specification from the strategy.entry() calls:

4.18. Strategies 407

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry

Pine Script™ v5 User Manual

1 //@version=5
2 strategy("Buy low, sell high", overlay = true, default_qty_type = strategy.cash,␣

↪→default_qty_value = 5000)
3

4 int length = input.int(20, "Length")
5

6 float highest = ta.highest(length)
7 float lowest = ta.lowest(length)
8

9 switch
10 low == lowest => strategy.entry("Buy", strategy.long)
11 high == highest => strategy.entry("Sell", strategy.short)

4.18.8 Closing a market position

Although it is possible to simulate an exit from a specific entry order shown in the List of Trades tab of the Strategy Tester
module, all orders are linked according to FIFO (first in, first out) rules. If the user does not specify the from_entry
parameter of a strategy.exit() call, the strategy will exit the open market position starting from the first entry order that
opened it.
The following example simulates two orders sequentially: “Buy1” at the market price for the last 100 bars and “Buy2”
once the position size matches the size of “Buy1”. The strategy only places an exit order when the positionSize is
15 units. The script does not supply a from_entry argument to the strategy.exit() command, so the strategy places
exit orders for all open positions each time it calls the function, starting with the first. It plots the positionSize in a
separate pane for visual reference:

408 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit

Pine Script™ v5 User Manual

1 //@version=5
2 strategy("Exit Demo", pyramiding = 2)
3

4 float positionSize = strategy.position_size
5

6 if positionSize == 0 and last_bar_index - bar_index <= 100
7 strategy.entry("Buy1", strategy.long, 5)
8 else if positionSize == 5
9 strategy.entry("Buy2", strategy.long, 10)
10 else if positionSize == 15
11 strategy.exit("bracket", loss = 10, profit = 10)
12

13 plot(positionSize == 0 ? na : positionSize, "Position Size", color.lime, 4, plot.
↪→style_histogram)

Note that:
• We included pyramiding = 2 in our script’s declaration statement to allow it to simulate two consecutive
orders in the same direction.

Suppose we wanted to exit “Buy2” before “Buy1”. Let’s see what happens if we instruct the strategy to close “Buy2”
before “Buy1” when it fills both orders:

4.18. Strategies 409

Pine Script™ v5 User Manual

1 //@version=5
2 strategy("Exit Demo", pyramiding = 2)
3

4 float positionSize = strategy.position_size
5

6 if positionSize == 0 and last_bar_index - bar_index <= 100
7 strategy.entry("Buy1", strategy.long, 5)
8 else if positionSize == 5
9 strategy.entry("Buy2", strategy.long, 10)
10 else if positionSize == 15
11 strategy.close("Buy2")
12 strategy.exit("bracket", "Buy1", loss = 10, profit = 10)
13

14 plot(positionSize == 0 ? na : positionSize, "Position Size", color.lime, 4, plot.
↪→style_histogram)

As we can see in the Strategy Tester’s “List of Trades” tab, rather than closing the “Buy2” position with strat-
egy.close(), it closes the quantity of “Buy1” first, which is half the quantity of the close order, then closes half of the
“Buy2” position, as the broker emulator follows FIFO rules by default. Users can change this behavior by specifying
close_entries_rule = "ANY" in the strategy() function.

4.18.9 OCA groups

One-Cancels-All (OCA) groups allow a strategy to fully or partially cancel other orders upon the execution of order
placement commands, including strategy.entry() and strategy.order(), with the same oca_name, depending on the
oca_type that the user provides in the function call.

`strategy.oca.cancel`

The strategy.oca.cancel OCA type cancels all orders with the same oca_name upon the fill or partial fill of an order
from the group.
For example, the following strategy executes orders upon ma1 crossing ma2. When the strategy.position_size is 0, it
places long and short stop orders on the high and low of the bar. Otherwise, it calls strategy.close_all() to close all
open positions with a market order. Depending on the price action, the strategy may fill both orders before issuing a
close order. Additionally, if the broker emulator’s intrabar assumption supports it, both orders may fill on the same bar.
The strategy.close_all() command does nothing in such cases, as the script cannot invoke the action until after already
executing both orders:

410 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}close
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}close
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}order
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}oca\{dot\}cancel
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}position_size
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}close_all
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}close_all

Pine Script™ v5 User Manual

1 //@version=5
2 strategy("OCA Cancel Demo", overlay=true)
3

4 float ma1 = ta.sma(close, 5)
5 float ma2 = ta.sma(close, 9)
6

7 if ta.cross(ma1, ma2)
8 if strategy.position_size == 0
9 strategy.order("Long", strategy.long, stop = high)
10 strategy.order("Short", strategy.short, stop = low)
11 else
12 strategy.close_all()
13

14 plot(ma1, "Fast MA", color.aqua)
15 plot(ma2, "Slow MA", color.orange)

To eliminate scenarios where the strategy fills long and short orders before a close order, we can instruct it to cancel one
order after it executes the other. In this example, we’ve set the oca_name for both strategy.order() commands to “Entry”
and their oca_type to strategy.oca.cancel:

1 //@version=5
2 strategy("OCA Cancel Demo", overlay=true)
3

4 float ma1 = ta.sma(close, 5)
5 float ma2 = ta.sma(close, 9)
6

7 if ta.cross(ma1, ma2)
8 if strategy.position_size == 0
9 strategy.order("Long", strategy.long, stop = high, oca_name = "Entry", oca_

↪→type = strategy.oca.cancel)

(continues on next page)

4.18. Strategies 411

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}order

Pine Script™ v5 User Manual

(continued from previous page)
10 strategy.order("Short", strategy.short, stop = low, oca_name = "Entry", oca_

↪→type = strategy.oca.cancel)
11 else
12 strategy.close_all()
13

14 plot(ma1, "Fast MA", color.aqua)
15 plot(ma2, "Slow MA", color.orange)

`strategy.oca.reduce`

The strategy.oca.reduce OCA type does not cancel orders. Instead, it reduces the size of orders with the same oca_name
upon each new fill by the number of closed contracts/shares/lots/units, which is particularly useful for exit strategies.
The following example demonstrates an attempt at a long-only exit strategy that generates a stop-loss order and two take-
profit orders for each new entry. Upon the crossover of two moving averages, it simulates a “Long” entry order using
strategy.entry() with a qty of 6 units, then simulates stop/limit orders for 6, 3, and 3 units using strategy.order() at the
stop, limit1, and limit2 prices respectively.
After adding the strategy to our chart, we see it doesn’t work as intended. The issue with this script is that strategy.order()
doesn’t belong to an OCA group by default, unlike strategy.exit(). Since we have not explicitly assigned the orders to an
OCA group, the strategy does not cancel or reduce them when it fills one, meaning it’s possible to trade a greater quantity
than the open position and reverse the direction:

1 //@version=5
2 strategy("Multiple TP Demo", overlay = true)
3

4 var float stop = na
5 var float limit1 = na
6 var float limit2 = na
7

8 bool longCondition = ta.crossover(ta.sma(close, 5), ta.sma(close, 9))
9 if longCondition and strategy.position_size == 0
10 stop := close * 0.99
11 limit1 := close * 1.01
12 limit2 := close * 1.02

(continues on next page)

412 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}oca\{dot\}reduce
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}order
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}order
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit

Pine Script™ v5 User Manual

(continued from previous page)
13 strategy.entry("Long", strategy.long, 6)
14 strategy.order("Stop", strategy.short, stop = stop, qty = 6)
15 strategy.order("Limit 1", strategy.short, limit = limit1, qty = 3)
16 strategy.order("Limit 2", strategy.short, limit = limit2, qty = 3)
17

18 bool showPlot = strategy.position_size != 0
19 plot(showPlot ? stop : na, "Stop", color.red, style = plot.style_linebr)
20 plot(showPlot ? limit1 : na, "Limit 1", color.green, style = plot.style_linebr)
21 plot(showPlot ? limit2 : na, "Limit 2", color.green, style = plot.style_linebr)

For our strategy to work as intended, we must instruct it to reduce the number of units for the other stop-loss/take-profit
orders so that they do not exceed the size of the remaining open position.
In the example below, we’ve set the oca_name for each order in our exit strategy to “Bracket” and the oca_type to
strategy.oca.reduce. These settings tell the strategy to reduce the qty values of orders in the “Bracket” group by the qty
filled when it executes one of them, preventing it from trading an excessive number of units and causing a reversal:

1 //@version=5
2 strategy("Multiple TP Demo", overlay = true)
3

4 var float stop = na
5 var float limit1 = na
6 var float limit2 = na
7

8 bool longCondition = ta.crossover(ta.sma(close, 5), ta.sma(close, 9))
9 if longCondition and strategy.position_size == 0
10 stop := close * 0.99
11 limit1 := close * 1.01
12 limit2 := close * 1.02
13 strategy.entry("Long", strategy.long, 6)
14 strategy.order("Stop", strategy.short, stop = stop, qty = 6, oca_name = "Bracket

↪→", oca_type = strategy.oca.reduce)
15 strategy.order("Limit 1", strategy.short, limit = limit1, qty = 3, oca_name =

↪→"Bracket", oca_type = strategy.oca.reduce)
16 strategy.order("Limit 2", strategy.short, limit = limit2, qty = 6, oca_name =

↪→"Bracket", oca_type = strategy.oca.reduce)
17

18 bool showPlot = strategy.position_size != 0
19 plot(showPlot ? stop : na, "Stop", color.red, style = plot.style_linebr)
20 plot(showPlot ? limit1 : na, "Limit 1", color.green, style = plot.style_linebr)
21 plot(showPlot ? limit2 : na, "Limit 2", color.green, style = plot.style_linebr)

4.18. Strategies 413

https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}oca\{dot\}reduce

Pine Script™ v5 User Manual

Note that:
• We changed the qty of the “Limit 2” order to 6 instead of 3 because the strategy will reduce its value by 3
when it fills the “Limit 1” order. Keeping the qty value of 3 would cause it to drop to 0 and never fill after
filling the first limit order.

`strategy.oca.none`

The strategy.oca.none OCA type specifies that an order executes independently of any OCA group. This value is the
default oca_type for strategy.order() and strategy.entry() order placement commands.

Note: If two order placement commands have the same oca_name but different oca_type values, the strategy
considers them to be from two distinct groups. i.e., OCA groups cannot combine strategy.oca.cancel, strategy.oca.reduce,
and strategy.oca.none OCA types.

4.18.10 Currency

Pine Script™ strategies can use different base currencies than the instruments they calculate on. Users can specify the
simulated account’s base currency by including a currency.* variable as the currency argument in the strategy()
function, which will change the script’s strategy.account_currency value. The default currency value for strategies is
currency.NONE, meaning that the script uses the base currency of the instrument on the chart.
When a strategy script uses a specified base currency, it multiplies the simulated profits by the FX_IDC conversion rate
from the previous trading day. For example, the strategy below places an entry order for a standard lot (100,000 units)
with a profit target and stop-loss of 1 point on each of the last 500 chart bars, then plots the net profit alongside the inverted
daily close of the symbol in a separate pane. We have set the base currency to currency.EUR. When we add this script
to FX_IDC:EURUSD, the two plots align, confirming the strategy uses the previous day’s rate from this symbol for its
calculations:

1 //@version=5
2 strategy("Currency Test", currency = currency.EUR)
3

4 if last_bar_index - bar_index < 500
5 strategy.entry("LE", strategy.long, 100000)
6 strategy.exit("LX", "LE", profit = 1, loss = 1)
7 plot(math.abs(ta.change(strategy.netprofit)), "1 Point profit", color = color.fuchsia,

(continues on next page)

414 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}oca\{dot\}none
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}order
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}oca\{dot\}cancel
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}oca\{dot\}reduce
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}oca\{dot\}none
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}account_currency

Pine Script™ v5 User Manual

(continued from previous page)
↪→ linewidth = 4)

8 plot(request.security(syminfo.tickerid, "D", 1 / close)[1], "Previous day's inverted␣
↪→price", color = color.lime)

Note that:
• When trading on timeframes higher than daily, the strategy will use the closing price from one trading day
before the bar closes for cross-rate calculation on historical bars. For example, on a weekly timeframe, it will
base the cross-rate on the previous Thursday’s closing value, though the strategy will still use the daily closing
rate for real-time bars.

4.18.11 Altering calculation behavior

Strategies execute on all historical bars available from a chart, then automatically continue their calculations in real-time
as new data is available. By default, strategy scripts only calculate once per confirmed bar. We can alter this behavior by
changing the parameters of the strategy() function or clicking the checkboxes in the “Recalculate” section of the script’s
“Properties” tab.

`calc_on_every_tick`

calc_on_every_tick is an optional setting that controls the calculation behavior on real-time data. When this
parameter is enabled, the script will recalculate its values on each new price tick. By default, its value is false, meaning
the script only executes calculations after a bar is confirmed.
Enabling this calculation behavior may be particularly useful when forward testing since it facilitates granular, real-time
strategy simulation. However, it’s important to note that this behavior introduces a data difference between real-time and
historical simulations, as historical bars do not contain tick information. Users should exercise caution with this setting,
as the data difference may cause a strategy to repaint its history.
The following script will simulate a new order each time that close reaches the highest or lowest value over
the input length. Since calc_on_every_tick is enabled in the strategy declaration, the script will simulate new
orders on each new real-time price tick after compilation:

1 //@version=5
2 strategy("Donchian Channel Break", overlay = true, calc_on_every_tick = true,␣

↪→pyramiding = 20)
3

4 int length = input.int(15, "Length")
5

6 float highest = ta.highest(close, length)
7 float lowest = ta.lowest(close, length)
8

9 if close == highest
10 strategy.entry("Buy", strategy.long)
11 if close == lowest
12 strategy.entry("Sell", strategy.short)
13

14 //@variable The starting time for real-time bars.
15 var realTimeStart = timenow
16

17 // Color the background of real-time bars.
18 bgcolor(time_close >= realTimeStart ? color.new(color.orange, 80) : na)
19

(continues on next page)

4.18. Strategies 415

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy

Pine Script™ v5 User Manual

(continued from previous page)
20 plot(highest, "Highest", color = color.lime)
21 plot(lowest, "Lowest", color = color.red)

Note that:
• The script uses a pyramiding value of 20 in its declaration, which allows the strategy to simulate a maxi-
mum of 20 trades in the same direction.

• To visually demarcate what bars are processed as real-time bars by the strategy, the script colors the back-
ground for all bars since the timenow when it was last compiled.

After applying the script to the chart and letting it calculate on some real-time bars, we may see an output like the
following:

The script placed “Buy” orders on each new real-time tick the condition was valid on, resulting in multiple orders per
bar. However, it may surprise users unfamiliar with this behavior to see the strategy’s outputs change after recompiling
the script, as the bars that it previously executed real-time calculations on are now historical bars, which do not hold tick
information:

416 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#var_timenow

Pine Script™ v5 User Manual

`calc_on_order_fills`

The optional calc_on_order_fills setting enables the recalculation of a strategy immediately after simulating an
order fill, which allows the script to use more granular prices and place additional orders without waiting for a bar to be
confirmed.
Enabling this setting can provide the script with additional data that would otherwise not be available until after a bar
closes, such as the current average price of a simulated position on an unconfirmed bar.
The example below shows a simple strategy declared with calc_on_order_fills enabled that simulates a “Buy”
order when the strategy.position_size is 0. The script uses the strategy.position_avg_price to calculate a stopLoss
and takeProfit and simulates “Exit” orders when the price crosses them, regardless of whether the bar is confirmed.
As a result, as soon as an exit is triggered, the strategy recalculates and places a new entry order because the strat-
egy.position_size is once again equal to 0. The strategy places the order once the exit happens and executes it on the next
tick after the exit, which will be one of the bar’s OHLC values, depending on the emulated intrabar movement:

4.18. Strategies 417

https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}position_size
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}position_avg_price
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}position_size
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}position_size

Pine Script™ v5 User Manual

1 //@version=5
2 strategy("Intrabar exit", overlay = true, calc_on_order_fills = true)
3

4 float stopSize = input.float(5.0, "SL %", minval = 0.0) / 100.0
5 float profitSize = input.float(5.0, "TP %", minval = 0.0) / 100.0
6

7 if strategy.position_size == 0.0
8 strategy.entry("Buy", strategy.long)
9

10 float stopLoss = strategy.position_avg_price * (1.0 - stopSize)
11 float takeProfit = strategy.position_avg_price * (1.0 + profitSize)
12

13 strategy.exit("Exit", stop = stopLoss, limit = takeProfit)

Note that:
• With calc_on_order_fills turned off, the same strategy will only ever enter one bar after it triggers
an exit order. First, the mid-bar exit will happen, but no entry order. Then, the strategy will simulate an entry
order once the bar closes, which it will fill on the next tick after that, i.e., the open of the next bar.

It’s important to note that enabling calc_on_order_fills may produce unrealistic strategy results, as the broker
emulator may assume order prices that are not possible when trading in real-time. Users must exercise caution with this
setting and carefully consider the logic in their scripts.
The following example simulates a “Buy” order after each new order fill and bar confirmation over a 25-bar window from
the last_bar_index when the script loaded on the chart. With the setting enabled, the strategy simulates four entries per
bar since the emulator considers each bar to have four ticks (open, high, low, close), which is unrealistic behavior, as it’s
not typically possible for an order to fill at the exact high or low of a bar:

1 //@version=5
2 strategy("buy on every fill", overlay = true, calc_on_order_fills = true, pyramiding␣

↪→= 100)
3

4 if last_bar_index - bar_index <= 25
5 strategy.entry("Buy", strategy.long)

418 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#var_last_bar_index

Pine Script™ v5 User Manual

`process_orders_on_close`

The default strategy behavior simulates orders at the close of each bar, meaning that the earliest opportunity to fill the
orders and execute strategy calculations and alerts is upon the opening of the following bar. Traders can change this
behavior to process a strategy using the closing value of each bar by enabling the process_orders_on_close
setting.
This behavior is most useful when backtesting manual strategies in which traders exit positions before a bar closes or
in scenarios where algorithmic traders in non-24x7 markets set up after-hours trading capability so that alerts sent after
close still have hope of filling before the following day.
Note that:

• It’s crucial to be aware that using strategies with process_orders_on_close in a live trading environ-
ment may lead to a repainting strategy, as alerts on the close of a bar still occur when the market closes, and
orders may not fill until the next market open.

4.18.12 Simulating trading costs

For a strategy performance report to contain relevant, meaningful data, traders should strive to account for potential real-
world costs in their strategy results. Neglecting to do so may give traders an unrealistic view of strategy performance and
undermine the credibility of test results. Without modeling the potential costs associated with their trades, traders may
overestimate a strategy’s historical profitability, potentially leading to suboptimal decisions in live trading. Pine Script™
strategies include inputs and parameters for simulating trading costs in performance results.

Commission

Commission refers to the fee a broker/exchange charges when executing trades. Depending on the broker/exchange,
some may charge a flat fee per trade or contract/share/lot/unit, and others may charge a percentage of the total transaction
value. Users can set the commission properties of their strategies by including commission_type and commis-
sion_value arguments in the strategy() function or by setting the “Commission” inputs in the “Properties” tab of the
strategy settings.
The following script is a simple strategy that simulates a “Long” position of 2% of equity when close equals the
highest value over the length, and closes the trade when it equals the lowest value:

4.18. Strategies 419

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy

Pine Script™ v5 User Manual

1 //@version=5
2 strategy("Commission Demo", overlay=true, default_qty_value = 2, default_qty_type =␣

↪→strategy.percent_of_equity)
3

4 length = input.int(10, "Length")
5

6 float highest = ta.highest(close, length)
7 float lowest = ta.lowest(close, length)
8

9 switch close
10 highest => strategy.entry("Long", strategy.long)
11 lowest => strategy.close("Long")
12

13 plot(highest, color = color.new(color.lime, 50))
14 plot(lowest, color = color.new(color.red, 50))

Upon inspecting the results in the Strategy Tester, we see that the strategy had a positive equity growth of 17.61% over
the testing range. However, the backtest results do not account for fees the broker/exchange may charge. Let’s see what
happens to these results when we include a small commission on every trade in the strategy simulation. In this example,
we’ve included commission_type = strategy.commission.percent and commission_value = 1
in the strategy() declaration, meaning it will simulate a commission of 1% on all executed orders:

420 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy

Pine Script™ v5 User Manual

1 //@version=5
2 strategy(
3 "Commission Demo", overlay=true, default_qty_value = 2, default_qty_type =␣

↪→strategy.percent_of_equity,
4 commission_type = strategy.commission.percent, commission_value = 1
5)
6

7 length = input.int(10, "Length")
8

9 float highest = ta.highest(close, length)
10 float lowest = ta.lowest(close, length)
11

12 switch close
13 highest => strategy.entry("Long", strategy.long)
14 lowest => strategy.close("Long")
15

16 plot(highest, color = color.new(color.lime, 50))
17 plot(lowest, color = color.new(color.red, 50))

As we can see in the example above, after applying a 1% commission to the backtest, the strategy simulated a significantly
reduced net profit of only 1.42% and a more volatile equity curve with an elevated max drawdown, highlighting the impact
commission simulation can have on a strategy’s test results.

4.18. Strategies 421

Pine Script™ v5 User Manual

Slippage and unfilled limits

In real-life trading, a broker/exchange may fill orders at slightly different prices than a trader intended due to volatility,
liquidity, order size, and other market factors, which can profoundly impact a strategy’s performance. The disparity
between expected prices and the actual prices at which the broker/exchange executes trades is what we refer to as slippage.
Slippage is dynamic and unpredictable, making it impossible to simulate precisely. However, factoring in a small amount
of slippage on each trade during a backtest or forward test may help the results better align with reality. Users can model
slippage in their strategy results, sized as a fixed number of ticks, by including a slippage argument in the strategy()
declaration or by setting the “Slippage” input in the “Properties” tab of the strategy settings.
The following example demonstrates how slippage simulation affects the fill prices of market orders in a strategy test.
The script below places a “Buy” market order of 2% equity when the market price is above an EMA while the EMA
is rising and closes the position when the price dips below the EMA while it’s falling. We’ve included slippage =
20 in the strategy() function, which declares that the price of each simulated order will slip 20 ticks in the direction
of the trade. The script uses strategy.opentrades.entry_bar_index() and strategy.closedtrades.exit_bar_index() to get the
entryIndex and exitIndex, which it utilizes to obtain the fillPrice of the order. When the bar index is at the
entryIndex, the fillPrice is the first strategy.opentrades.entry_price() value. At the exitIndex, fillPrice
is the strategy.closedtrades.exit_price() value from the last closed trade. The script plots the expected fill price along with
the simulated fill price after slippage to visually compare the difference:

1 //@version=5
2 strategy(
3 "Slippage Demo", overlay = true, slippage = 20,
4 default_qty_value = 2, default_qty_type = strategy.percent_of_equity
5)
6

7 int length = input.int(5, "Length")
8

9 //@variable Exponential moving average with an input `length`.
10 float ma = ta.ema(close, length)
11

12 //@variable Returns `true` when `ma` has increased and `close` is greater than it,␣
↪→`false` otherwise.

13 bool longCondition = close > ma and ma > ma[1]

(continues on next page)

422 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}opentrades\{dot\}entry_bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}closedtrades\{dot\}exit_bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}opentrades\{dot\}entry_price
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}closedtrades\{dot\}exit_price

Pine Script™ v5 User Manual

(continued from previous page)
14 //@variable Returns `true` when `ma` has decreased and `close` is less than it,␣

↪→`false` otherwise.
15 bool shortCondition = close < ma and ma < ma[1]
16

17 // Enter a long market position on `longCondition`, close the position on␣
↪→`shortCondition`.

18 if longCondition
19 strategy.entry("Buy", strategy.long)
20 if shortCondition
21 strategy.close("Buy")
22

23 //@variable The `bar_index` of the position's entry order fill.
24 int entryIndex = strategy.opentrades.entry_bar_index(0)
25 //@variable The `bar_index` of the position's close order fill.
26 int exitIndex = strategy.closedtrades.exit_bar_index(strategy.closedtrades - 1)
27

28 //@variable The fill price simulated by the strategy.
29 float fillPrice = switch bar_index
30 entryIndex => strategy.opentrades.entry_price(0)
31 exitIndex => strategy.closedtrades.exit_price(strategy.closedtrades - 1)
32

33 //@variable The expected fill price of the open market position.
34 float expectedPrice = fillPrice ? open : na
35

36 color expectedColor = na
37 color filledColor = na
38

39 if bar_index == entryIndex
40 expectedColor := color.green
41 filledColor := color.blue
42 else if bar_index == exitIndex
43 expectedColor := color.red
44 filledColor := color.fuchsia
45

46 plot(ma, color = color.new(color.orange, 50))
47

48 plotchar(fillPrice ? open : na, "Expected fill price", "—", location.absolute,␣
↪→expectedColor)

49 plotchar(fillPrice, "Fill price after slippage", "—", location.absolute, filledColor)

Note that:
• Since the strategy applies constant slippage to all order fills, some orders can fill outside the candle range
in the simulation. Thus users should exercise caution with this setting, as excessive simulated slippage can
produce unrealistically worse testing results.

Some traders may assume that they can avoid the adverse effects of slippage by using limit orders, as unlike market orders,
they cannot execute at a worse price than the specified value. However, depending on the state of the real-life market,
even if the market price reaches an order price, there’s a chance that a limit order may not fill, as limit orders can only fill
if a security has sufficient liquidity and price action around the value. To account for the possibility of unfilled orders in a
backtest, users can specify the backtest_fill_limits_assumption value in the declaration statement or use
the “Verify price for limit orders” input in the “Properties” tab to instruct the strategy to fill limit orders only after prices
move a defined number of ticks past order prices.
The following example places a limit order of 2% equity at a bar’s hlcc4when the high is the highest value over the
past length bars and there are no pending entries. The strategy closes the market position and cancels all orders when
the low is the lowest value. Each time the strategy triggers an order, it draws a horizontal line at the limitPrice,

4.18. Strategies 423

Pine Script™ v5 User Manual

which it updates on each bar until closing the position or canceling the order:

1 //@version=5
2 strategy(
3 "Verify price for limits example", overlay = true,
4 default_qty_type = strategy.percent_of_equity, default_qty_value = 2
5)
6

7 int length = input.int(25, title = "Length")
8

9 //@variable Draws a line at the limit price of the most recent entry order.
10 var line limitLine = na
11

12 // Highest high and lowest low
13 highest = ta.highest(length)
14 lowest = ta.lowest(length)
15

16 // Place an entry order and draw a new line when the the `high` equals the `highest`␣
↪→value and `limitLine` is `na`.

17 if high == highest and na(limitLine)
18 float limitPrice = hlcc4
19 strategy.entry("Long", strategy.long, limit = limitPrice)
20 limitLine := line.new(bar_index, limitPrice, bar_index + 1, limitPrice)
21

22 // Close the open market position, cancel orders, and set `limitLine` to `na` when␣
↪→the `low` equals the `lowest` value.

23 if low == lowest
24 strategy.cancel_all()
25 limitLine := na
26 strategy.close_all()
27

28 // Update the `x2` value of `limitLine` if it isn't `na`.
29 if not na(limitLine)
30 limitLine.set_x2(bar_index + 1)
31

32 plot(highest, "Highest High", color = color.new(color.green, 50))
(continues on next page)

424 Chapter 4. Concepts

Pine Script™ v5 User Manual

(continued from previous page)
33 plot(lowest, "Lowest Low", color = color.new(color.red, 50))

By default, the script assumes that all limit orders are guaranteed to fill. However, this is often not the case in real-life
trading. Let’s add price verification to our limit orders to account for potentially unfilled ones. In this example, we’ve
included backtest_fill_limits_assumption = 3 in the strategy() function call. As we can see, using limit
verification omits some simulated order fills and changes the times of others since the entry orders can now only fill after
the price penetrates the limit price by three ticks:

Note: It’s important to notice that although the limit verification changed the times of some order fills, the strategy
simulated them at the same prices. This “time-warping” effect is a compromise that preserves the prices of verified limit
orders, but it can cause the strategy to simulate their fills at times that wouldn’t necessarily be possible in the real world.
Users should exercise caution with this setting and understand its limitations when analyzing strategy results.

4.18.13 Risk management

Designing a strategy that performs well, let alone one that does so in a broad class of markets, is a challenging task.
Most are designed for specific market patterns/conditions and may produce uncontrollable losses when applied to other
data. Therefore, a strategy’s risk management qualities can be critical to its performance. Users can set risk management
criteria in their strategy scripts using the special commands with the strategy.risk prefix.
Strategies can incorporate any number of risk management criteria in any combination. All risk management commands
execute on every tick and order execution event, regardless of any changes to the strategy’s calculation behavior. There is
no way to disable any of these commands at a script’s runtime. Irrespective of the risk rule’s location, it will always apply
to the strategy unless the user removes the call from the code.
strategy.risk.allow_entry_in()

This command overrides the market direction allowed for strategy.entry() commands. When a user specifies the
trade direction with this function (e.g., strategy.direction.long), the strategy will only enter trades in that direction.
However, it’s important to note that if a script calls an entry command in the opposite direction while there’s an
open market position, the strategy will simulate a market order to exit the position.

4.18. Strategies 425

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}risk\{dot\}allow_entry_in
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}direction\{dot\}long

Pine Script™ v5 User Manual

strategy.risk.max_cons_loss_days()
This command cancels all pending orders, closes the open market position, and stops all additional trade actions
after the strategy simulates a defined number of trading days with consecutive losses.

strategy.risk.max_drawdown()
This command cancels all pending orders, closes the open market position, and stops all additional trade actions
after the strategy’s drawdown reaches the amount specified in the function call.

strategy.risk.max_intraday_filled_orders()
This command specifies the maximum number of filled orders per trading day (or per chart bar if the timeframe is
higher than daily). Once the strategy executes the maximum number of orders for the day, it cancels all pending
orders, closes the open market position, and halts trading activity until the end of the current session.

strategy.risk.max_intraday_loss()
This command controls themaximum loss the strategy will tolerate per trading day (or per chart bar if the timeframe
is higher than daily). When the strategy’s losses reach this threshold, it will cancel all pending orders, close the
open market position, and stop all trading activity until the end of the current session.

strategy.risk.max_position_size()
This command specifies the maximum possible position size when using strategy.entry() commands. If the quantity
of an entry command results in a market position that exceeds this threshold, the strategy will reduce the order
quantity so that the resulting position does not exceed the limitation.

4.18.14 Margin

Margin is the minimum percentage of a market position a trader must hold in their account as collateral to receive and
sustain a loan from their broker to achieve their desired leverage. The margin_long and margin_short parameters
of the strategy() declaration and the “Margin for long/short positions” inputs in the “Properties” tab of the script settings
allow strategies to specify margin percentages for long and short positions. For example, if a trader sets the margin for
long positions to 25%, they must have enough funds to cover 25% of an open long position. This margin percentage also
means the trader can potentially spend up to 400% of their equity on their trades.
If a strategy’s simulated funds cannot cover the losses from a margin trade, the broker emulator triggers a margin call,
which forcibly liquidates all or part of the position. The exact number of contracts/shares/lots/units that the emulator
liquidates is four times what is required to cover a loss to prevent constant margin calls on subsequent bars. The emulator
calculates the amount using the following algorithm:

1. Calculate the amount of capital spent on the position: Money Spent = Quantity * Entry Price

2. Calculate the Market Value of Security (MVS): MVS = Position Size * Current Price

3. Calculate the Open Profit as the difference between MVS and Money Spent. If the position is short, we multiply
this by -1.

4. Calculate the strategy’s equity value: Equity = Initial Capital + Net Profit + Open Profit

5. Calculate the margin ratio: Margin Ratio = Margin Percent / 100

6. Calculate the margin value, which is the cash required to cover the trader’s portion of the position: Margin =
MVS * Margin Ratio

7. Calculate the available funds: Available Funds = Equity - Margin

8. Calculate the total amount of money the trader has lost: Loss = Available Funds / Margin Ratio

9. Calculate how many contracts/shares/lots/units the trader would need to liquidate to cover the loss. We truncate
this value to the same decimal precision as the minimum position size for the current symbol: Cover Amount
= TRUNCATE(Loss / Current Price).

10. Calculate how many units the broker will liquidate to cover the loss: Margin Call = Cover Amount * 4

426 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}risk\{dot\}max_cons_loss_days
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}risk\{dot\}max_drawdown
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}risk\{dot\}max_intraday_filled_orders
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}risk\{dot\}max_intraday_loss
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}risk\{dot\}max_position_size
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy

Pine Script™ v5 User Manual

To examine this calculation in detail, let’s add the built-in Supertrend Strategy to the NASDAQ:TSLA chart on the 1D
timeframe and set the “Order size” to 300% of equity and the “Margin for long positions” to 25% in the “Properties” tab
of the strategy settings:

The first entry happened at the bar’s opening price on 16 Sep 2010. The strategy bought 682,438 shares (Position size)
at 4.43 USD (Entry price). Then, on 23 Sep 2010, when the price dipped to 3.9 (Current price), the emulator forcibly
liquidated 111,052 shares via margin call.

Money spent: 682438 * 4.43 = 3023200.34
MVS: 682438 * 3.9 = 2661508.2
Open Profit: −361692.14
Equity: 1000000 + 0 − 361692.14 = 638307.86
Margin Ratio: 25 / 100 = 0.25
Margin: 2661508.2 * 0.25 = 665377.05
Available Funds: 638307.86 - 665377.05 = -27069.19
Money Lost: -27069.19 / 0.25 = -108276.76
Cover Amount: TRUNCATE(-108276.76 / 3.9) = TRUNCATE(-27763.27) = -27763
Margin Call Size: -27763 * 4 = - 111052

4.18.15 Strategy Alerts

Regular Pine Script™ indicators have two different mechanisms to set up custom alert conditions: the alertcondition()
function, which tracks one specific condition per function call, and the alert() function, which tracks all its calls simulta-
neously, but provides greater flexibility in the number of calls, alert messages, etc.
Pine Script™ strategies do not work with alertcondition() calls, but they do support the generation of custom alerts via
the alert() function. Along with this, each function that creates orders also comes with its own built-in alert functionality
that does not require any additional code to implement. As such, any strategy that uses an order placement command can
issue alerts upon order execution. The precise mechanics of such built-in strategy alerts are described in the Order Fill
events section of the Alerts page in our User Manual.
When a strategy uses functions that create orders and the alert() function together, the alert creation dialogue provides
a choice between the conditions that it will trigger upon: it can trigger on alert() events, order fill events, or both.

4.18. Strategies 427

https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_alert

Pine Script™ v5 User Manual

For many trading strategies, the latency between a triggered condition and a live trade can be a critical performance factor.
By default, strategy scripts can only execute alert() function calls on the close of real-time bars, considering them to use
alert.freq_once_per_bar_close, regardless of the freq argument in the call. Users can change the alert frequency by also
including calc_on_every_tick = true in the strategy() call or selecting the “Recalculate on every tick” option
in the “Properties” tab of the strategy settings before creating the alert. However, depending on the script, this may also
adversely impact a strategy’s behavior, so exercise caution and be aware of the limitations when using this approach.
When sending alerts to a third party for strategy automation, we recommend using order fill alerts rather than the alert()
function since they don’t suffer the same limitations; alerts from order fill events execute immediately, unaffected by
a script’s calc_on_every_tick setting. Users can set the default message for order fill alerts via the @strat-
egy_alert_message compiler annotation. The text provided with this annotation will populate the “Message” field
for order fills in the alert creation dialogue.
The following script shows a simple example of a default order fill alert message. Above the strategy() declaration state-
ment, it uses @strategy_alert_message with placeholders for the trade action, position size, ticker, and fill price
values in the message text:

1 //@version=5
2 //@strategy_alert_message {{strategy.order.action}} {{strategy.position_size}} {

↪→{ticker}} @ {{strategy.order.price}}
3 strategy("Alert Message Demo", overlay = true)
4 float fastMa = ta.sma(close, 5)
5 float slowMa = ta.sma(close, 10)
6

7 if ta.crossover(fastMa, slowMa)
8 strategy.entry("buy", strategy.long)
9

10 if ta.crossunder(fastMa, slowMa)
11 strategy.entry("sell", strategy.short)
12

13 plot(fastMa, "Fast MA", color.aqua)
14 plot(slowMa, "Slow MA", color.orange)

This script will populate the alert creation dialogue with its default message when the user selects its name from the
“Condition” dropdown tab:

428 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#var_alert\{dot\}freq_once_per_bar_close
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_alert
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy

Pine Script™ v5 User Manual

Upon the alert trigger, the strategy will populate the placeholders in the alert message with their corresponding values.
For example:

4.18. Strategies 429

Pine Script™ v5 User Manual

4.18.16 Notes on testing strategies

It’s common for traders to test and tune their strategies in historical and real-time market conditions because many believe
that analyzing the results may provide valuable insight into a strategy’s characteristics, potential weaknesses, and possibly
its future potential. However, traders should always be aware of the biases and limitations of simulated strategy results,
especially when using the results to support live trading decisions. This section outlines some caveats associated with
strategy validation and tuning and possible solutions to mitigate their effects.

Note: While testing strategies on existing data may give traders helpful information about a strategy’s qualities, it’s
important to note that neither the past nor the present guarantees the future. Financial markets can change rapidly and
unpredictably, which may cause a strategy to sustain uncontrollable losses. Additionally, simulated results may not fully
account for other real-world factors that can impact trading performance. Therefore, we recommend that traders thor-
oughly understand the limitations and risks when evaluating backtests and forward tests and consider them “parts of the
whole” in their validation processes rather than basing decisions solely on the results.

Backtesting and forward testing

Backtesting is a technique that traders use to evaluate the historical performance of a trading strategy or model by simu-
lating and analyzing its past results on historical market data; this technique assumes that analysis of a strategy’s results on
past data may provide insight into its strengths and weaknesses. When backtesting, many traders tweak the parameters
of a strategy in an attempt to optimize its results. Analysis and optimization of historical results may help traders to gain
a deeper understanding of a strategy. However, traders should always understand the risks and limitations when basing
their decisions on optimized backtest results.
Parallel to backtesting, prudent trading system development often also involves incorporating real-time analysis as a tool
for evaluating a trading system on a forward-looking basis. Forward testing aims to gauge the performance of a strategy
in real-time, real-world market conditions, where factors such as trading costs, slippage, and liquidity can meaningfully
affect its performance. Forward testing has the distinct advantage of not being affected by certain types of biases (e.g.,
lookahead bias or “future data leakage”) but carries the disadvantage of being limited in the quantity of data to test.
Therefore, it’s not typically a standalone solution for strategy validation, but it can provide helpful insights into a strategy’s
performance in current market conditions.
Backtesting and forward testing are two sides of the same coin, as both approaches aim to validate the effectiveness of
a strategy and identify its strengths and weaknesses. By combining backtesting and forward testing, traders may be able
to compensate for some limitations and gain a clearer perspective on their strategy’s performance. However, it’s up to
traders to sanitize their strategies and evaluation processes to ensure that insights align with reality as closely as possible.

Lookahead bias

One typical issue in backtesting some strategies, namely ones that request alternate timeframe data, use repainting variables
such as timenow, or alter calculation behavior for intrabar order fills, is the leakage of future data into the past during
evaluation, which is known as lookahead bias. Not only is this bias a common cause of unrealistic strategy results since
the future is never actually knowable beforehand, but it is also one of the typical causes of strategy repainting. Traders
can often confirm this bias by forward testing their systems, as lookahead bias does not apply to real-time data where no
known data exists beyond the current bar. Users can eliminate this bias in their strategies by ensuring that they don’t use
repainting variables that leak the future into the past, request.*() functions don’t include barmerge.lookahead_on
without offsetting the data series as described on this section of our page on repainting, and they use realistic calculation
behavior.

430 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#var_timenow
https://www.tradingview.com/pine-script-reference/v5/#var_barmerge\{dot\}lookahead_on
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Repainting.html?highlight=barmerge#future-leak-with-request-security

Pine Script™ v5 User Manual

Selection bias

Selection bias is a common issue that many traders experience when testing their strategies. It occurs when a trader only
analyzes results on specific instruments or timeframes while ignoring others. This bias can result in a distorted perspective
of the strategy’s robustness, which may impact trading decisions and performance optimizations. Traders can reduce the
effects of selection bias by evaluating their strategies on multiple, ideally diverse, symbols and timeframes, making it a
point not to ignore poor performance results in their analysis or cherry-pick testing ranges.

Overfitting

A common pitfall when optimizing a backtest is the potential for overfitting (“curve fitting”), which occurs when the
strategy is tailored for specific data and fails to generalize well on new, unseen data. One widely-used approach to help
reduce the potential for overfitting and promote better generalization is to split an instrument’s data into two or more parts
to test the strategy outside the sample used for optimization, otherwise known as “in-sample” (IS) and “out-of-sample”
(OOS) backtesting. In this approach, traders use the IS data for strategy optimization, while the OOS portion is used
for testing and evaluating IS-optimized performance on new data without further optimization. While this and other,
more robust approaches may provide a glimpse into how a strategy might fare after optimization, traders should exercise
caution, as the future is inherently unknowable. No trading strategy can guarantee future performance, regardless of the
data used for testing and optimization.

4.19 Tables

• Introduction

• Creating tables

• Tips

4.19.1 Introduction

Tables are objects that can be used to position information in specific and fixed locations in a script’s visual space. Contrary
to all other plots or objects drawn in Pine Script™, tables are not anchored to specific bars; they float in a script’s space,
whether in overlay or pane mode, in studies or strategies, independently of the chart bars being viewed or the zoom factor
used.
Tables contain cells arranged in columns and rows, much like a spreadsheet. They are created and populated in two
distincts steps:

1. A table’s structure and key attributes are defined using table.new(), which returns a table ID that acts like a pointer
to the table, just like label, line, or array IDs do. The table.new() call will create the table object but does not display
it.

4.19. Tables 431

https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}new

Pine Script™ v5 User Manual

2. Once created, and for it to display, the table must be populated using one table.cell() call for each cell. Table cells
can contain text, or not. This second step is when the width and height of cells are defined.

Most attributes of a previously created table can be changed using table.set_*() setter functions. Attributes of
previously populated cells can be modified using table.cell_set_*() functions.
A table is positioned in an indicator’s space by anchoring it to one of nine references: the four corners or midpoints,
including the center. Tables are positioned by expanding the table from its anchor, so a table anchored to the posi-
tion.middle_right reference will be drawn by expanding up, down and left from that anchor.
Two modes are available to determine the width/height of table cells:

• A default automatic mode calculates the width/height of cells in a column/row using the widest/highest text in them.
• An explicit mode allows programmers to define the width/height of cells using a percentage of the indicator’s
available x/y space.

Displayed table contents always represent the last state of the table, as it was drawn on the script’s last execution, on the
dataset’s last bar. Contrary to values displayed in the Data Window or in indicator values, variable contents displayed in
tables will thus not change as a script user moves his cursor over specific chart bars. For this reason, it is strongly recom-
mended to always restrict execution of all table.*() calls to either the first or last bars of the dataset. Accordingly:

• Use the var keyword to declare tables.
• Enclose all other calls inside an if barstate.islast block.

Multiple tables can be used in one script, as long as they are each anchored to a different position. Each table
object is identified by its own ID. Limits on the quantity of cells in all tables are determined by the total number
of cells used in one script.

4.19.2 Creating tables

When creating a table using table.new(), three parameters are mandatory: the table’s position and its number of columns
and rows. Five other parameters are optional: the table’s background color, the color and width of the table’s outer
frame, and the color and width of the borders around all cells, excluding the outer frame. All table attributes except
its number of columns and rows can be modified using setter functions: table.set_position(), table.set_bgcolor(), ta-
ble.set_frame_color(), table.set_frame_width(), table.set_border_color() and table.set_border_width().
Tables can be deleted using table.delete(), and their content can be selectively removed using table.clear().
When populating cells using table.cell(), you must supply an argument for four mandatory parameters: the table id
the cell belongs to, its column and row index using indices that start at zero, and the text string the cell contains,
which can be null. Seven other parameters are optional: the width and height of the cell, the text’s attributes (color,
horizontal and vertical alignment, size), and the cell’s background color. All cell attributes can be modified us-
ing setter functions: table.cell_set_text(), table.cell_set_width(), table.cell_set_height(), table.cell_set_text_color(), ta-
ble.cell_set_text_halign(), table.cell_set_text_valign(), table.cell_set_text_size() and table.cell_set_bgcolor().
Keep in mind that each successive call to table.cell() redefines all the cell’s properties, deleting any properties set by
previous table.cell() calls on the same cell.

432 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}cell
https://www.tradingview.com/pine-script-reference/v5/#var_position\{dot\}middle_right
https://www.tradingview.com/pine-script-reference/v5/#var_position\{dot\}middle_right
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}islast
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}set_position
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}set_bgcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}set_frame_color
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}set_frame_color
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}set_frame_width
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}set_border_color
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}set_border_width
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}delete
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}clear
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}cell
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}cell_set_text
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}cell_set_width
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}cell_set_height
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}cell_set_text_color
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}cell_set_text_halign
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}cell_set_text_halign
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}cell_set_text_valign
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}cell_set_text_size
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}cell_set_bgcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}cell
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}cell

Pine Script™ v5 User Manual

Placing a single value in a fixed position

Let’s create our first table, which will place the value of ATR in the upper-right corner of the chart. We first create a
one-cell table, then populate that cell:

1 //@version=5
2 indicator("ATR", "", true)
3 // We use `var` to only initialize the table on the first bar.
4 var table atrDisplay = table.new(position.top_right, 1, 1)
5 // We call `ta.atr()` outside the `if` block so it executes on each bar.
6 myAtr = ta.atr(14)
7 if barstate.islast
8 // We only populate the table on the last bar.
9 table.cell(atrDisplay, 0, 0, str.tostring(myAtr))

Note that:
• We use the var keyword when creating the table with table.new().
• We populate the cell inside an if barstate.islast block using table.cell().
• When populating the cell, we do not specify the width or height. The width and height of our cell will thus
adjust automatically to the text it contains.

• We call ta.atr(14) prior to entry in our if block so that it evaluates on each bar. Had we used str.
tostring(ta.atr(14)) inside the if block, the function would not have evaluated correctly because it would
be called on the dataset’s last bar without having calculated the necessary values from the previous bars.

Let’s improve the usability and aesthethics of our script:

1 //@version=5
2 indicator("ATR", "", true)
3 atrPeriodInput = input.int(14, "ATR period", minval = 1, tooltip = "Using a period␣

↪→of 1 yields True Range.")
4

5 var table atrDisplay = table.new(position.top_right, 1, 1, bgcolor = color.gray,␣
↪→frame_width = 2, frame_color = color.black)

6 myAtr = ta.atr(atrPeriodInput)
7 if barstate.islast
8 table.cell(atrDisplay, 0, 0, str.tostring(myAtr, format.mintick), text_color =␣

↪→color.white)

4.19. Tables 433

https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}islast
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}cell
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_if

Pine Script™ v5 User Manual

Note that:
• We used table.new() to define a background color, a frame color and its width.
• When populating the cell with table.cell(), we set the text to display in white.
• We pass format.mintick as a second argument to the str.tostring() function to restrict the precision of ATR to the
chart’s tick precision.

• We now use an input to allow the script user to specify the period of ATR. The input also includes a tooltip, which
the user can see when he hovers over the “i” icon in the script’s “Settings/Inputs” tab.

Coloring the chart’s background

This example uses a one-cell table to color the chart’s background on the bull/bear state of RSI:

1 //@version=5
2 indicator("Chart background", "", true)
3 bullColorInput = input.color(color.new(color.green, 95), "Bull", inline = "1")
4 bearColorInput = input.color(color.new(color.red, 95), "Bear", inline = "1")
5 // ————— Function colors chart bg on RSI bull/bear state.
6 colorChartBg(bullColor, bearColor) =>
7 var table bgTable = table.new(position.middle_center, 1, 1)
8 float r = ta.rsi(close, 20)
9 color bgColor = r > 50 ? bullColor : r < 50 ? bearColor : na
10 if barstate.islast
11 table.cell(bgTable, 0, 0, width = 100, height = 100, bgcolor = bgColor)
12

13 colorChartBg(bullColorInput, bearColorInput)

Note that:
• We provide users with inputs allowing them to specify the bull/bear colors to use for the background, and send
those input colors as arguments to our colorChartBg() function.

• We create a new table only once, using the var keyword to declare the table.
• We use table.cell() on the last bar only, to specify the cell’s properties. We make the cell the width and height of
the indicator’s space, so it covers the whole chart.

434 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}cell
https://www.tradingview.com/pine-script-reference/v5/#var_format\{dot\}mintick
https://www.tradingview.com/pine-script-reference/v5/#fun_str\{dot\}tostring
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}cell

Pine Script™ v5 User Manual

Creating a display panel

Tables are ideal to create sophisticated display panels. Not only do they make it possible for display panels to always be
visible in a constant position, they provide more flexible formatting because each cell’s properties are controlled separately:
background, text color, size and alignment, etc.
Here, we create a basic display panel showing a user-selected quantity of MAs values. We display their period in the
first column, then their value with a green/red/gray background that varies with price’s position with regards to each MA.
When price is above/below the MA, the cell’s background is colored with the bull/bear color. When the MA falls between
the current bar’s open and close, the cell’s background is of the neutral color:

1 //@version=5
2 indicator("Price vs MA", "", true)
3

4 var string GP1 = "Moving averages"
5 int masQtyInput = input.int(20, "Quantity", minval = 1, maxval = 40, group =␣

↪→GP1, tooltip = "1-40")
6 int masStartInput = input.int(20, "Periods begin at", minval = 2, maxval = 200,␣

↪→group = GP1, tooltip = "2-200")
7 int masStepInput = input.int(20, "Periods increase by", minval = 1, maxval =␣

↪→100, group = GP1, tooltip = "1-100")
8

9 var string GP2 = "Display"
10 string tableYposInput = input.string("top", "Panel position", inline = "11", options␣

↪→= ["top", "middle", "bottom"], group = GP2)
11 string tableXposInput = input.string("right", "", inline = "11", options = ["left",

↪→"center", "right"], group = GP2)
12 color bullColorInput = input.color(color.new(color.green, 30), "Bull", inline = "12

↪→", group = GP2)
13 color bearColorInput = input.color(color.new(color.red, 30), "Bear", inline = "12",␣

(continues on next page)

4.19. Tables 435

https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#var_close

Pine Script™ v5 User Manual

(continued from previous page)
↪→group = GP2)

14 color neutColorInput = input.color(color.new(color.gray, 30), "Neutral", inline =
↪→"12", group = GP2)

15

16 var table panel = table.new(tableYposInput + "_" + tableXposInput, 2, masQtyInput + 1)
17 if barstate.islast
18 // Table header.
19 table.cell(panel, 0, 0, "MA", bgcolor = neutColorInput)
20 table.cell(panel, 1, 0, "Value", bgcolor = neutColorInput)
21

22 int period = masStartInput
23 for i = 1 to masQtyInput
24 // ————— Call MAs on each bar.
25 float ma = ta.sma(close, period)
26 // ————— Only execute table code on last bar.
27 if barstate.islast
28 // Period in left column.
29 table.cell(panel, 0, i, str.tostring(period), bgcolor = neutColorInput)
30 // If MA is between the open and close, use neutral color. If close is lower/

↪→higher than MA, use bull/bear color.
31 bgColor = close > ma ? open < ma ? neutColorInput : bullColorInput : open >␣

↪→ma ? neutColorInput : bearColorInput
32 // MA value in right column.
33 table.cell(panel, 1, i, str.tostring(ma, format.mintick), text_color = color.

↪→black, bgcolor = bgColor)
34 period += masStepInput

Note that:
• Users can select the table’s position from the inputs, as well as the bull/bear/neutral colors to be used for the
background of the right column’s cells.

• The table’s quantity of rows is determined using the number of MAs the user chooses to display. We add one row
for the column headers.

• Even though we populate the table cells on the last bar only, we need to execute the calls to ta.sma() on every bar
so they produce the correct results. The compiler warning that appears when you compile the code can be safely
ignored.

• We separate our inputs in two sections using group, and join the relevant ones on the same line using inline.
We supply tooltips to document the limits of certain fields using tooltip.

436 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}sma

Pine Script™ v5 User Manual

Displaying a heatmap

Our next project is a heatmap, which will indicate the bull/bear relationship of the current price relative to its past values.
To do so, we will use a table positioned at the bottom of the chart. We will display colors only, so our table will contain
no text; we will simply color the background of its cells to produce our heatmap. The heatmap uses a user-selectable
lookback period. It loops across that period to determine if price is above/below each bar in that past, and displays a
progressively lighter intensity of the bull/bear color as we go further in the past:

1 //@version=5
2 indicator("Price vs Past", "", true)
3

4 var int MAX_LOOKBACK = 300
5

6 int lookBackInput = input.int(150, minval = 1, maxval = MAX_LOOKBACK, step = 10)
7 color bullColorInput = input.color(#00FF00ff, "Bull", inline = "11")
8 color bearColorInput = input.color(#FF0080ff, "Bear", inline = "11")
9

10 // ————— Function draws a heatmap showing the position of the current `_src` relative␣
↪→to its past `_lookBack` values.

11 drawHeatmap(src, lookBack) =>
12 // float src : evaluated price series.
13 // int lookBack: number of past bars evaluated.
14 // Dependency: MAX_LOOKBACK
15

16 // Force historical buffer to a sufficient size.
17 max_bars_back(src, MAX_LOOKBACK)
18 // Only run table code on last bar.
19 if barstate.islast
20 var heatmap = table.new(position.bottom_center, lookBack, 1)
21 for i = 1 to lookBackInput
22 float transp = 100. * i / lookBack
23 if src > src[i]
24 table.cell(heatmap, lookBack - i, 0, bgcolor = color.

↪→new(bullColorInput, transp))
25 else
26 table.cell(heatmap, lookBack - i, 0, bgcolor = color.

↪→new(bearColorInput, transp))
27

28 drawHeatmap(high, lookBackInput)

Note that:
• We define a maximum lookback period as a MAX_LOOKBACK constant. This is an important value and we use it
for two purposes: to specify the number of columns we will create in our one-row table, and to specify the lookback

4.19. Tables 437

Pine Script™ v5 User Manual

period required for the _src argument in our function, so that we force Pine Script™ to create a historical buffer
size that will allow us to refer to the required quantity of past values of _src in our for loop.

• We offer users the possibility of configuring the bull/bear colors in the inputs and we use inline to place the
color selections on the same line.

• Inside our function, we enclose our table-creation code in an if barstate.islast construct so that it only runs on the
last bar of the chart.

• The initialization of the table is done inside the if statement. Because of that, and the fact that it uses the var
keyword, initialization only occurs the first time the script executes on a last bar. Note that this behavior is different
from the usual var declarations in the script’s global scope, where initialization occurs on the first bar of the dataset,
at bar_index zero.

• We do not specify an argument to the text parameter in our table.cell() calls, so an empty string is used.
• We calculate our transparency in such a way that the intensity of the colors decreases as we go further in history.
• We use dynamic color generation to create different transparencies of our base colors as needed.
• Contrary to other objects displayed in Pine scripts, this heatmap’s cells are not linked to chart bars. The configured
lookback period determines how many table cells the heatmap contains, and the heatmap will not change as the
chart is panned horizontally, or scaled.

• The maximum number of cells that can be displayed in the scritp’s visual space will depend on your viewing device’s
resolution and the portion of the display used by your chart. Higher resolution screens and wider windows will allow
more table cells to be displayed.

4.19.3 Tips

• When creating tables in strategy scripts, keep in mind that unless the strategy uses calc_on_every_tick =
true, table code enclosed in if barstate.islast blocks will not execute on each realtime update, so the table will not
display as you expect.

• Keep in mind that successive calls to table.cell() overwrite the cell’s properties specified by previous table.cell()
calls. Use the setter functions to modify a cell’s properties.

• Remember to control the execution of your table code wisely by restricting it to the necessary bars only. This saves
server resources and your charts will display faster, so everybody wins.

438 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}islast
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}cell
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#var_barstate\{dot\}islast
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}cell
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}cell
https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

4.20 Text and shapes

• Introduction

• `plotchar()`

• `plotshape()`

• `plotarrow()`

• Labels

4.20.1 Introduction

You may display text or shapes using five different ways with Pine Script™:
• plotchar()
• plotshape()
• plotarrow()
• Labels created with label.new()
• Tables created with table.new() (see Tables)

Which one to use depends on your needs:
• Tables can display text in various relative positions on charts that will not move as users scroll of zoom the chart
horizontally. Their content is not tethered to bars. In contrast, text displayed with plotchar(), plotshape() or la-
bel.new() is always tethered to a specific bar, so it will move with the bar’s position on the chart. See the page on
Tables for more information on them.

• Three function include are able to display pre-defined shapes: plotshape(), plotarrow() and Labels created with
label.new().

• plotarrow() cannot display text, only up or down arrows.
• plotchar() and plotshape() can display non-dynamic text on any bar or all bars of the chart.
• plotchar() can only display one character while plotshape() can display strings, including line breaks.
• label.new() can display a maximum of 500 labels on the chart. Its text can contain dynamic text, or “series strings”.
Line breaks are also supported in label text.

• While plotchar() and plotshape() can display text at a fixed offset in the past or the future, which cannot change
during the script’s execution, each label.new() call can use a “series” offset that can be calculated on the fly.

These are a few things to keep in mind concerning Pine Script™ strings:
• Since the text parameter in both plotchar() and plotshape() require a “const string” argument, it cannot contain
values such as prices that can only be known on the bar (“series string”).

• To include “series” values in text displayed using label.new(), they will first need to be converted to strings using
str.tostring().

• The concatenation operator for strings in Pine is +. It is used to join string components into one string, e.g., msg
= "Chart symbol: " + syminfo.tickerid (where syminfo.tickerid is a built-in variable that returns
the chart’s exchange and symbol information in string format).

• Characters displayed by all these functions can be Unicode characters, which may include Unicode symbols. See
this Exploring Unicode script to get an idea of what can be done with Unicode characters.

4.20. Text and shapes 439

https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_plotarrow
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_plotarrow
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_plotarrow
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_str\{dot\}tostring
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}tickerid
https://www.tradingview.com/script/0rFQOCKf-Exploring-Unicode/

Pine Script™ v5 User Manual

• The color or size of text can sometimes be controlled using function parameters, but no inline formatting (bold,
italics, monospace, etc.) is possible.

• Text from Pine scripts always displays on the chart in the Trebuchet MS font, which is used in many TradingView
texts, including this one.

This script displays text using the four methods available in Pine Script™:

1 //@version=5
2 indicator("Four displays of text", overlay = true)
3 plotchar(ta.rising(close, 5), "`plotchar()`", " ", location.belowbar, color.lime,␣

↪→size = size.small)
4 plotshape(ta.falling(close, 5), "`plotchar()`", location = location.abovebar, color =␣

↪→na, text = "•`plotshape()•`\n ", textcolor = color.fuchsia, size = size.huge)
5

6 if bar_index % 25 == 0
7 label.new(bar_index, na, "•LABEL•\nHigh = " + str.tostring(high, format.mintick)␣

↪→+ "\n ", yloc = yloc.abovebar, style = label.style_none, textcolor = color.black,␣
↪→size = size.normal)

8

9 printTable(txt) => var table t = table.new(position.middle_right, 1, 1), table.cell(t,
↪→ 0, 0, txt, bgcolor = color.yellow)

10 printTable("•TABLE•\n" + str.tostring(bar_index + 1) + " bars\nin the dataset")

Note that:
• The method used to display each text string is shown with the text, except for the lime up arrows displayed using
plotchar(), as it can only display one character.

• Label and table calls can be inserted in conditional structures to control when their are executed, whereas plotchar()
and plotshape() cannot. Their conditional plotting must be controlled using their first argument, which is a “series
bool” whose true or false value determines when the text is displayed.

• Numeric values displayed in the table and labels is first converted to a string using str.tostring().
• We use the + operator to concatenate string components.
• plotshape() is designed to display a shape with accompanying text. Its size parameter controls the size of the
shape, not of the text. We use na for its color argument so that the shape is not visible.

• Contrary to other texts, the table text will not move as you scroll or scale the chart.
• Some text strings contain the 2/7 Unicode arrow (U+1F807).

440 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_str\{dot\}tostring
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#var_na

Pine Script™ v5 User Manual

• Some text strings contain the \n sequence that represents a new line.

4.20.2 `plotchar()`

This function is useful to display a single character on bars. It has the following syntax:

plotchar(series, title, char, location, color, offset, text, textcolor, editable,␣
↪→size, show_last, display) → void

See the Reference Manual entry for plotchar() for details on its parameters.
As explained in theWhen the script’s scale must be preserved section of our page on Debugging, the function can be used
to display and inspect values in the Data Window or in the indicator values displayed to the right of the script’s name on
the chart:

1 //@version=5
2 indicator("", "", true)
3 plotchar(bar_index, "Bar index", "", location.top)

Note that:
• The cursor is on the chart’s last bar.
• The value of bar_index on that bar is displayed in indicator values (1) and in the Data Window (2).
• We use location.top because the default location.abovebar will put the price into play in the script’s scale, which
will often interfere with other plots.

plotchar() also works well to identify specific points on the chart or to validate that conditions are true when we expect
them to be. This example displays an up arrow under bars where close, high and volume have all been rising for two bars:

1 //@version=5
2 indicator("", "", true)
3 bool longSignal = ta.rising(close, 2) and ta.rising(high, 2) and (na(volume) or ta.

↪→rising(volume, 2))
4 plotchar(longSignal, "Long", "▲", location.belowbar, color = na(volume) ? color.gray␣

↪→: color.blue, size = size.tiny)

4.20. Text and shapes 441

https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_location\{dot\}top
https://www.tradingview.com/pine-script-reference/v5/#var_location\{dot\}abovebar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#var_close
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#var_volume

Pine Script™ v5 User Manual

Note that:
• We use (na(volume) or ta.rising(volume, 2)) so our script will work on symbols without volume
data. If we did not make provisions for when there is no volume data, which is what na(volume) does by
being true when there is no volume, the longSignal variable’s value would never be true because ta.
rising(volume, 2) yields false in those cases.

• We display the arrow in gray when there is no volume, to remind us that all three base conditions are not being met.
• Because plotchar() is now displaying a character on the chart, we use size = size.tiny to control its size.
• We have adapted the location argument to display the character under bars.

If you don’t mind plotting only circles, you could also use plot() to achieve a similar effect:

1 //@version=5
2 indicator("", "", true)
3 longSignal = ta.rising(close, 2) and ta.rising(high, 2) and (na(volume) or ta.

↪→rising(volume, 2))
4 plot(longSignal ? low - ta.tr : na, "Long", color.blue, 2, plot.style_circles)

This method has the inconvenience that, since there is no relative positioning mechanism with plot() one must shift the
circles down using something like ta.tr (the bar’s “True Range”):

442 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#var_volume
https://www.tradingview.com/pine-script-reference/v5/#var_volume
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#var_ta\{dot\}tr

Pine Script™ v5 User Manual

4.20.3 `plotshape()`

This function is useful to display pre-defined shapes and/or text on bars. It has the following syntax:

plotshape(series, title, style, location, color, offset, text, textcolor, editable,␣
↪→size, show_last, display) → void

See the Reference Manual entry for plotshape() for details on its parameters.
Let’s use the function to achieve more or less the same result as with our second example of the previous section:

1 //@version=5
2 indicator("", "", true)
3 longSignal = ta.rising(close, 2) and ta.rising(high, 2) and (na(volume) or ta.

↪→rising(volume, 2))
4 plotshape(longSignal, "Long", shape.arrowup, location.belowbar)

Note that here, rather than using an arrow character, we are using the shape.arrowup argument for the style
parameter.

It is possible to use different plotshape() calls to superimpose text on bars. You will need to use \n followed by a special
non-printing character that doesn’t get stripped out to preserve the newline’s functionality. Here we’re using a Unicode
Zero-width space (U+200E). While you don’t see it in the following code’s strings, it is there and can be copy/pasted. The
special Unicode character needs to be the last one in the string for text going up, and the first one when you are plotting
under the bar and text is going down:

1 //@version=5
2 indicator("Lift text", "", true)
3 plotshape(true, "", shape.arrowup, location.abovebar, color.green, text = "A")
4 plotshape(true, "", shape.arrowup, location.abovebar, color.lime, text = "B\n ")
5 plotshape(true, "", shape.arrowdown, location.belowbar, color.red, text = "C")
6 plotshape(true, "", shape.arrowdown, location.belowbar, color.maroon, text = " \nD")

4.20. Text and shapes 443

https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape

Pine Script™ v5 User Manual

The available shapes you can use with the style parameter are:

444 Chapter 4. Concepts

Pine Script™ v5 User Manual

Argument Shape With Text Argument Shape With Text

shape.xcross shape.arrowup

shape.cross shape.arrowdown

shape.circle shape.square

shape.triangleup shape.diamond

shape.triangledown shape.labelup

shape.flag shape.labeldown

4.20.4 `plotarrow()`

The plotarrow function displays up or down arrows of variable length, based on the relative value of the series used in the
function’s first argument. It has the following syntax:

plotarrow(series, title, colorup, colordown, offset, minheight, maxheight, editable,␣
↪→show_last, display) → void

See the Reference Manual entry for plotarrow() for details on its parameters.
The series parameter in plotarrow() is not a “series bool” as in plotchar() and plotshape(); it is a “series int/float”
and there’s more to it than a simple true or false value determining when the arrows are plotted. This is the logic
governing how the argument supplied to series affects the behavior of plotarrow():

• series > 0: An up arrow is displayed, the length of which will be proportional to the relative value of the series
on that bar in relation to other series values.

4.20. Text and shapes 445

https://www.tradingview.com/pine-script-reference/v5/#fun_plotarrow
https://www.tradingview.com/pine-script-reference/v5/#fun_plotarrow
https://www.tradingview.com/pine-script-reference/v5/#fun_plotarrow
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_plotarrow

Pine Script™ v5 User Manual

• series < 0: A down arrow is displayed, proportionally-sized using the same rules.
• series == 0 or na(series): No arrow is displayed.

The maximum and minimum possible sizes for the arrows (in pixels) can be controlled using the minheight and
maxheight parameters.
Here is a simple script illustrating how plotarrow() works:

1 //@version=5
2 indicator("", "", true)
3 body = close - open
4 plotarrow(body, colorup = color.teal, colordown = color.orange)

Note how the heigth of arrows is proportional to the relative size of the bar bodies.
You can use any series to plot the arrows. Here we use the value of the “Chaikin Oscillator” to control the location and
size of the arrows:

1 //@version=5
2 indicator("Chaikin Oscillator Arrows", overlay = true)
3 fastLengthInput = input.int(3, minval = 1)
4 slowLengthInput = input.int(10, minval = 1)
5 osc = ta.ema(ta.accdist, fastLengthInput) - ta.ema(ta.accdist, slowLengthInput)
6 plotarrow(osc)

446 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_plotarrow

Pine Script™ v5 User Manual

Note that we display the actual “Chaikin Oscillator” in a pane below the chart, so you can see what values are used to
determine the position and size of the arrows.

4.20.5 Labels

Labels are only available in v4 and higher versions of Pine Script™. They work very differently than plotchar() and
plotshape().
Labels are objects, like lines and boxes, or tables. Like them, they are referred to using an ID, which acts like a pointer.
Label IDs are of “label” type. As with other objects, labels IDs are “time series” and all the functions used to manage
them accept “series” arguments, which makes them very flexible.

Note: On TradingView charts, a complete set of Drawing Tools allows users to create and modify drawings using mouse
actions. While they may sometimes look similar to drawing objects created with Pine Script™ code, they are unrelated
entities. Drawing objects created using Pine code cannot be modified with mouse actions, and hand-drawn drawings from
the chart user interface are not visible from Pine scripts.

Labels are advantageous because:
• They allow “series” values to be converted to text and placed on charts. This means they are ideal to display values
that cannot be known before time, such as price values, support and resistance levels, of any other values that your
script calculates.

• Their positioning options are more flexible that those of the plot*() functions.
• They offer more display modes.
• Contrary to plot*() functions, label-handling functions can be inserted in conditional or loop structures, making
it easier to control their behavior.

• You can add tooltips to labels.
One drawback to using labels versus plotchar() and plotshape() is that you can only draw a limited quantity of them
on the chart. The default is ~50, but you can use the max_labels_count parameter in your indicator() or strategy()
declaration statement to specify up to 500. Labels, like lines and boxes, are managed using a garbage collectionmechanism
which deletes the oldest ones on the chart, such that only the most recently drawn labels are visible.

4.20. Text and shapes 447

https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy

Pine Script™ v5 User Manual

Your toolbox of built-ins to manage labels are all in the label namespace. They include:
• label.new() to create labels.
• label.set_*() functions to modify the properties of an existing label.
• label.get_*() functions to read the properties of an existing label.
• label.delete() to delete labels
• The label.all array which always contains the IDs of all the visible labels on the chart. The array’s size will depend
on the maximum label count for your script and howmany of those you have drawn. aray.size(label.all)
will return the array’s size.

Creating and modifying labels

The label.new() function creates a new label. It has the following signature:

label.new(x, y, text, xloc, yloc, color, style, textcolor, size, textalign, tooltip)␣
↪→→ series label

The setter functions allowing you to change a label’s properties are:
• label.set_x()
• label.set_y()
• label.set_xy()
• label.set_text()
• label.set_xloc()
• label.set_yloc()
• label.set_color()
• label.set_style()
• label.set_textcolor()
• label.set_size()
• label.set_textalign()
• label.set_tooltip()

They all have a similar signature. The one for label.set_color() is:

label.set_color(id, color) → void

where:
• id is the ID of the label whose property is to be modified.
• The next parameter is the property of the label to modify. It depends on the setter function used. label.set_xy()
changes two properties, so it has two such parameters.

This is how you can create labels in their simplest form:

1 //@version=5
2 indicator("", "", true)
3 label.new(bar_index, high)

448 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}delete
https://www.tradingview.com/pine-script-reference/v5/#var_label\{dot\}all
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}set_x
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}set_y
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}set_xy
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}set_text
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}set_xloc
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}set_yloc
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}set_color
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}set_style
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}set_textcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}set_size
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}set_set_textalign
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}set_tooltip
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}set_color
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}set_xy

Pine Script™ v5 User Manual

Note that:
• The label is created with the parameters x = bar_index (the index of the current bar, bar_index) and y =
high (the bar’s high value).

• We do not supply an argument for the function’s text parameter. Its default value being an empty string, no text
is displayed.

• No logic controls our label.new() call, so labels are created on every bar.
• Only the last 54 labels are displayed because our indicator() call does not use themax_labels_count parameter
to specify a value other than the ~50 default.

• Labels persist on bars until your script deletes them using label.delete(), or garbage collection removes them.
In the next example we display a label on the bar with the highest high value in the last 50 bars:

1 //@version=5
2 indicator("", "", true)
3

4 // Find the highest `high` in last 50 bars and its offset. Change it's sign so it is␣
↪→positive.

5 LOOKBACK = 50
6 hi = ta.highest(LOOKBACK)
7 highestBarOffset = - ta.highestbars(LOOKBACK)
8

9 // Create label on bar zero only.
10 var lbl = label.new(na, na, "", color = color.orange, style = label.style_label_lower_

↪→left)
11 // When a new high is found, move the label there and update its text and tooltip.
12 if ta.change(hi)
13 // Build label and tooltip strings.
14 labelText = "High: " + str.tostring(hi, format.mintick)
15 tooltipText = "Offest in bars: " + str.tostring(highestBarOffset) + "\nLow: " +␣

↪→str.tostring(low[highestBarOffset], format.mintick)
16 // Update the label's position, text and tooltip.
17 label.set_xy(lbl, bar_index[highestBarOffset], hi)
18 label.set_text(lbl, labelText)
19 label.set_tooltip(lbl, tooltipText)

4.20. Text and shapes 449

https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_high
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}delete
https://www.tradingview.com/pine-script-reference/v5/#var_high

Pine Script™ v5 User Manual

Note that:
• We create the label on the first bar only by using the var keyword to declare the lbl variable that contains the
label’s ID. The x, y and text arguments in that label.new() call are irrelevant, as the label will be updated on
further bars. We do, however, take care to use the color and style we want for the labels, so they don’t need
updating later.

• On every bar, we detect if a new high was found by testing for changes in the value of hi
• When a change in the high value occurs, we update our label with new information. To do this, we use three
label.set*() calls to change the label’s relevant information. We refer to our label using the lbl variable,
which contains our label’s ID. The script is thus maintaining the same label throughout all bars, but moving it and
updating its information when a new high is detected.

Here we create a label on each bar, but we set its properties conditionally, depending on the bar’s polarity:

1 //@version=5
2 indicator("", "", true)
3 lbl = label.new(bar_index, na)
4 if close >= open
5 label.set_text(lbl, "green")
6 label.set_color(lbl, color.green)
7 label.set_yloc(lbl, yloc.belowbar)
8 label.set_style(lbl, label.style_label_up)
9 else
10 label.set_text(lbl, "red")
11 label.set_color(lbl, color.red)
12 label.set_yloc(lbl, yloc.abovebar)
13 label.set_style(lbl, label.style_label_down)

450 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}new

Pine Script™ v5 User Manual

Positioning labels

Labels are positioned on the chart according to x (bars) and y (price) coordinates. Five parameters affect this behavior:
x, y, xloc, yloc and style:
x

Is either a bar index or a time value. When a bar index is used, the value can be offset in the past or in the future
(maximum of 500 bars in the future). Past or future offsets can also be calculated when using time values. The x
value of an existing label can be modified using label.set_x() or label.set_xy().

xloc
Is either xloc.bar_index (the default) or xloc.bar_time. It determines which type of argument must be used with x.
With xloc.bar_index, xmust be an absolute bar index. With xloc.bar_time, xmust be a UNIX time in milliseconds
corresponding to the time value of a bar’s open. The xloc value of an existing label can be modified using
label.set_xloc().

y
Is the price level where the label is positioned. It is only taken into account with the default yloc value of yloc.
price. If yloc is yloc.abovebar or yloc.belowbar then the y argument is ignored. The y value of an existing
label can be modified using label.set_y() or label.set_xy().

yloc
Can be yloc.price (the default), yloc.abovebar or yloc.belowbar. The argument used for y is only taken into account
with yloc.price. The yloc value of an existing label can be modified using label.set_yloc().

style
The argument used has an impact on the visual appearance of the label and on its position relative to the reference
point determined by either the y value or the top/bottom of the bar when yloc.abovebar or yloc.belowbar are used.
The style of an existing label can be modified using label.set_style().

These are the available style arguments:

4.20. Text and shapes 451

https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}set_x
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}set_xy
https://www.tradingview.com/pine-script-reference/v5/#var_xloc\{dot\}bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_xloc\{dot\}bar_time
https://www.tradingview.com/pine-script-reference/v5/#var_xloc\{dot\}bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_xloc\{dot\}bar_time
https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/pine-script-reference/v5/#var_open
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}set_xloc
https://www.tradingview.com/pine-script-reference/v5/#var_yloc\{dot\}abovebar
https://www.tradingview.com/pine-script-reference/v5/#var_yloc\{dot\}belowbar
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}set_y
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}set_xy
https://www.tradingview.com/pine-script-reference/v5/#var_yloc\{dot\}price
https://www.tradingview.com/pine-script-reference/v5/#var_yloc\{dot\}abovebar
https://www.tradingview.com/pine-script-reference/v5/#var_yloc\{dot\}belowbar
https://www.tradingview.com/pine-script-reference/v5/#var_yloc\{dot\}price
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}set_yloc
https://www.tradingview.com/pine-script-reference/v5/#var_yloc\{dot\}abovebar
https://www.tradingview.com/pine-script-reference/v5/#var_yloc\{dot\}belowbar
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}set_style

Pine Script™ v5 User Manual

Argument Label Label with
text

Argument La-
bel

Label with
text

label.style_xcross label.style_label_up

label.style_cross label.
style_label_down

label.style_flag label.
style_label_left

label.style_circle label.
style_label_right

label.style_square label.
style_label_lower_left

label.
style_diamond

label.
style_label_lower_right

label.
style_triangleup

label.
style_label_upper_left

label.
style_triangledown

label.
style_label_upper_right

label.
style_arrowup

label.
style_label_center

label.
style_arrowdown

label.style_none

452 Chapter 4. Concepts

Pine Script™ v5 User Manual

When using xloc.bar_time, the x value must be a UNIX timestamp in milliseconds. See the page on Time for more
information. The start time of the current bar can be obtained from the time built-in variable. The bar time of previous
bars is time[1], time[2] and so on. Time can also be set to an absolute value with the timestamp function. You may
add or subtract periods of time to achieve relative time offset.
Let’s position a label one day ago from the date on the last bar:

1 //@version=5
2 indicator("")
3 daysAgoInput = input.int(1, tooltip = "Use negative values to offset in the future")
4 if barstate.islast
5 MS_IN_ONE_DAY = 24 * 60 * 60 * 1000
6 oneDayAgo = time - (daysAgoInput * MS_IN_ONE_DAY)
7 label.new(oneDayAgo, high, xloc = xloc.bar_time, style = label.style_label_right)

Note that because of varying time gaps and missing bars when markets are closed, the positioning of the label may not
always be exact. Time offsets of the sort tend to be more reliable on 24x7 markets.
You can also offset using a bar index for the x value, e.g.:

label.new(bar_index + 10, high)
label.new(bar_index - 10, high[10])
label.new(bar_index[10], high[10])

Reading label properties

The following getter functions are available for labels:
• label.get_x()
• label.get_y()
• label.get_text()

They all have a similar signature. The one for label.get_text() is:

label.get_text(id) → series string

where id is the label whose text is to be retrieved.

Cloning labels

The label.copy() function is used to clone labels. Its syntax is:

label.copy(id) → void

Deleting labels

The label.delete() function is used to delete labels. Its syntax is:

label.delete(id) → void

To keep only a user-defined quantity of labels on the chart, one could use code like this:

4.20. Text and shapes 453

https://www.tradingview.com/pine-script-reference/v5/#var_xloc\{dot\}bar_time
https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/pine-script-reference/v5/#fun_timestamp
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}get_x
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}get_y
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}get_text
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}get_text
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}copy
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}delete

Pine Script™ v5 User Manual

1 //@version=5
2 MAX_LABELS = 500
3 indicator("", max_labels_count = MAX_LABELS)
4 qtyLabelsInput = input.int(5, "Labels to keep", minval = 0, maxval = MAX_LABELS)
5 myRSI = ta.rsi(close, 20)
6 if myRSI > ta.highest(myRSI, 20)[1]
7 label.new(bar_index, myRSI, str.tostring(myRSI, "#.00"), style = label.style_none)
8 if array.size(label.all) > qtyLabelsInput
9 label.delete(array.get(label.all, 0))
10 plot(myRSI)

Note that:
• We define a MAX_LABELS constant to hold the maximum quantity of labels a script can accommodate. We use
that value to set the max_labels_count parameter’s value in our indicator() call, and also as the maxval
value in our input.int() call to cap the user value.

• We create a new label when our RSI breaches its highest value of the last 20 bars. Note the offset of [1] we use
in if myRSI > ta.highest(myRSI, 20)[1]. This is necessary. Without it, the value returned by
ta.highest() would always include the current value of myRSI, so myRSI would never be higher than the function’s
return value.

• After that, we delete the oldest label in the label.all array that is automatically maintained by the Pine Script™
runtime and contains the ID of all the visible labels drawn by our script. We use the array.get() function to retrieve
the array element at index zero (the oldest visible label ID). We then use label.delete() to delete the label linked
with that ID.

Note that if one wants to position a label on the last bar only, it is unnecessary and inefficent to create and delete the label
as the script executes on all bars, so that only the last label remains:

1 // INEFFICENT!
2 //@version=5
3 indicator("", "", true)
4 lbl = label.new(bar_index, high, str.tostring(high, format.mintick))
5 label.delete(lbl[1])

This is the efficient way to realize the same task:

1 //@version=5
2 indicator("", "", true)
3 if barstate.islast
4 // Create the label once, the first time the block executes on the last bar.

(continues on next page)

454 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}int
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}highest
https://www.tradingview.com/pine-script-reference/v5/#var_label\{dot\}all
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}get
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}delete

Pine Script™ v5 User Manual

(continued from previous page)
5 var lbl = label.new(na, na)
6 // On all iterations of the script on the last bar, update the label's␣

↪→information.
7 label.set_xy(lbl, bar_index, high)
8 label.set_text(lbl, str.tostring(high, format.mintick))

Realtime behavior

Labels are subject to both commit and rollback actions, which affect the behavior of a script when it executes in the
realtime bar. See the page on Pine Script™’s Execution model.
This script demonstrates the effect of rollback when running in the realtime bar:

1 //@version=5
2 indicator("", "", true)
3 label.new(bar_index, high)

On realtime bars, label.new() creates a new label on every script update, but because of the rollback process, the label
created on the previous update on the same bar is deleted. Only the last label created before the realtime bar’s close will
be committed, and thus persist.

4.21 Time

• Introduction

• Time variables

• Time functions

• Formatting dates and time

4.21. Time 455

https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}new
https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

4.21.1 Introduction

Four references

Four different references come into play when using date and time values in Pine Script™:
1. UTC time zone: The native format for time values in Pine Script™ is the Unix time in milliseconds. Unix time

is the time elapsed since the Unix Epoch on January 1st, 1970. See here for the current Unix time in seconds
and here for more information on Unix Time. A value for the Unix time is called a timestamp. Unix timestamps
are always expressed in the UTC (or “GMT”, or “GMT+0”) time zone. They are measured from a fixed reference,
i.e., the Unix Epoch, and do not vary with time zones. Some built-ins use the UTC time zone as a reference.

2. Exchange time zone: A second time-related key reference for traders is the time zone of the exchange where an
instrument is traded. Some built-ins like hour return values in the exchange’s time zone by default.

3. timezone parameter: Some functions that normally return values in the exchange’s time zone, such as hour()
include a timezone parameter that allows you to adapt the function’s result to another time zone. Other functions
like time() include both session and timezone parameters. In those cases, the timezone argument applies
to how the session argument is interpreted — not to the time value returned by the function.

4. Chart’s time zone: This is the time zone chosen by the user from the chart using the “Chart Settings/Symbol/Time
Zone” field. This setting only affects the display of dates and times on the chart. It does not affect the behavior of
Pine scripts, and they have no visibility over this setting.

When discussing variables or functions, we will note if they return dates or times in UTC or exchange time zone. Scripts
do not have visibility on the user’s time zone setting on his chart.

Time built-ins

Pine Script™ has built-in variables to:
• Get timestamp information from the current bar (UTC time zone): time and time_close
• Get timestamp information for the beginning of the current trading day (UTC time zone): time_tradingday
• Get the current time in one-second increments (UTC time zone): timenow
• Retrieve calendar and time values from the bar (exchange time zone): year, month, weekofyear, dayofmonth,
dayofweek, hour, minute and second

• Return the time zone of the exchange of the chart’s symbol with syminfo.timezone
There are also built-in functions that can:

• Return timestamps of bars from other timeframes with time() and time_close(), without the need for a re-
quest.security() call

• Retrieve calendar and time values from any timestamp, which can be offset with a time zone: year(), month(),
weekofyear(), dayofmonth(), dayofweek(), hour(), minute() and second()

• Create a timestamp using timestamp()
• Convert a timestamp to a formatted date/time string for display, using str.format()
• Input data and time values. See the section on Inputs.
• Work with session information.

456 Chapter 4. Concepts

https://www.unixtimestamp.com/
https://en.wikipedia.org/wiki/Unix_time
https://www.tradingview.com/pine-script-reference/v5/#var_hour
https://www.tradingview.com/pine-script-reference/v5/#fun_hour
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/pine-script-reference/v5/#var_time_close
https://www.tradingview.com/pine-script-reference/v5/#var_time_tradingday
https://www.tradingview.com/pine-script-reference/v5/#var_timenow
https://www.tradingview.com/pine-script-reference/v5/#var_year
https://www.tradingview.com/pine-script-reference/v5/#var_month
https://www.tradingview.com/pine-script-reference/v5/#var_weekofyear
https://www.tradingview.com/pine-script-reference/v5/#var_dayofmonth
https://www.tradingview.com/pine-script-reference/v5/#var_dayofweek
https://www.tradingview.com/pine-script-reference/v5/#var_hour
https://www.tradingview.com/pine-script-reference/v5/#var_minute
https://www.tradingview.com/pine-script-reference/v5/#var_second
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}timezone
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#fun_time_close
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#fun_year
https://www.tradingview.com/pine-script-reference/v5/#fun_month
https://www.tradingview.com/pine-script-reference/v5/#fun_weekofyear
https://www.tradingview.com/pine-script-reference/v5/#fun_dayofmonth
https://www.tradingview.com/pine-script-reference/v5/#fun_dayofweek
https://www.tradingview.com/pine-script-reference/v5/#fun_hour
https://www.tradingview.com/pine-script-reference/v5/#fun_minute
https://www.tradingview.com/pine-script-reference/v5/#fun_second
https://www.tradingview.com/pine-script-reference/v5/#fun_timestamp
https://www.tradingview.com/pine-script-reference/v5/#fun_str\{dot\}format

Pine Script™ v5 User Manual

Time zones

TradingViewers can change the time zone used to display bar times on their charts. Pine scripts have no visibility over this
setting. While there is a syminfo.timezone variable to return the time zone of the exchange where the chart’s instrument
is traded, there is no chart.timezone equivalent.
When displaying times on the chart, this shows one way of providing users a way of adjusting your script’s time values to
those of their chart. This way, your displayed times can match the time zone used by traders on their chart:

1 //@version=5
2 indicator("Time zone control")
3 MS_IN_1H = 1000 * 60 * 60
4 TOOLTIP01 = "Enter your time zone's offset (+ or −), including a decimal fraction if␣

↪→needed."
5 hoursOffsetInput = input.float(0.0, "Timezone offset (in hours)", minval = -12.0,␣

↪→maxval = 14.0, step = 0.5, tooltip = TOOLTIP01)
6

7 printTable(txt) =>
8 var table t = table.new(position.middle_right, 1, 1)
9 table.cell(t, 0, 0, txt, text_halign = text.align_right, bgcolor = color.yellow)
10

11 msOffsetInput = hoursOffsetInput * MS_IN_1H
12 printTable(
13 str.format("Last bar''s open time UTC: {0,date,HH:mm:ss yyyy.MM.dd}", time) +
14 str.format("\nLast bar''s close time UTC: {0,date,HH:mm:ss yyyy.MM.dd}", time_

↪→close) +
15 str.format("\n\nLast bar''s open time EXCHANGE: {0,date,HH:mm:ss yyyy.MM.dd}",␣

↪→time(timeframe.period, syminfo.session, syminfo.timezone)) +
16 str.format("\nLast bar''s close time EXCHANGE: {0,date,HH:mm:ss yyyy.MM.dd}", time_

↪→close(timeframe.period, syminfo.session, syminfo.timezone)) +
17 str.format("\n\nLast bar''s open time OFFSET ({0}): {1,date,HH:mm:ss yyyy.MM.dd}",␣

↪→hoursOffsetInput, time + msOffsetInput) +
18 str.format("\nLast bar''s close time OFFSET ({0}): {1,date,HH:mm:ss yyyy.MM.dd}",␣

↪→hoursOffsetInput, time_close + msOffsetInput) +
19 str.format("\n\nCurrent time OFFSET ({0}): {1,date,HH:mm:ss yyyy.MM.dd}",␣

↪→hoursOffsetInput, timenow + msOffsetInput))

Note that:

4.21. Time 457

https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}timezone

Pine Script™ v5 User Manual

• We convert the user offset expressed in hours to milliseconds with msOffsetInput. We then add that offset
to a timestamp in UTC format before converting it to display format, e.g., time + msOffsetInput and
timenow + msOffsetInput.

• We use a tooltip to provide instructions to users.
• We provide minval and maxval values to protect the input field, and a step value of 0.5 so that when they use
the field’s up/down arrows, they can intuitively figure out that fractions can be used.

• The str.format() function formats our time values, namely the last bar’s time and the current time.
Some functions that normally return values in the exchange’s time zone provide means to adapt their result to another
time zone through the timezone parameter. This script illustrates how to do this with hour():

1 //@version=5
2 indicator('`hour(time, "GMT+0")` in orange')
3 color BLUE_LIGHT = #0000FF30
4 plot(hour, "", BLUE_LIGHT, 8)
5 plot(hour(time, syminfo.timezone))
6 plot(hour(time, "GMT+0"),"UTC", color.orange)

Note that:
• The hour variable and the hour() function normally returns a value in the exchange’s time zone. Accordingly,
plots in blue for both hour and hour(time, syminfo.timezone) overlap. Using the function form with
syminfo.timezone is thus redundant if the exchange’s hour is required.

• The orange line plotting hour(time, "GMT+0"), however, returns the bar’s hour at UTC, or “GMT+0” time,
which in this case is four hours less than the exchange’s time, since MSFT trades on the NASDAQ whose time
zone is UTC-4.

Time zone strings

The argument used for the timezone parameter in functions such as time(), timestamp(), hour(), etc., can be in different
formats, which you can find in the IANA time zone database name reference page. Contents from the “TZ database name”,
“UTC offset ±hh:mm” and “UTC DST offset ±hh:mm” columns of that page’s table can be used.
To express an offset of +5.5 hours from UTC, these strings found in the reference page are all equivalent:

• "GMT+05:30"

• "Asia/Calcutta"

• "Asia/Colombo"

458 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_str\{dot\}format
https://www.tradingview.com/pine-script-reference/v5/#fun_hour
https://www.tradingview.com/pine-script-reference/v5/#var_hour
https://www.tradingview.com/pine-script-reference/v5/#fun_hour
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#fun_timestamp
https://www.tradingview.com/pine-script-reference/v5/#fun_hour
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Pine Script™ v5 User Manual

• "Asia/Kolkata"

Non-fractional offsets can be expressed in the "GMT+5" form. "GMT+5.5" is not allowed.

4.21.2 Time variables

`time` and `time_close`

Let’s start by plotting time and time_close, the Unix timestamp in milliseconds of the bar’s opening and closing time:

1 //@version=5
2 indicator("`time` and `time_close` values on bars")
3 plot(time, "`time`")
4 plot(time_close, "`time_close`")

Note that:
• The time and time_close variables returns a timestamp in UNIX time, which is independent of the timezone selected
by the user on his chart. In this case, the chart’s time zone setting is the exchange time zone, so whatever symbol
is on the chart, its exchange time zone will be used to display the date and time values on the chart’s cursor. The
NASDAQ’s time zone is UTC-4, but this only affects the chart’s display of date/time values; it does not impact the
values plotted by the script.

• The last time value for the plot shown in the scale is the number of milliseconds elapsed from 00:00:00 UTC, 1
January, 1970, until the bar’s opening time. It corresponds to 17:30 on the 27th of September 2021. However,
because the chart uses the UTC-4 time zone (the NASDAQ’s time zone), it displays the 13:30 time, four hours
earlier than UTC time.

• The difference between the two values on the last bar is the number of milliseconds in one hour (1000 * 60 * 60 =
3,600,000) because we are on a 1H chart.

4.21. Time 459

https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/pine-script-reference/v5/#var_time_close
https://www.tradingview.com/pine-script-reference/v5/#var_time
https://www.tradingview.com/pine-script-reference/v5/#var_time_close
https://en.wikipedia.org/wiki/Unix_time
https://www.tradingview.com/pine-script-reference/v5/#var_time

Pine Script™ v5 User Manual

`time_tradingday`

time_tradingday is useful when a symbol trades on overnight sessions that start and close on different calendar days. For
example, this happens in forex markets where a session can open Sunday at 17:00 and close Monday at 17:00.
The variable returns the time of the beginning of the trading day in UNIX time when used at timeframes of 1D and less.
When used on timeframes higher than 1D, it returns the starting time of the last trading day in the bar (e.g., at 1W, it will
return the starting time of the last trading day of the week).

`timenow`

timenow returns the current time in UNIX time. It works in realtime, but also when a script executes on historical bars.
In realtime, your scripts will only perceive changes when they execute on feed updates. When no updates occur, the script
is idle, so it cannot update its display. See the page on Pine Script™’s execution model for more information.
This script uses the values of timenow and time_close to calculate a realtime countdown for intraday bars. Contrary to
the countdown on the chart, this one will only update when a feed update causes the script to execute another iteration:

1 //@version=5
2 indicator("", "", true)
3

4 printTable(txt) =>
5 var table t = table.new(position.middle_right, 1, 1)
6 table.cell(t, 0, 0, txt, text_halign = text.align_right, bgcolor = color.yellow)
7

8 printTable(str.format("{0,time,HH:mm:ss.SSS}", time_close - timenow))

Calendar dates and times

Calendar date and time variables such as year, month, weekofyear, dayofmonth, dayofweek, hour, minute and second can
be useful to test for specific dates or times, and as arguments to timestamp().
When testing for specific dates or times, ones needs to account for the possibility that the script will be executing on
timeframes where the tested condition cannot be detected, or for cases where a bar with the specific requirement will not
exist. Suppose, for example, we wanted to detect the first trading day of the month. This script shows how using only
dayofmonth will not work when a weekly chart is used or when no trading occurs on the 1st of the month:

460 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#var_time_tradingday
https://en.wikipedia.org/wiki/Unix_time
https://www.tradingview.com/pine-script-reference/v5/#var_timenow
https://en.wikipedia.org/wiki/Unix_time
https://www.tradingview.com/pine-script-reference/v5/#var_timenow
https://www.tradingview.com/pine-script-reference/v5/#var_time_close
https://www.tradingview.com/pine-script-reference/v5/#var_year
https://www.tradingview.com/pine-script-reference/v5/#var_month
https://www.tradingview.com/pine-script-reference/v5/#var_weekofyear
https://www.tradingview.com/pine-script-reference/v5/#var_dayofmonth
https://www.tradingview.com/pine-script-reference/v5/#var_dayofweek
https://www.tradingview.com/pine-script-reference/v5/#var_hour
https://www.tradingview.com/pine-script-reference/v5/#var_minute
https://www.tradingview.com/pine-script-reference/v5/#var_second
https://www.tradingview.com/pine-script-reference/v5/#fun_timestamp
https://www.tradingview.com/pine-script-reference/v5/#var_dayofmonth

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("", "", true)
3 firstDayIncorrect = dayofmonth == 1
4 firstDay = ta.change(time("M"))
5 plotchar(firstDayIncorrect, "firstDayIncorrect", "•", location.top, size = size.small)
6 bgcolor(firstDay ? color.silver : na)

Note that:
• Using ta.change(time("M")) is more robust as it works on all months (#1 and #2), displayed as the silver
background, whereas the blue dot detected using dayofmonth == 1 does not work (#1) when the first trading
day of September occurs on the 2nd.

• The dayofmonth == 1 condition will be true on all intrabars of the first day of the month, but ta.
change(time("M")) will only be true on the first.

If you wanted your script to only display for years 2020 and later, you could use:

1 //@version=5
2 indicator("", "", true)
3 plot(year >= 2020 ? close : na, linewidth = 3)

`syminfo.timezone()`

syminfo.timezone returns the time zone of the chart symbol’s exchange. It can be helpful when a timezone parameter
is available in a function, and you want to mention that you are using the exchange’s timezone explicitly. It is usually
redundant because when no argument is supplied to timezone, the exchange’s time zone is assumed.

4.21.3 Time functions

`time()` and `time_close()`

The time() and time_close() functions have the following signature:

time(timeframe, session, timezone) → series int
time_close(timeframe, session, timezone) → series int

They accept three arguments:
timeframe

A string in timeframe.period format.
session

An optional string in session specification format: "hhmm-hhmm[:days]", where the [:days] part is op-
tional. See the page on sessions for more information.

timezone
An optional value that qualifies the argument for session when one is used.

See the time() and time_close() entries in the Reference Manual for more information.
The time() function is most often used to:

1. Test if a bar is in a specific time period, which will require using the session parameter. In those cases,
timeframe.period, i.e., the chart’s timeframe, will often be used for the first parameter. When using the
function this way, we rely on the fact that it will return na when the bar is not part of the period specified in the
session argument.

4.21. Time 461

https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}timezone
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#fun_time_close
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}period
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#fun_time_close
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#var_na

Pine Script™ v5 User Manual

2. Detecting changes in higher timeframes than the chart’s by using the higher timeframe for the timeframe ar-
gument. When using the function for this purpose, we are looking for changes in the returned value, which
means the higher timeframe bar has changed. This will usually require using ta.change() to test, e.g., ta.
change(time("D")) will return the change in time when a new higher timeframe bar comes in, so the ex-
pression’s result will cast to a “bool” value when used in a conditional expression. The “bool” result will be true
when there is a change and false when there is no change.

Testing for sessions

Let’s look at an example of the first case where we want to determine if a bar’s starting time is part of a period between
11:00 and 13:00:

1 //@version=5
2 indicator("Session bars", "", true)
3 inSession = not na(time(timeframe.period, "1100-1300"))
4 bgcolor(inSession ? color.silver : na)

Note that:
• We use time(timeframe.period, "1100-1300"), which says: “Check the chart’s timeframe if the
current bar’s opening time is between 11:00 and 13:00 inclusively”. The function returns its opening time if the
bar is in the session. If it is not, the function returns na.

• We are interested in identifying the instances when time() does not return na because that means the bar is in the
session, so we test for not na(...). We do not use the actual return value of time() when it is not na; we are
only interested in whether it returns na or not.

Testing for changes in higher timeframes

It is often helpful to detect changes in a higher timeframe. For example, you may want to detect trading day changes while
on intraday charts. For these cases, you can use the fact that time("D") returns the opening time of the 1D bar, even
if the chart is at an intraday timeframe such as 1H:

462 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}change
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("", "", true)
3 bool newDay = ta.change(time("D"))
4 bgcolor(newDay ? color.silver : na)
5

6 newExchangeDay = ta.change(dayofmonth)
7 plotchar(newExchangeDay, "newExchangeDay", " ", location.top, size = size.small)

Note that:
• The newDay variable detects changes in the opening time of 1D bars, so it follows the conventions for the chart’s
symbol, which uses overnight sessions of 17:00 to 17:00. It changes values when a new session comes in.

• Because newExchangeDay detects change in dayofmonth in the calendar day, it changes when the day changes
on the chart.

• The two change detection methods only coincide on the chart when there are days without trading. On Sundays
here, for example, both detection methods will detect a change because the calendar day changes from the last
trading day (Friday) to the first calendar day of the new week, Sunday, which is when Monday’s overnight session
begins at 17:00.

Calendar dates and times

Calendar date and time functions such as year(), month(), weekofyear(), dayofmonth(), dayofweek(), hour(), minute()
and second() can be useful to test for specific dates or times. They all have signatures similar to the ones shown here for
dayofmonth():

dayofmonth(time) → series int
dayofmonth(time, timezone) → series int

This will plot the day of the opening of the bar where the January 1st, 2021 at 00:00 time falls between its time and
time_close values:

1 //@version=5
2 indicator("")
3 exchangeDay = dayofmonth(timestamp("2021-01-01"))
4 plot(exchangeDay)

The value will be the 31st or the 1st, depending on the calendar day of when the session opens on the chart’s symbol. The
date for symbols traded 24x7 at exchanges using the UTC time zone will be the 1st. For symbols trading on exchanges at
UTC-4, the date will be the 31st.

4.21. Time 463

https://www.tradingview.com/pine-script-reference/v5/#var_dayofmonth
https://www.tradingview.com/pine-script-reference/v5/#fun_year
https://www.tradingview.com/pine-script-reference/v5/#fun_month
https://www.tradingview.com/pine-script-reference/v5/#fun_weekofyear
https://www.tradingview.com/pine-script-reference/v5/#fun_dayofmonth
https://www.tradingview.com/pine-script-reference/v5/#fun_dayofweek
https://www.tradingview.com/pine-script-reference/v5/#fun_hour
https://www.tradingview.com/pine-script-reference/v5/#fun_minute
https://www.tradingview.com/pine-script-reference/v5/#fun_second
https://www.tradingview.com/pine-script-reference/v5/#fun_dayofmonth
https://www.tradingview.com/pine-script-reference/v5/#var_time_close
https://www.tradingview.com/pine-script-reference/v5/#var_time_close

Pine Script™ v5 User Manual

`timestamp()`

The timestamp() function has a few different signatures:

timestamp(year, month, day, hour, minute, second) → simple/series int
timestamp(timezone, year, month, day, hour, minute, second) → simple/series int
timestamp(dateString) → const int

The only difference between the first two is the timezone parameter. Its default value is syminfo.timezone. See the
Time zone strings section of this page for valid values.
The third form is used as a defval value in input.time(). See the timestamp() entry in the Reference Manual for more
information.
timestamp() is useful to generate a timestamp for a specific date. To generate a timestamp for Jan 1, 2021, use either one
of these methods:

1 //@version=5
2 indicator("")
3 yearBeginning1 = timestamp("2021-01-01")
4 yearBeginning2 = timestamp(2021, 1, 1, 0, 0)
5 printTable(txt) => var table t = table.new(position.middle_right, 1, 1), table.cell(t,

↪→ 0, 0, txt, bgcolor = color.yellow)
6 printTable(str.format("yearBeginning1: {0,date,yyyy.MM.dd hh:mm}\nyearBeginning2: {1,

↪→date,yyyy.MM.dd hh:mm}", yearBeginning1, yearBeginning1))

You can use offsets in timestamp() arguments. Here, we subtract 2 from the value supplied for its day parameter to get
the date/time from the chart’s last bar two days ago. Note that because of different bar alignments on various instruments,
the bar identified on the chart may not always be exactly 48 hours away, although the function’s return value is correct:

1 //@version=5
2 indicator("")
3 twoDaysAgo = timestamp(year, month, dayofmonth - 2, hour, minute)
4 printTable(txt) => var table t = table.new(position.middle_right, 1, 1), table.cell(t,

↪→ 0, 0, txt, bgcolor = color.yellow)
5 printTable(str.format("{0,date,yyyy.MM.dd hh:mm}", twoDaysAgo))

4.21.4 Formatting dates and time

Timestamps can be formatted using str.format(). These are examples of various formats:

464 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_timestamp
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}timezone
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}time
https://www.tradingview.com/pine-script-reference/v5/#fun_timestamp
https://www.tradingview.com/pine-script-reference/v5/#fun_timestamp
https://www.tradingview.com/pine-script-reference/v5/#fun_timestamp
https://www.tradingview.com/pine-script-reference/v5/#fun_str\{dot\}format

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("", "", true)
3

4 print(txt, styl) =>
5 var alignment = styl == label.style_label_right ? text.align_right : text.align_

↪→left
6 var lbl = label.new(na, na, "", xloc.bar_index, yloc.price, color(na), styl,␣

↪→color.black, size.large, alignment)
7 if barstate.islast
8 label.set_xy(lbl, bar_index, hl2[1])
9 label.set_text(lbl, txt)
10

11 var string format =
12 "{0,date,yyyy.MM.dd hh:mm:ss}\n" +
13 "{1,date,short}\n" +
14 "{2,date,medium}\n" +
15 "{3,date,long}\n" +
16 "{4,date,full}\n" +
17 "{5,date,h a z (zzzz)}\n" +
18 "{6,time,short}\n" +
19 "{7,time,medium}\n" +
20 "{8,date,'Month 'MM, 'Week' ww, 'Day 'DD}\n" +
21 "{9,time,full}\n" +
22 "{10,time,hh:mm:ss}\n" +
23 "{11,time,HH:mm:ss}\n" +
24 "{12,time,HH:mm:ss} Left in bar\n"
25

26 print(format, label.style_label_right)
27 print(str.format(format,
28 time, time, time, time, time, time, time,
29 timenow, timenow, timenow, timenow,
30 timenow - time, time_close - timenow), label.style_label_left)

4.21. Time 465

https://www.tradingview.com/

Pine Script™ v5 User Manual

4.22 Timeframes

• Introduction

• Timeframe string specifications

• Comparing timeframes

4.22.1 Introduction

The timeframe of a chart is sometimes also referred to as its interval or resolution. It is the unit of time represented by
one bar on the chart. All standard chart types use a timeframe: “Bars”, “Candles”, “Hollow Candles”, “Line”, “Area” and
“Baseline”. One non-standard chart type also uses timeframes: “Heikin Ashi”.
Programmers interested in accessing data from multiple timeframes will need to become familiar with how timeframes
are expressed in Pine Script™, and how to use them.
Timeframe strings come into play in different contexts:

• They must be used in request.security() when requesting data from another symbol and/or timeframe. See the page
on Other timeframes and data to explore the use of request.security().

• They can be used as an argument to time() and time_close() functions, to return the time of a higher timeframe
bar. This, in turn, can be used to detect changes in higher timeframes from the chart’s timeframe without using
request.security(). See the Testing for changes in higher timeframes section to see how to do this.

• The input.timeframe() function provides a way to allow script users to define a timeframe through a script’s “Inputs”
tab (see the Timeframe input section for more information).

• The indicator() declaration statement has an optional timeframe parameter that can be used to provide multi-
timeframe capabilities to simple scripts without using request.security().

• Many built-in variables provide information on the timeframe used by the chart the script is running on. See the
Chart timeframe section for more information on them, including timeframe.period which returns a string in Pine
Script™’s timeframe specification format.

466 Chapter 4. Concepts

https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#fun_time_close
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}session
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#var_timeframe\{dot\}period

Pine Script™ v5 User Manual

4.22.2 Timeframe string specifications

Timeframe strings follow these rules:
• They are composed of the multiplier and the timeframe unit, e.g., “1S”, “30” (30 minutes), “1D” (one day), “3M”
(three months).

• The unit is represented by a single letter, with no letter used for minutes: “S” for seconds, “D” for days, “W” for
weeks and “M” for months.

• When no multiplier is used, 1 is assumed: “S” is equivalent to “1S”, “D” to “1D, etc. If only “1” is used, it is
interpreted as “1min”, since no unit letter identifier is used for minutes.

• There is no “hour” unit; “1H” is not valid. The correct format for one hour is “60” (remember no unit letter is
specified for minutes).

• The valid multipliers vary for each timeframe unit:
– For seconds, only the discrete 1, 5, 10, 15 and 30 multipliers are valid.
– For minutes, 1 to 1440.
– For days, 1 to 365.
– For weeks, 1 to 52.
– For months, 1 to 12.

4.22.3 Comparing timeframes

It can be useful to compare different timeframe strings to determine, for example, if the timeframe used on the chart is
lower than the higher timeframes used in the script.
Converting timeframe strings to a representation in fractional minutes provides a way to compare them using a universal
unit. This script uses the timeframe.in_seconds() function to convert a timeframe into float seconds and then converts the
result into minutes:

1 //@version=5
2 indicator("Timeframe in minutes example", "", true)
3 string tfInput = input.timeframe(defval = "", title = "Input TF")
4

5 float chartTFInMinutes = timeframe.in_seconds() / 60
6 float inputTFInMinutes = timeframe.in_seconds(tfInput) / 60
7

8 var table t = table.new(position.top_right, 1, 1)
9 string txt = "Chart TF: " + str.tostring(chartTFInMinutes, "#.##### minutes") +
10 "\nInput TF: " + str.tostring(inputTFInMinutes, "#.##### minutes")
11 if barstate.isfirst
12 table.cell(t, 0, 0, txt, bgcolor = color.yellow)
13 else if barstate.islast
14 table.cell_set_text(t, 0, 0, txt)
15

16 if chartTFInMinutes > inputTFInMinutes
17 runtime.error("The chart's timeframe must not be higher than the input's␣

↪→timeframe.")

Note that:
• We use the built-in timeframe.in_seconds() function to convert the chart and the input.timeframe() function into
seconds, then divide by 60 to convert into minutes.

4.22. Timeframes 467

https://www.tradingview.com/pine-script-reference/v5/#fun_timeframe\{dot\}in_seconds
https://www.tradingview.com/pine-script-reference/v5/#fun_timeframe\{dot\}in_seconds
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}session

Pine Script™ v5 User Manual

• We use two calls to the timeframe.in_seconds() function in the initialization of the chartTFInMinutes and
inputTFInMinutes variables. In the first instance, we do not supply an argument for its timeframe param-
eter, so the function returns the chart’s timeframe in seconds. In the second call, we supply the timeframe selected
by the script’s user through the call to input.timeframe().

• Next, we validate the timeframes to ensure that the input timeframe is equal to or higher than the chart’s timeframe.
If it is not, we generate a runtime error.

• We finally print the two timeframe values converted to minutes.

468 Chapter 4. Concepts

https://www.tradingview.com/pine-script-reference/v5/#fun_timeframe\{dot\}in_seconds
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}session
https://www.tradingview.com/

CHAPTER

FIVE

WRITING SCRIPTS

5.1 Style guide

• Introduction

• Naming Conventions

• Script organization

• Spacing

• Line wrapping

• Vertical alignment

• Explicit typing

5.1.1 Introduction

This style guide provides recommendations on how to name variables and organize your Pine scripts in a standard way
that works well. Scripts that follow our best practices will be easier to read, understand and maintain.
You can see scripts using these guidelines published from the TradingView and PineCoders accounts on the platform.

469

https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html
https://www.tradingview.com/u/TradingView/#published-scripts
https://www.tradingview.com/u/PineCoders/#published-scripts

Pine Script™ v5 User Manual

5.1.2 Naming Conventions

We recommend the use of:
• camelCase for all identifiers, i.e., variable or function names: ma, maFast, maLengthInput, maColor,
roundedOHLC(), pivotHi().

• All caps SNAKE_CASE for constants: BULL_COLOR, BEAR_COLOR, MAX_LOOKBACK.
• The use of qualifying suffixes when it provides valuable clues about the type or provenance of a variable: maShow-
Input, bearColor, bearColorInput, volumesArray, maPlotID, resultsTable, levels-
ColorArray.

5.1.3 Script organization

The Pine Script™ compiler is quite forgiving of the positioning of specific statements or the version compiler annotation
in the script. While other arrangements are syntactically correct, this is how we recommend organizing scripts:

<license>
<version>
<declaration_statement>
<import_statements>
<constant_declarations>
<inputs>
<function_declarations>
<calculations>
<strategy_calls>
<visuals>
<alerts>

<license>

If you publish your open-source scripts publicly on TradingView (scripts can also be published privately), your open-
source code is by default protected by the Mozilla license. You may choose any other license you prefer.
The reuse of code from those scripts is governed by our House Rules on Script Publishing which preempt the author’s
license.
The standard license comments appearing at the beginning of scripts are:

// This source code is subject to the terms of the Mozilla Public License 2.0 at␣
↪→https://mozilla.org/MPL/2.0/
// © username

<version>

This is the compiler annotation defining the version of Pine Script™ the script will use. If none is present, v1 is used.
For v5, use:

//@version=5

470 Chapter 5. Writing scripts

https://www.tradingview.com/support/solutions/43000590599

Pine Script™ v5 User Manual

<declaration_statement>

This is the mandatory declaration statement which defines the type of your script. It must be a call to either indicator(),
strategy(), or library().

<import_statements>

If your script uses one or more Pine Script™ libraries, your import statements belong here.

<constant_declarations>

Scripts can declare variables qualified as “const”, i.e., ones referencing a constant value.
We refer to variables as “constants” when they meet these criteria:

• Their declaration uses the optional const keyword (see our User Manual’s section on type qualifiers for more
information).

• They are initialized using a literal (e.g., 100 or "AAPL") or a built-in qualified as “const” (e.g., color.green).
• Their value does not change during the script’s execution.

We use SNAKE_CASE to name these variables and group their declaration near the top of the script. For example:

// ————— Constants
int MS_IN_MIN = 60 * 1000
int MS_IN_HOUR = MS_IN_MIN * 60
int MS_IN_DAY = MS_IN_HOUR * 24

color GRAY = #808080ff
color LIME = #00FF00ff
color MAROON = #800000ff
color ORANGE = #FF8000ff
color PINK = #FF0080ff
color TEAL = #008080ff
color BG_DIV = color.new(ORANGE, 90)
color BG_RESETS = color.new(GRAY, 90)

string RST1 = "No reset; cumulate since the beginning of the chart"
string RST2 = "On a stepped higher timeframe (HTF)"
string RST3 = "On a fixed HTF"
string RST4 = "At a fixed time"
string RST5 = "At the beginning of the regular session"
string RST6 = "At the first visible chart bar"
string RST7 = "Fixed rolling period"

string LTF1 = "Least precise, covering many chart bars"
string LTF2 = "Less precise, covering some chart bars"
string LTF3 = "More precise, covering less chart bars"
string LTF4 = "Most precise, 1min intrabars"

string TT_TOTVOL = "The 'Bodies' value is the transparency of the total volume␣
↪→candle bodies. Zero is opaque, 100 is transparent."
string TT_RST_HTF = "This value is used when '" + RST3 +"' is selected."
string TT_RST_TIME = "These values are used when '" + RST4 +"' is selected.

A reset will occur when the time is greater or equal to the bar's open time, and␣

(continues on next page)

5.1. Style guide 471

https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_library
https://www.tradingview.com/pine-script-reference/v5/#op_import

Pine Script™ v5 User Manual

(continued from previous page)
↪→less than its close time.\nHour: 0-23\nMinute: 0-59"
string TT_RST_PERIOD = "This value is used when '" + RST7 +"' is selected."

In this example:
• The RST* and LTF* constants will be used as tuple elements in the options argument of input.*() calls.
• The TT_* constants will be used as tooltip arguments in input.*() calls. Note how we use a line continu-
ation for long string literals.

• We do not use var to initialize constants. The Pine Script™ runtime is optimized to handle declarations on each bar,
but using var to initialize a variable only the first time it is declared incurs a minor penalty on script performance
because of the maintenance that var variables require on further bars.

Note that:
• Literals used in more than one place in a script should always be declared as a constant. Using the constant rather
than the literal makes it more readable if it is given a meaningful name, and the practice makes code easier to
maintain. Even though the quantity of milliseconds in a day is unlikely to change in the future, MS_IN_DAY is
more meaningful than 1000 * 60 * 60 * 24.

• Constants only used in the local block of a function or if, while, etc., statement for example, can be declared in that
local block.

<inputs>

It is much easier to read scripts when all their inputs are in the same code section. Placing that section at the beginning
of the script also reflects how they are processed at runtime, i.e., before the rest of the script is executed.
Suffixing input variable names with input makes them more readily identifiable when they are used later in the script:
maLengthInput, bearColorInput, showAvgInput, etc.

// ————— Inputs
string resetInput = input.string(RST2, "CVD Resets", ␣
↪→ inline = "00", options = [RST1, RST2, RST3, RST4, RST5, RST6, RST7])
string fixedTfInput = input.timeframe("D", "  Fixed HTF:  ", ␣
↪→ tooltip = TT_RST_HTF)
int hourInput = input.int(9, "  Fixed time hour:  ", ␣
↪→ inline = "01", minval = 0, maxval = 23)
int minuteInput = input.int(30, "minute", ␣
↪→ inline = "01", minval = 0, maxval = 59, tooltip = TT_RST_TIME)
int fixedPeriodInput = input.int(20, "  Fixed period:  ", ␣
↪→ inline = "02", minval = 1, tooltip = TT_RST_PERIOD)
string ltfModeInput = input.string(LTF3, "Intrabar precision", ␣
↪→ inline = "03", options = [LTF1, LTF2, LTF3, LTF4])

472 Chapter 5. Writing scripts

https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_while

Pine Script™ v5 User Manual

<function_declarations>

All user-defined functions must be defined in the script’s global scope; nested function definitions are not allowed in Pine
Script™.
Optimal function design should minimize the use of global variables in the function’s scope, as they undermine function
portability. When it can’t be avoided, those functions must follow the global variable declarations in the code, which
entails they can’t always be placed in the <function_declarations> section. Such dependencies on global variables should
ideally be documented in the function’s comments.
It will also help readers if you document the function’s objective, parameters and result. The same syntax used in libraries
can be used to document your functions. This can make it easier to port your functions to a library should you ever decide
to do so:

1 //@version=5
2 indicator("<function_declarations>", "", true)
3

4 string SIZE_LARGE = "Large"
5 string SIZE_NORMAL = "Normal"
6 string SIZE_SMALL = "Small"
7

8 string sizeInput = input.string(SIZE_NORMAL, "Size", options = [SIZE_LARGE, SIZE_
↪→NORMAL, SIZE_SMALL])

9

10 // @function Used to produce an argument for the `size` parameter in built-in␣
↪→functions.

11 // @param userSize (simple string) User-selected size.
12 // @returns One of the `size.*` built-in constants.
13 // Dependencies: SIZE_LARGE, SIZE_NORMAL, SIZE_SMALL
14 getSize(simple string userSize) =>
15 result =
16 switch userSize
17 SIZE_LARGE => size.large
18 SIZE_NORMAL => size.normal
19 SIZE_SMALL => size.small
20 => size.auto
21

22 if ta.rising(close, 3)
23 label.new(bar_index, na, yloc = yloc.abovebar, style = label.style_arrowup, size␣

↪→= getSize(sizeInput))

<calculations>

This is where the script’s core calculations and logic should be placed. Code can be easier to read when variable decla-
rations are placed near the code segment using the variables. Some programmers prefer to place all their non-constant
variable declarations at the beginning of this section, which is not always possible for all variables, as some may require
some calculations to have been executed before their declaration.

5.1. Style guide 473

Pine Script™ v5 User Manual

<strategy_calls>

Strategies are easier to read when strategy calls are grouped in the same section of the script.

<visuals>

This section should ideally include all the statements producing the script’s visuals, whether they be plots, drawings,
background colors, candle-plotting, etc. See the Pine Script™ User Manual’s section on here for more information on
how the relative depth of visuals is determined.

<alerts>

Alert code will usually require the script’s calculations to have executed before it, so it makes sense to put it at the end of
the script.

5.1.4 Spacing

A space should be used on both sides of all operators, except unary operators (-1). A space is also recommended after
all commas and when using named function arguments, as in plot(series = close):

int a = close > open ? 1 : -1
var int newLen = 2
newLen := min(20, newlen + 1)
float a = -b
float c = d > e ? d - e : d
int index = bar_index % 2 == 0 ? 1 : 2
plot(close, color = color.red)

5.1.5 Line wrapping

Line wrapping can make long lines easier to read. Line wraps are defined by using an indentation level that is not a
multiple of four, as four spaces or a tab are used to define local blocks. Here we use two spaces:

plot(
series = close,
title = "Close",
color = color.blue,
show_last = 10

)

5.1.6 Vertical alignment

Vertical alignment using tabs or spaces can be useful in code sections containing many similar lines such as constant
declarations or inputs. They can make mass edits much easier using the Pine Editor’s multi-cursor feature (ctrl + alt
+ /):

// Colors used as defaults in inputs.
color COLOR_AQUA = #0080FFff
color COLOR_BLACK = #000000ff
color COLOR_BLUE = #013BCAff

(continues on next page)

474 Chapter 5. Writing scripts

Pine Script™ v5 User Manual

(continued from previous page)
color COLOR_CORAL = #FF8080ff
color COLOR_GOLD = #CCCC00ff

5.1.7 Explicit typing

Including the type of variables when declaring them is not required and is usually overkill for small scripts; we do not
systematically use it. It can be useful to make the type of a function’s result clearer, and to distinguish a variable’s
declaration (using =) from its reassignments (using :=). Using explicit typing can also make it easier for readers to find
their way in larger scripts.

5.2 Debugging

• Introduction

• The lay of the land

• Displaying numeric values

• Displaying strings

• Debugging conditions

• Debugging from inside functions

• Debugging from inside `for` loops

• Tips

5.2.1 Introduction

TradingView’s close integration between the Pine Script™ Editor and charts allows for efficient and interactive debugging
of Pine Script™ code. Once a programmer understands the most appropriate technique to use in each situation, they will
be able to debug scripts quickly and thoroughly. This page demonstrates themost useful techniques to debug Pine Script™
code.
If you are not yet familiar with Pine Script™’s execution model, it is important that you read the Execution model page
of this User Manual so you understand how your debugging code will behave in the Pine Script™ environment.

5.2. Debugging 475

https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

5.2.2 The lay of the land

Values plotted by Pine scripts can be displayed in four distinct places:
1. Next to the script’s name (controlled by the “Indicator Values” checkbox in the “Chart settings/Status Line” tab).
2. In the script’s pane, whether your script is a chart overlay or in a separate pane.
3. In the scale (only displays the last bar’s value and is controlled by the “Indicator Last Value Label” checkbox in the

“Chart settings/Scale” tab).
4. In the Data Window (which you can bring up using the fourth icon down, to the right of your chart).

Note the following in the preceding screenshot:
• The chart’s cursor is on the dataset’s first bar, where bar_index is zero. That value is reflected next to the indicator’s
name and in the Data Window. Moving your cursor on other bars would update those values so they always
represent the value of the plot on that bar. This is a good way to inspect the value of a variable as the script’s
execution progresses from bar to bar.

• The title argument of our plot() call, “Bar Index”, is used as the value’s legend in the Data Window.
• The precision of the values displayed in the Data Window is dependent on the chart symbol’s tick value. You can
modify it in two ways:

– By changing the value of the “Precision” field in the script’s “Settings/Style” tab. You can obtain up to eight
digits of precision using this method.

– By using the precision parameter in your script’s indicator() or strategy() declaration statement. This
method allows specifying up to 16 digits precision.

• The plot() call in our script plots the value of bar_index in the indicator’s pane, which shows the increasing value
of the variable.

• The scale of the script’s pane is automatically sized to accommodate the smallest and largest values plotted by all
plot() calls in the script.

476 Chapter 5. Writing scripts

https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_plot

Pine Script™ v5 User Manual

5.2.3 Displaying numeric values

When the script’s scale is unimportant

The script in the preceding screenshot used the simplest way to inspect numerical values: a plot() call, which plots a line
corresponding to the variable’s value in the script’s display area. Our example script plotted the value of the bar_index
built-in variable, which contains the bar’s number, a value beginning at zero on the dataset’s first bar and increased by one
on each subsequent bar. We used a plot() call to plot the variable to inspect because our script was not plotting anything
else; we were not preoccupied with preserving the scale for other plots to continue to plot normally. This is the script we
used:

1 //@version=5
2 indicator("Plot `bar_index`")
3 plot(bar_index, "Bar Index")

When the script’s scale must be preserved

Plotting values in the script’s display area is not always possible. When we already have other plots going on and adding
debugging plots of variables whose values fall outside the script’s plotting boundaries would make the plots unreadable,
another technique must be used to inspect values if we want to preserve the scale of the other plots.
Suppose we want to continue inspecting the value of bar_index, but this time in a script where we are also plotting RSI:

1 //@version=5
2 indicator("Plot RSI and `bar_index`")
3 r = ta.rsi(close, 20)
4 plot(r, "RSI", color.black)
5 plot(bar_index, "Bar Index")

Running the script on a dataset containing a large number of bars yields the following display:

where:
1. The RSI line in black is flat because it varies between zero and 100, but the indicator’s pane is scaled to show the

maximum value of bar_index, which is 25692.0000.
2. The value of bar_index on the bar the cursor is on is displayed next to the indicator’s name, and its blue plot in the

script’s pane is flat.
3. The 25692.0000 value of bar_index shown in the scale represents its value on the last bar, so the dataset contains

25693 bars.
4. The value of bar_index on the bar the cursor is on is also displayed in the Data Window, along with that bar’s value

for RSI just above it.
In order to preserve our plot of RSI while still being able to inspect the value or bar_index, we will plot the variable using
plotchar() like this:

5.2. Debugging 477

https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Plot RSI and `bar_index`")
3 r = ta.rsi(close, 20)
4 plot(r, "RSI", color.black)
5 plotchar(bar_index, "Bar index", "", location.top)

where:
• Because the value of bar_index is no longer being plotted in the script’s pane, the pane’s boundaries are now those
of RSI, which displays normally.

• The value plotted using plotchar() is displayed next to the script’s name and in the Data Window.
• We are not plotting a character with our plotchar() call, so the third argument is an empty string (""). We are
also specifying location.top as the location argument, so that we do not put the symbol’s price in play in the
calculation of the display area’s boundaries.

5.2.4 Displaying strings

Pine Script™ labels must be used to display strings. Labels only appear in the script’s display area; strings shown in labels
do not appear in the Data Window or anywhere else.

Labels on each bar

The following script demonstrates the simplest way to repetitively draw a label showing the symbol’s name:

1 //@version=5
2 indicator("Simple label", "", true)
3 label.new(bar_index, high, syminfo.ticker)

By default, only the last 50 labels will be shown on the chart. You can increase this amount up to a maximum of 500 by
using the max_labels_count parameter in your script’s indicator() or strategy() declaration statement. For example:

478 Chapter 5. Writing scripts

https://www.tradingview.com/pine-script-reference/v5/#var_bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#var_location\{dot\}top
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy

Pine Script™ v5 User Manual

indicator("Simple label", "", true, max_labels_count = 500)

Labels on last bar

As strings manipulated in Pine scripts often do not change bar to bar, the method most frequently used to visualize them
is to draw a label on the dataset’s last bar. Here, we use a function to create a label that only appears on the chart’s last
bar. Our f_print() function has only one parameter, the text string to be displayed:

1 //@version=5
2 indicator("print()", "", true)
3 print(txt) =>
4 // Create label on the first bar.
5 var lbl = label.new(bar_index, na, txt, xloc.bar_index, yloc.price, color(na),␣

↪→label.style_none, color.gray, size.large, text.align_left)
6 // On next bars, update the label's x and y position, and the text it displays.
7 label.set_xy(lbl, bar_index, ta.highest(10)[1])
8 label.set_text(lbl, txt)
9

10 print("Multiplier = " + str.tostring(timeframe.multiplier) + "\nPeriod = " +␣
↪→timeframe.period + "\nHigh = " + str.tostring(high))

11 print("Hello world!\n\n\n\n")

Note the following in our last code example:
• We use the print() function to enclose the label-drawing code. While the function is called on each bar, the
label is only created on the dataset’s first bar because of our use of the var keyword when declaring the lbl variable
inside the function. After creating it, we only update the label’s x and y coordinates and its text on each successive
bar. If we did not update those values, the label would remain on the dataset’s first bar and would only display the
text string’s value on that bar. Lastly, note that we use ta.highest(10)[1] to position the label vertically,
By using the highest high of the previous 10 bars, we prevent the label from moving during the realtime bar. You
may need to adapt this y position in other contexts.

• We call the print() function twice to show that if you make multiple calls because it makes debugging multiple
strings easier, you can superimpose their text by using the correct amount of newlines (\n) to separate each one.

• We use the str.tostring() function to convert numeric values to a string for inclusion in the text to be displayed.

5.2. Debugging 479

https://www.tradingview.com/pine-script-reference/v5/#op_var
https://www.tradingview.com/pine-script-reference/v5/#fun_str\{dot\}tostring

Pine Script™ v5 User Manual

5.2.5 Debugging conditions

Single conditions

Many methods can be used to display occurrences where a condition is met. This code shows six ways to identify bars
where RSI is smaller than 30:

1 //@version=5
2 indicator("Single conditions")
3 r = ta.rsi(close, 20)
4 rIsLow = r < 30
5 hline(30)
6

7 // Method #1: Change the plot's color.
8 plot(r, "RSI", rIsLow ? color.fuchsia : color.black)
9 // Method #2: Plot a character in the bottom region of the display.
10 plotchar(rIsLow, "rIsLow char at bottom", "▲", location.bottom, size = size.small)
11 // Method #3: Plot a character on the RSI line.
12 plotchar(rIsLow ? r : na, "rIsLow char on line", "•", location.absolute, color.red,␣

↪→size = size.small)
13 // Method #4: Plot a shape in the top region of the display.
14 plotshape(rIsLow, "rIsLow shape", shape.arrowup, location.top)
15 // Method #5: Plot an arrow.
16 plotarrow(rIsLow ? 1 : na, "rIsLow arrow")
17 // Method #6: Change the background's color.
18 bgcolor(rIsLow ? color.new(color.green, 90) : na)

Note that:
• We define our condition in the rIsLow boolean variable and it is evaluated on each bar. The r < 30 expression
used to assign a value to the variable evaluates to true or false (or na when r is na, as is the case in the first
bars of the dataset).

• Method #1 uses a change in the color of the RSI plot on the condition. Whenever a plot’s color changes, it colors
the plot starting from the preceding bar.

• Method #2 uses plotchar() to plot an up triangle in the bottom part of the indicator’s display. Using different
combinations of positions and characters allows the simultaneous identification of multiple conditions on a single
bar. This is one of our preferred methods to identify conditions on the chart.

• Method #3 also uses a plotchar() call, but this time the character is positioned on the RSI line. In order to achieve
this, we use location.absolute and Pine Script™’s ?: ternary conditional operator to define a conditional expression
where a y position is used only when our rIsLow condition is true. When it is not true, na is used, so no character
is displayed.

480 Chapter 5. Writing scripts

https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#var_location\{dot\}absolute
https://www.tradingview.com/pine-script-reference/v5/#op_\{question\}\{colon\}

Pine Script™ v5 User Manual

• Method #4 uses plotshape() to plot a blue up arrow in the top part of the indicator’s display area when our condition
is met.

• Method #5 uses plotarrow() to plot a green up arrow at the bottom of the display when our condition is met.
• Method #6 uses bgcolor() to change the color of the background when our condition is met. The ternary operator
is used once again to evaluate our condition. It will return color.green when rIsLow is true, and the na
color (which does not color the background) when rIsLow is false or na.

• Lastly, note how a boolean variable with a true value displays as 1 in the Data Window. false values are
denoted by a zero value.

Compound conditions

Programmers needing to identify situations where more than one condition is met must build compound conditions by
aggregating individual conditions using the and logical operator. Because compound conditions will only perform as
expected if their individual conditions trigger correctly, you will save yourself many headaches if you validate the behavior
of individual conditions before using a compound condition in your code.
The state of multiple individual conditions can be displayed using a technique like this one, where four individual condi-
tions are used to build our bull compound condition:

1 //@version=5
2 indicator("Compound conditions")
3 periodInput = input.int(20)
4 bullLevelInput = input.int(55)
5

6 r = ta.rsi(close, periodInput)
7

8 // Condition #1.
9 rsiBull = r > bullLevelInput
10 // Condition #2.
11 hiChannel = ta.highest(r, periodInput * 2)[1]
12 aboveHiChannel = r > hiChannel
13 // Condition #3.
14 channelIsOld = hiChannel >= hiChannel[periodInput]
15 // Condition #4.
16 historyIsBull = math.sum(rsiBull ? 1 : -1, periodInput * 3) > 0
17 // Compound condition.
18 bull = rsiBull and aboveHiChannel and channelIsOld and historyIsBull
19

20 hline(bullLevelInput)
21 plot(r, "RSI", color.black)
22 plot(hiChannel, "High Channel")
23

24 plotchar(rsiBull ? bullLevelInput : na, "rIsBull", "1", location.absolute, color.
↪→green, size = size.tiny)

25 plotchar(aboveHiChannel ? r : na, "aboveHiChannel", "2", location.absolute, size =␣
↪→size.tiny)

26 plotchar(channelIsOld, "channelIsOld", "3", location.bottom, size = size.tiny)
27 plotchar(historyIsBull, "historyIsBull", "4", location.top, size = size.tiny)
28 bgcolor(bull ? not bull[1] ? color.new(color.green, 50) : color.new(color.green, 90)␣

↪→: na)

5.2. Debugging 481

https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_plotarrow
https://www.tradingview.com/pine-script-reference/v5/#fun_bgcolor
https://www.tradingview.com/pine-script-reference/v5/#op_and

Pine Script™ v5 User Manual

Note that:
• We use a plotchar() call to display each condition’s number, taking care to spread them over the indicator’s y space
so they don’t overlap.

• The first two plotchar() calls use absolute positioning to place the condition number so that it helps us remember
the corresponding condition. The first one which displays “1” when RSI is higher than the user-defined bull level
for example, positions the “1” on the bull level.

• We use two different shades of green to color the background: the brighter one indicates the first bar where our
compound condition becomes true, the lighter green identifies subsequent bars where our compound condition
continues to be true.

• While it is not always strictly necessary to assign individual conditions to a variable because they can be used directly
in boolean expressions, it makes for more readable code when you assign a condition to a variable name that will
remind you and your readers of what it represents. Readability considerations should always prevail in cases like
this one, where the hit on performance of assigning conditions to variable names is minimal or null.

5.2.6 Debugging from inside functions

Variables in function are local to the function, so not available for plotting from the script’s global scope. In this script we
have written the hlca() function to calculate a weighed average:

1 //@version=5
2 indicator("Debugging from inside functions", "", true)
3 hlca() =>
4 var float avg = na
5 hlca = math.avg(high, low, close, nz(avg, close))
6 avg := ta.sma(hlca, 20)
7

8 h = hlca()
9 plot(h)

We need to inspect the value of hlca in the function’s local scope as the function calculates, bar to bar. We cannot access
the hlca variable used inside the function from the script’s global scope. We thus need another mechanism to pull that
variable’s value from inside the function’s local scope, while still being able to use the function’s result. We can use Pine
Script™’s ability to have functions return a tuple to gain access to the variable:

1 //@version=5
2 indicator("Debugging from inside functions", "", true)
3 hlca() =>
4 var float avg = na
5 instantVal = math.avg(high, low, close, nz(avg, close))
6 avg := ta.sma(instantVal, 20)

(continues on next page)

482 Chapter 5. Writing scripts

https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar

Pine Script™ v5 User Manual

(continued from previous page)
7 // Return two values instead of one.
8 [avg, instantVal]
9

10 [h, instantVal] = hlca()
11 plot(h, "h")
12 plot(instantVal, "instantVal", color.black)

Contrary to global scope variables, array elements of globally defined arrays can be modified from within functions. We
can use this feature to write a functionally equivalent script:

1 //@version=5
2 indicator("Debugging from inside functions", "", true)
3 // Create an array containing only one float element.
4 instantValGlobal = array.new_float(1)
5 hlca() =>
6 var float avg = na
7 instantVal = math.avg(high, low, close, nz(avg, close))
8 // Set the array's only element to the current value of `_instantVal`.
9 array.set(instantValGlobal, 0, instantVal)
10 avg := ta.sma(instantVal, 20)
11

12 h = hlca()
13 plot(h, "h")
14 // Retrieve the value of the array's only element which was set from inside the␣

↪→function.
15 plot(array.get(instantValGlobal, 0), "instantValGlobal", color.black)

5.2.7 Debugging from inside `for` loops

Values inside for loops cannot be plotted using plot() calls in the loop. As in functions, such variables are also local to the
loop’s scope. Here, we explore three different techniques to inspect variable values originating from for loops, starting
from this code example, which calculates the balance of bars in the lookback period which have a higher/lower true range
value than the current bar:

1 //@version=5
2 indicator("Debugging from inside `for` loops")
3 lookbackInput = input.int(20, minval = 0)
4

5 float trBalance = 0
6 for i = 1 to lookbackInput
7 trBalance := trBalance + math.sign(ta.tr - ta.tr[i])
8

(continues on next page)

5.2. Debugging 483

https://www.tradingview.com/pine-script-reference/v5/#op_for
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#op_for

Pine Script™ v5 User Manual

(continued from previous page)
9 hline(0)
10 plot(trBalance)

Extracting a single value

If we want to inspect the value of a variable at a single point in the loop, we can save it and plot it once the loop is exited.
Here, we save the value of tr in the val variable at the loop’s last iteration:

1 //@version=5
2 indicator("Debugging from inside `for` loops", max_lines_count = 500, max_labels_

↪→count = 500)
3 lookbackInput = input.int(20, minval = 0)
4

5 float val = na
6 float trBalance = 0
7 for i = 1 to lookbackInput
8 trBalance := trBalance + math.sign(ta.tr - ta.tr[i])
9 if i == lookbackInput
10 val := ta.tr[i]
11 hline(0)
12 plot(trBalance)
13 plot(val, "val", color.black)

Using lines and labels

When we want to extract values from more than one loop iteration we can use lines and labels. Here we draw a line
corresponding to the value of ta.tr used in each loop iteration. We also use a label to display, for each line, the loop’s
index and the line’s value. This gives us a general idea of the values being used in each loop iteration:

1 //@version=5
2 indicator("Debugging from inside `for` loops", max_lines_count = 500, max_labels_

↪→count = 500)
3 lookbackInput = input.int(20, minval = 0)
4

5 float trBalance = 0
6 for i = 1 to lookbackInput
7 trBalance := trBalance + math.sign(ta.tr - ta.tr[i])
8 line.new(bar_index[1], ta.tr[i], bar_index, ta.tr[i], color = color.black)
9 label.new(bar_index, ta.tr[i], str.tostring(i) + "•" + str.tostring(ta.tr[i]),␣

↪→style = label.style_none, size = size.small)

(continues on next page)

484 Chapter 5. Writing scripts

https://www.tradingview.com/pine-script-reference/v5/#var_ta\{dot\}tr
https://www.tradingview.com/pine-script-reference/v5/#var_ta\{dot\}tr

Pine Script™ v5 User Manual

(continued from previous page)
10

11 hline(0)
12 plot(trBalance)

Note that:
• To show more detail, the scale in the preceding screenshot has been manually expanded by clicking and dragging
the scale area.

• We use max_lines_count = 500, max_labels_count = 500 in our indicator() declaration statement
to display the maximum number of lines and labels.

• Each loop iteration does not necessarily produce a distinct ta.tr value, which is why we may not see 20 distinct lines
for each bar.

• If we wanted to show only one level, we could use the same technique while isolating a specific loop iteration as we
did in the preceding example.

5.2. Debugging 485

https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#var_ta\{dot\}tr

Pine Script™ v5 User Manual

Extracting multiple values

We can also extract multiple values from loop iterations by building a single string which we will display using a label
after the loop executes:

1 //@version=5
2 indicator("Debugging from inside `for` loops", max_lines_count = 500, max_labels_

↪→count = 500)
3 lookbackInput = input.int(20, minval = 0)
4

5 string = ""
6 float trBalance = 0
7 for i = 1 to lookbackInput
8 trBalance := trBalance + math.sign(ta.tr - ta.tr[i])
9 string := string + str.tostring(i, "00") + "•" + str.tostring(ta.tr[i]) + "\n"
10

11 label.new(bar_index, 0, string, style = label.style_none, size = size.small,␣
↪→textalign = text.align_left)

12 hline(0)
13 plot(trBalance)

Note that:
• The scale in the preceding screenshot has been manually expanded by clicking and dragging the scale area so the
content of the indicator’s display area content could be moved vertically to show only its relevant part.

• We use str.tostring(i, "00") to force the display of the loop’s index to zero-padded two digits so they
align neatly.

When loops with numerous iterationsmake displaying all their values impractical, you can sample a subset of the iterations.
This code uses the % (modulo) operator to include values from every second loop iteration:

for i = 1 to i_lookBack
lowerRangeBalance := lowerRangeBalance + math.sign(ta.tr - ta.tr[i])
if i % 2 == 0

string := string + str.tostring(i, "00") + "•" + str.tostring(ta.tr[i]) + "\n"

486 Chapter 5. Writing scripts

https://www.tradingview.com/pine-script-reference/v5/#op_\{percent\}

Pine Script™ v5 User Manual

5.2.8 Tips

The two techniques we use most frequently to debug our Pine Script™ code are:

plotchar(v, "v", "", location.top, size = size.tiny)

to plot variables of type float, int or bool in the indicator’s values and the Data Window, and the one-line version of our
print() function to debug strings:

print(txt) => var _label = label.new(bar_index, na, txt, xloc.bar_index, yloc.price,␣
↪→color(na), label.style_none, color.gray, size.large, text.align_left), label.set_
↪→xy(_label, bar_index, ta.highest(10)[1]), label.set_text(_label, txt)
print(stringName)

As we use AutoHotkey for Windows to speed repetitive tasks, we include these lines in our AutoHotkey script (this is not
Pine Script™ code):

; ————— This is AHK code, not Pine Script™. —————
^+f:: SendInput plotchar(^v, "^v", "", location.top, size = size.tiny){Return}
^+p:: SendInput print(txt) => var lbl = label.new(bar_index, na, txt, xloc.bar_index,␣
↪→yloc.price, color(na), label.style_none, color.gray, size.large, text.align_left),␣
↪→label.set_xy(lbl, bar_index, highest(10)[1]), label.set_text(lbl, txt)`nprint()
↪→{Left}

The second line will type a debugging plotchar() call including an expression or variable name previously copied to the
clipboard when we use ctrl + shift + f. Copying the variableName variable name or the close > open
conditional expression to the clipboard and hitting ctrl + shift + f will, respectively, yield:

plotchar(variableName, "variableName", "", location.top, size = size.tiny)
plotchar(close > open, "close > open", "", location.top, size = size.tiny)

The third line triggers on ctrl + shift + p. It types our one-line print() function in a script and on a second line,
an empty call to the function with the cursor placed so all that’s left to do is type the string we want to display:

print(txt) => var lbl = label.new(bar_index, na, txt, xloc.bar_index, yloc.price,␣
↪→color(na), label.style_none, color.gray, size.large, text.align_left), label.set_
↪→xy(lbl, bar_index, ta.highest(10)[1]), label.set_text(lbl, txt)
print()

Note: AutoHotkey works only on Windows systems. Keyboard Maestro or others can be substituted on Apple systems.

5.2. Debugging 487

https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

5.3 Publishing scripts

• Script visibility and access

• Preparing a publication

• Publishing a script

• Updating a publication

Programmers who wish to share their Pine scripts with other traders can publish them.

Note: If you write scripts for your personal use, there is no need to publish them; you can save them in the Pine Editor
and use the “Add to Chart” button to add your script to your chart.

5.3.1 Script visibility and access

When you publish a script, you control its visibility and access:
• Visibility is controlled by choosing to publish publicly or privately. See How do private ideas and scripts differ
from public ones? in the Help Center for more details. Publish publicly when you have written a script you think
can be useful to TradingViewers. Public scripts are subject to moderation. To avoid moderation, ensure your
publication complies with our House Rules and Script Publishing Rules. Publish privately when you don’t want
your script visible to all other users, but want to share it with a few friends.

• Access determines if users will see your source code, and how they will be able to use your script. There are three
access types: open, protected (reserved to paid accounts) or invite-only (reserved to Premium accounts). See What
are the different types of published scripts? in the Help Center for more details.

When you publish a script

• The publication’s title is determined by the argument used for the title parameter in the script’s indicator() or
strategy() declaration statement. That title is also used when TradingViewers search for script names.

• The name of your script on the chart will be the argument used for the shorttitle parameter in the script’s
indicator() or strategy() declaration statement, or the title argument in library().

• Your script must have a description explaining what your script does and how to use it.
• The chart you are using when you publish will become visible in your publication, including any other scripts or
drawings on it. Remove unrelated scripts or drawings from your chart before publishing your script.

• Your script’s code can later be updated. Each update can include release notes which will appear, dated, under your
original description.

• Scripts can be liked, shared, commented on or reported by other users.
• Your published scripts appear under the “SCRIPTS” tab of your user profile.
• A script widget and a script page are created for your script. The script widget is your script’s placeholder showing
in script feeds on the platform. It contains your script’s title, chart and the first few lines of your description. When
users click on your script widget, the script’s page opens. It contains all the information relating to your script.

488 Chapter 5. Writing scripts

https://www.tradingview.com/support/solutions/43000548335
https://www.tradingview.com/support/solutions/43000548335
https://www.tradingview.com/support/solutions/43000591638
https://www.tradingview.com/support/solutions/43000590599
https://www.tradingview.com/support/solutions/43000482573
https://www.tradingview.com/support/solutions/43000482573
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_library

Pine Script™ v5 User Manual

Visibility

Public

When you publish a public script:
• Your script will be inluded in our Community Scripts where it becomes visible to the millions of TradingViewers
on all internationalized versions of the site.

• Your publication must comply with House Rules and Script Publishing Rules.
• If your script is an invite-only script, you must comply with our Vendor Requirements.
• It becomes accessible through the search functions for scripts.
• You will not be able to edit your original description or its title, nor change its public/private visibility, nor its access
type (open-source, protected, invite-only).

• You will not be able to delete your publication.

Private

When you publish a private script:
• It will not be visible to other users unless you share its url with them.
• It is visible to you from your user profile’s “SCRIPTS” tab.
• Private scripts are identifiable by the “X” and “lock” icons in the top-right of their widget. The “X” is used to delete
it.

• It is not moderated, unless you sell access to it or make it available publicly, as it is then no longer “private”.
• You can update its original description and title.
• You cannot link to or mentioned it from any public TradingView content (ideas, script descriptions, comments,
chats, etc.).

• It is not accessible through the search functions for scripts.

Access

Public or private scripts can be published using one of three access types: open, protected or invite-only. The access type
you can select from will vary with the type of account you hold.

Open

The Pine Script™ code of scripts published open is visible to all users. Open-source scripts on TradingView use the
Mozilla license by default, but you may choose any license you want. You can find information on licensing at GitHub.

5.3. Publishing scripts 489

https://www.tradingview.com/scripts/
https://www.tradingview.com/support/solutions/43000591638
https://www.tradingview.com/support/solutions/43000590599
https://www.tradingview.com/support/solutions/43000549951
https://help.github.com/articles/licensing-a-repository/

Pine Script™ v5 User Manual

Protected

The code of protected scripts is hidden from view and no one but its author can access it. While the script’s code is not
accessible, protected scripts can be used freely by any user. Only Pro, Pro+ or Premium accounts may publish public
protected scripts.

Invite-only

The invite-only access type protects both the script’s code and its use. The publisher of an invite-only script must explicitly
grant access to individual users. Invite-only scripts are mostly used by script vendors providing paid access to their scripts.
Only Premium accounts can publish invite-only scripts, and they must comply with our Vendor Requirements.
TradingView does not benefit from script sales. Transactions concerning invite-only scripts are strictly between users and
vendors; they do not involve TradingView.
Public invite-only scripts are the only scripts for which vendors are allowed to ask for payment on TradingView.
On their invite-only script’s page, authors will see a “Manage Access” button. The “Manage Access” window allows
authors to control who has access to their script.

490 Chapter 5. Writing scripts

https://www.tradingview.com/support/solutions/43000549951

Pine Script™ v5 User Manual

5.3.2 Preparing a publication

1. Even if you intend to publish publicly, it is always best to start with a private publication because you can use it
to validate what your final publication will look like. You can edit the title, description, code or chart of private
publications, and contrary to public scripts, you can delete private scripts when you don’t need them anymore, so
they are the perfect way to practice before sharing a script publicly. You can read more about preparing script
descriptions in the How We Write and Format Script Descriptions publication.

2. Prepare your chart. Load your script on the chart and remove other scripts or drawings that won’t help users
understand your script. Your script’s plots should be easy to identify on the chart that will be published with it.

3. Load your code in the Pine Editor if it isn’t already. In the Editor, click the “Publish Script” button:

4. A popup appears to remind you that if you publish publicly, it’s important that your publication comply with House
Rules. Once you’re through the popup, place your description in the field below the script’s title. The default title
proposed for your publication is the title field from your script’s code. It is always best to use that title; it makes
it easier for users to search for your script if it is public. Select the visibility of your publication. We want to publish
a private publication, so we check the “Private Script” checkbox at the bottom-right of the “Publish Script” window:

5.3. Publishing scripts 491

https://www.tradingview.com/chart/SSP/aOYEvBxw-How-We-Write-and-Format-Script-Descriptions/

Pine Script™ v5 User Manual

5. Select the access type you want for your script: Open, Protected or Invite-only. We have selected “Open” for open-

source.
6. Select the appropriate categories for your script (at least one is mandatory) and enter optional custom tags.

492 Chapter 5. Writing scripts

Pine Script™ v5 User Manual

7. Click the “Publish Private Script” button in the lower-right of the window. When the publication is complete, your
published script’s page will appear. You are done! You can confirm the publication by going to your User Profile
and viewing your “SCRIPTS” tab. From there, you will be able to open your script’s page and edit your private
publication by using the “Edit” button in the top-right of your script’s page. Note that you can also update private
publications, just like you can public ones. If you want to share your private publication with a friend, privately
send her the url from your script’s page. Remember you are not allowed to share links to private publications in
public TradingView content.

5.3.3 Publishing a script

Whether you intend to publish privately or publicly, first follow the steps in the previous section. If you intend to publish
privately, you will be done. If you intend to publish publicly and are satisfied with the preparatory process of validating
your private publication, follow the same steps as above but do not check the “Private Script” checkbox and click the
“Publish Public Script” button at the bottom-right of the “Publish Script” page.
When you publish a new public script, you have a 15-minute window to make changes to your description or delete the
publication. After that you will no longer be able to change your publication’s title, description, visiblity or access type.
If you make an error, send a message to the PineCoders moderator account; they moderate script publications and will
help.

5.3.4 Updating a publication

You can update both public or private script publications. When you update a script, its code must be different than the
previously published version’s code. You can add release notes with your update. They will appear after your script’s
original description in the script’s page.
By default, the chart used when you update will replace the previous chart in your script’s page. You can choose not to
update your script page’s chart, however. Note that while you can update the chart displayed in the script’s page, the chart
from the script’s widget will not update.
In the same way you can validate a public publication by first publishing a private script, you can also validate an update
on a private publication before proceeding with it on your public one. The process of updating a published script is the
same for public and private scripts.

5.3. Publishing scripts 493

https://www.tradingview.com/u/PineCoders/

Pine Script™ v5 User Manual

If you intend to update both the code and chart of your published script, prepare your chart the same way you would for
a new publication. In the following example, we will not be updating the publication’s chart:

1. As you would for a new publication, load your script in the Editor and click the “Publish Script” button.
2. Once in the “Publish Script” window, select the “Update Existing Script” but-

ton. Then select the script to update from the “Choose script” dropdown menu:

3. Enter your release notes in the text field. The differences in your code are highlighted below your release notes.
4. We do not want to update the publication’s chart, so we check the “Don’t update the chart” checkbox:

5. Click the “Publish New Version” button. You’re done.

494 Chapter 5. Writing scripts

Pine Script™ v5 User Manual

5.4 Limitations

• Introduction

• Time

• Chart visuals

• `request.*()` calls

• Script size and memory

• Other limitations

5.4.1 Introduction

As is mentioned in ourWelcome page:
Because each script uses computational resources in the cloud, we must impose limits in order to share these
resources fairly among our users. We strive to set as few limits as possible, but will of course have to implement
as many as needed for the platform to run smoothly. Limitations apply to the amount of data requested from
additional symbols, execution time, memory usage and script size.

If you develop complex scripts using Pine Script™, sooner or later you will run into some of the limitations we impose.
This section provides you with an overview of the limitations that you may encounter. There are currently no means for
Pine Script™ programmers to get data on the resources consumed by their scripts. We hope this will change in the future.
In the meantime, when you are considering large projects, it is safest to make a proof of concept in order to assess the
probability of your script running into limitations later in your project.
Below, we describe the limits imposed in the Pine Script™ environment.

5.4.2 Time

Script compilation

Scripts must compile before they are executed on charts. Compilation occurs when you save a script from the Pine Editor
or when you add a script to the chart. A two-minute limit is imposed on compilation time, which will depend on the
size and complexity of your script, and whether or not a cached version of a previous compilation is available. When a
compile exceeds the two-minute limit, a warning is issued. Heed that warning by shortening your script because after three
consecutives warnings a one-hour ban on compilation attempts is enforced. The first thing to consider when optimizing
code is to avoid repetitions by using functions to encapsulate oft-used segments, and call functions instead of repeating
code.

5.4. Limitations 495

https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

Script execution

Once a script is compiled it can be executed. See the Events triggering the execution of a script for a list of the events
triggering the execution of a script. The time allotted for the script to execute on all bars of a dataset varies with account
types. The limit is 20 seconds for basic accounts, 40 for others.

Loop execution

The execution time for any loop on any single bar is limited to 500 milliseconds. The outer loop of embedded loops
counts as one loop, so it will time out first. Keep in mind that even though a loop may execute under the 500 ms time
limit on a given bar, the time it takes to execute on all the dataset’s bars may nonetheless cause your script to exceed the
total execution time limit. For example, the limit on total execution time will make it impossible for you script to execute
a 400 ms loop on each bar of a 20,000-bar dataset because your script would then need 8000 seconds to execute.

5.4.3 Chart visuals

Plot limits

A maximum of 64 plot counts are allowed per script. The functions that generate plot counts are:
• plot()
• plotarrow()
• plotbar()
• plotcandle()
• plotchar()
• plotshape()
• alertcondition()
• bgcolor()
• fill(), but only if its color is of the series form.

The following functions do not generate plot counts:
• hline()
• line.new()
• label.new()
• table.new()
• box.new()

One function call can generate up to seven plot counts, depending on the function and how it is called. When your script
exceeds the maximum of 64 plot counts, the runtime error message will display the plot count generated by your script.
Once you reach that point, you can determine how many plot counts a function call generates by commenting it out in a
script. As long as your script still throws an error, you will be able to see how the actual plot count decreases after you
have commented out a line.
The following example shows different function calls and the number of plot counts each one will generate:

496 Chapter 5. Writing scripts

https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_plotarrow
https://www.tradingview.com/pine-script-reference/v5/#fun_plotbar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotcandle
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_alertcondition
https://www.tradingview.com/pine-script-reference/v5/#fun_bgcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#op_series
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_line\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_box\{dot\}new

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Plot count example")
3

4 bool isUp = close > open
5 color isUpColor = isUp ? color.green : color.red
6 bool isDn = not isUp
7 color isDnColor = isDn ? color.red : color.green
8

9 // Uses one plot count each.
10 p1 = plot(close, color = color.white)
11 p2 = plot(open, color = na)
12

13 // Uses two plot counts for the `close` and `color` series.
14 plot(close, color = isUpColor)
15

16 // Uses one plot count for the `close` series.
17 plotarrow(close, colorup = color.green, colordown = color.red)
18

19 // Uses two plot counts for the `close` and `colorup` series.
20 plotarrow(close, colorup = isUpColor)
21

22 // Uses three plot counts for the `close`, `colorup`, and the `colordown` series.
23 plotarrow(close - open, colorup = isUpColor, colordown = isDnColor)
24

25 // Uses four plot counts for the `open`, `high`, `low`, and `close` series.
26 plotbar(open, high, low, close, color = color.white)
27

28 // Uses five plot counts for the `open`, `high`, `low`, `close`, and `color` series.
29 plotbar(open, high, low, close, color = isUpColor)
30

31 // Uses four plot counts for the `open`, `high`, `low`, and `close` series.
32 plotcandle(open, high, low, close, color = color.white, wickcolor = color.white,␣

↪→bordercolor = color.purple)
33

34 // Uses five plot counts for the `open`, `high`, `low`, `close`, and `color` series.
35 plotcandle(open, high, low, close, color = isUpColor, wickcolor = color.white,␣

↪→bordercolor = color.purple)
36

37 // Uses six plot counts for the `open`, `high`, `low`, `close`, `color`, and␣
↪→`wickcolor` series.

38 plotcandle(open, high, low, close, color = isUpColor, wickcolor = isUpColor ,␣
↪→bordercolor = color.purple)

39

40 // Uses seven plot counts for the `open`, `high`, `low`, `close`, `color`,␣
↪→`wickcolor`, and `bordercolor` series.

41 plotcandle(open, high, low, close, color = isUpColor, wickcolor = isUpColor ,␣
↪→bordercolor = isUp ? color.lime : color.maroon)

42

43 // Uses one plot count for the `close` series.
44 plotchar(close, color = color.white, text = "|", textcolor = color.white)
45

46 // Uses two plot counts for the `close`` and `color` series.
47 plotchar(close, color = isUpColor, text = "—", textcolor = color.white)
48

49 // Uses three plot counts for the `close`, `color`, and `textcolor` series.
50 plotchar(close, color = isUpColor, text = "O", textcolor = isUp ? color.yellow :␣

↪→color.white)

(continues on next page)

5.4. Limitations 497

Pine Script™ v5 User Manual

(continued from previous page)
51

52 // Uses one plot count for the `close` series.
53 plotshape(close, color = color.white, textcolor = color.white)
54

55 // Uses two plot counts for the `close` and `color` series.
56 plotshape(close, color = isUpColor, textcolor = color.white)
57

58 // Uses three plot counts for the `close`, `color`, and `textcolor` series.
59 plotshape(close, color = isUpColor, textcolor = isUp ? color.yellow : color.white)
60

61 // Uses one plot count.
62 alertcondition(close > open, "close > open", "Up bar alert")
63

64 // Uses one plot count.
65 bgcolor(isUp ? color.yellow : color.white)
66

67 // Uses one plot count for the `color` series.
68 fill(p1, p2, color = isUpColor)

This example generates a plot count of 56. If we were to add two more instances of the last call to plotcandle(), the script
would throw an error stating that the script now uses 70 plot counts, as each additional call to plotcandle() generates seven
plot counts, and 56 + (7 * 2) is 70.

Line, box, polyline, and label limits

Contrary to plots, which can cover the chart’s entire dataset, scripts will only show the last 50 lines, boxes, polylines,
and labels on the chart by default. One can increase the maximum number for each of these drawing types via the
max_lines_count, max_boxes_count, max_polylines_count, and max_labels_count parameters
of the script’s indicator() or strategy() declaration statement. The maximum number of line, box, and label IDs is 500,
and the maximum number of polyline IDs is 100.
In this example, we set the maximum number of recent labels shown on the chart to 100:

1 //@version=5
2 indicator("Label limits example", max_labels_count = 100, overlay = true)
3 label.new(bar_index, high, str.tostring(high, format.mintick))

It’s important to note when setting any of a drawing object’s properties to na that its ID still exists and thus contributes to
a script’s drawing totals. To demonstrate this behavior, the following script draws a “Buy” and “Sell” label on each bar,
with x values determined by the longCondition and shortCondition variables.
The “Buy” label’s x value is na when the bar index is even, and the “Sell” label’s x value is na when the bar index is odd.
Although the max_labels_count is 10 in this example, we can see that the script displays fewer than 10 labels on
the chart since the ones with na values also count toward the total:

498 Chapter 5. Writing scripts

https://www.tradingview.com/pine-script-reference/v5/#fun_plotcandle
https://www.tradingview.com/pine-script-reference/v5/#fun_plotcandle
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#type_line
https://www.tradingview.com/pine-script-reference/v5/#type_box
https://www.tradingview.com/pine-script-reference/v5/#type_label
https://www.tradingview.com/pine-script-reference/v5/#type_polyline
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#type_label
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#var_na

Pine Script™ v5 User Manual

1 //@version=5
2

3 // Approximate maximum number of label drawings
4 MAX_LABELS = 10
5

6 indicator("labels with na", overlay = false, max_labels_count = MAX_LABELS)
7

8 // Add background color for the last MAX_LABELS bars.
9 bgcolor(bar_index > last_bar_index - MAX_LABELS ? color.new(color.green, 80) : na)
10

11 longCondition = bar_index % 2 != 0
12 shortCondition = bar_index % 2 == 0
13

14 // Add "Buy" and "Sell" labels on each new bar.
15 label.new(longCondition ? bar_index : na, 0, text = "Buy", color = color.new(color.

↪→green, 0), style = label.style_label_up)
16 label.new(shortCondition ? bar_index : na, 0, text = "Sell", color = color.new(color.

↪→red, 0), style = label.style_label_down)
17

18 plot(longCondition ? 1 : 0)
19 plot(shortCondition ? 1 : 0)

To display the desired number of labels, we must eliminate label drawings we don’t want to show rather than setting their
properties to na. The example below uses an if structure to conditionally draw the “Buy” and “Sell” labels, preventing the
script from creating new label IDs when it isn’t necessary:

1 //@version=5
2

(continues on next page)

5.4. Limitations 499

https://www.tradingview.com/pine-script-reference/v5/#var_na
https://www.tradingview.com/pine-script-reference/v5/#kw_if

Pine Script™ v5 User Manual

(continued from previous page)
3 // Approximate maximum number of label drawings
4 MAX_LABELS = 10
5

6 indicator("conditional labels", overlay = false, max_labels_count = MAX_LABELS)
7

8 // Add background color for the last MAX_LABELS bars.
9 bgcolor(bar_index > last_bar_index - MAX_LABELS ? color.new(color.green, 80) : na)
10

11 longCondition = bar_index % 2 != 0
12 shortCondition = bar_index % 2 == 0
13

14 // Add a "Buy" label when `longCondition` is true.
15 if longCondition
16 label.new(bar_index, 0, text = "Buy", color = color.new(color.green, 0), style =␣

↪→label.style_label_up)
17 // Add a "Sell" label when `shortCondition` is true.
18 if shortCondition
19 label.new(bar_index, 0, text = "Sell", color = color.new(color.red, 0), style =␣

↪→label.style_label_down)
20

21 plot(longCondition ? 1 : 0)
22 plot(shortCondition ? 1 : 0)

Table limits

Scripts can display a maximum of nine tables on the chart, one for each of the possible locations: position.bottom_center,
position.bottom_left, position.bottom_right, position.middle_center, position.middle_left, position.middle_right, posi-
tion.top_center, position.top_left, and position.top_right. When attempting to place two tables in the same location, only
the newest instance will show on the chart.

5.4.4 `request.*()` calls

Number of calls

A script cannot contain more than 40 calls to functions in the request.() namespace. All instances of these functions
count toward this limit, even when contained within local blocks of user-defined functions that aren’t utilized by the script’s
main logic. This limitation applies to all functions discussed in the Other timeframes and data page, including:

• request.security()
• request.security_lower_tf()
• request.currency_rate()
• request.dividends()
• request.splits()
• request.earnings()
• request.quandl()
• request.financial()
• request.economic()
• request.seed()

500 Chapter 5. Writing scripts

https://www.tradingview.com/pine-script-reference/v5/#var_position\{dot\}bottom_center
https://www.tradingview.com/pine-script-reference/v5/#var_position\{dot\}bottom_left
https://www.tradingview.com/pine-script-reference/v5/#var_position\{dot\}bottom_right
https://www.tradingview.com/pine-script-reference/v5/#var_position\{dot\}middle_center
https://www.tradingview.com/pine-script-reference/v5/#var_position\{dot\}middle_left
https://www.tradingview.com/pine-script-reference/v5/#var_position\{dot\}middle_right
https://www.tradingview.com/pine-script-reference/v5/#var_position\{dot\}top_center
https://www.tradingview.com/pine-script-reference/v5/#var_position\{dot\}top_center
https://www.tradingview.com/pine-script-reference/v5/#var_position\{dot\}top_left
https://www.tradingview.com/pine-script-reference/v5/#var_position\{dot\}top_right
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_request.currency_rate
https://www.tradingview.com/pine-script-reference/v5/#fun_request.dividends
https://www.tradingview.com/pine-script-reference/v5/#fun_request.splits
https://www.tradingview.com/pine-script-reference/v5/#fun_request.earnings
https://www.tradingview.com/pine-script-reference/v5/#fun_request.quandl
https://www.tradingview.com/pine-script-reference/v5/#fun_request.financial
https://www.tradingview.com/pine-script-reference/v5/#fun_request.economic
https://www.tradingview.com/pine-script-reference/v5/#fun_request.seed

Pine Script™ v5 User Manual

Intrabars

Scripts can retrieve up to the most recent 100,000 intrabars (lower-timeframe bars) via the request.security() or re-
quest.security_lower_tf() functions.
The number of bars on the chart’s timeframe covered by 100,000 intrabars varies with the number of intrabars each chart
bar contains. For example, requesting data from the 1-minute timeframe while running the script on a 60-minute chart
means each chart bar can contain up to 60 intrabars. In this case, the minimum number of chart bars covered by the
intrabar request is 1,666, as 100,000 / 60 = 1,666.67. It’s important to note, however, that a provider may not report data
for every minute within an hour. Therefore, such a request may cover more chart bars, depending on the available data.

Tuple element limit

All the request.*() function calls in a script taken together cannot return more than 127 tuple elements. When
the combined tuple size of all request.*() calls will exceed 127 elements, one can instead utilize user-defined types
(UDTs) to request a greater number of values.
The example below outlines this limitation and the way to work around it. The first request.security() call represents using
a tuple with 128 elements as the expression argument. Since the number of elements is greater than 127, it would
result in an error.
To avoid the error, we can use those same values as fields within an object of a UDT and pass its ID to the expression
instead:

1 //@version=5
2 indicator("Tuple element limit")
3

4 s1 = close
5 s2 = close * 2
6 ...
7 s128 = close * 128
8

9 // Causes an error.
10 [v1, v2, v3, ..., v128] = request.security(syminfo.tickerid, "1D", [s1, s2, s3, ...,␣

↪→s128])
11

12 // Works fine:
13 type myType
14 float v1
15 float v2
16 float v3
17 ...
18 float v128
19

20 myObj = request.security(syminfo.tickerid, "1D", myType.new(s1, s2, s3, ..., s128))

Note that:
• This example outlines a scenario where the script tries to evaluate 128 tuple elements in a single re-
quest.security() call. The same limitation applies if we were to split the tuple request across multiple calls.
For example, two request.security() calls that each retrieve a tuple with 64 elements will also cause an error.

5.4. Limitations 501

https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security

Pine Script™ v5 User Manual

5.4.5 Script size and memory

Compiled tokens

Before the execution of a script, the compiler translates it into a tokenized Intermediate Language (IL). Using an IL allows
Pine Script™ to accommodate larger scripts by applying various memory and performance optimizations. The compiler
determines the size of a script based on the number of tokens in its IL form, not the number of characters or lines in the
code viewable in the Pine Editor.
The compiled form of each indicator, strategy, and library script is limited to 68,000 tokens. When a script imports
libraries, the total number of tokens from all imported libraries cannot exceed 1 million. There is no way to inspect a
script’s compiled form, nor its IL token count. As such, you will only know your script exceeds the size limit when the
compiler reaches it.
In most cases, a script’s compiled size will likely not reach the limit. However, if a compiled script does reach the token
limit, the most effective ways to decrease compiled tokens are to reduce repetitive code, encapsulate redundant calls within
functions, and utilize libraries when possible.
It’s important to note that the compilation process omits any unused variables, functions, types, etc. from the final IL
form, where “unused” refers to anything that does not affect the script’s outputs. This optimization prevents superfluous
elements in the code from contributing to the script’s IL token count.
For example, the script below declares a user-defined type and a user-defined method and defines a sequence of calls using
them:

1 //@version=5
2 indicator("My Script")
3 plot(close)
4

5 type myType
6 float field = 10.0
7

8 method m(array<myType> a, myType v) =>
9 a.push(v)
10

11 var arr = array.new<myType>()
12 arr.push(myType.new(25))
13 arr.m(myType.new())

Despite the inclusion of array.new<myType>(), myType.new(), and arr.m() calls in the script, the only thing
actually output by the script is plot(close). The rest of the code does not affect the output. Therefore, the compiled
form of this script will have the same number of tokens as:

1 //@version=5
2 indicator("My Script")
3 plot(close)

502 Chapter 5. Writing scripts

https://www.tradingview.com/pine-script-reference/v5/#fun_array.new%3Ctype%3E

Pine Script™ v5 User Manual

Variables per scope

Scripts can contain up to 1,000 variables in each of its scopes. Pine scripts always contain one global scope, represented
by non-indented code, and they may contain zero or more local scopes. Local scopes are sections of indented code
representing procedures executed within functions and methods, as well as if, switch, for, for…in, and while structures,
which allow for one or more local blocks. Each local block counts as one local scope.
The branches of a conditional expression using the ?: ternary operator do not count as local blocks.

Scope count

The total number of scopes in a script, including its global scope and each local scope from the user-defined functions,
methods, conditional structures, or loops it uses, cannot exceed 500.
It’s important to note that the request.security(), request.security_lower_tf(), and request.seed() functions duplicate the
scopes required to evaluate the values of their expression argument in another context. The scopes produced by each
call to these request.*() functions also count toward the script’s scope limit.
For example, suppose we created a script with a global variable that depends on the local scopes of 250 if structures. The
total scope count for this script is 251 (1 global scope + 250 local scopes):

1 //@version=5
2 indicator("Scopes demo")
3

4 var x = 0
5

6 if close > 0
7 x += 0
8 if close > 1
9 x += 1
10 // ... Repeat this `if close > n` pattern until `n = 249`.
11 if close > 249
12 x += 249
13

14 plot(x)

Since the total number of scopes is within the limit, it will compile successfully. Now, suppose we call request.security()
to evaluate the value of x from another context and plot its value as well. In this case, it will effectively double the script’s
scope count since the value of x depends on all the script’s scopes:

1 //@version=5
2 indicator("Scopes demo")
3

4 var x = 0
5

6 if close > 0
7 x += 0
8 if close > 1
9 x += 1
10 // ... Repeat this `if close > n` pattern until `n = 249`.
11 if close > 249
12 x += 249
13

14 plot(x)
15 plot(request.security(syminfo.tickerid, "1D", x) // Causes compilation error since␣

↪→the scope count is now 502.

5.4. Limitations 503

https://www.tradingview.com/pine-script-reference/v5/#kw_if
https://www.tradingview.com/pine-script-reference/v5/#kw_switch
https://www.tradingview.com/pine-script-reference/v5/#kw_for
https://www.tradingview.com/pine-script-reference/v5/#kw_for...in
https://www.tradingview.com/pine-script-reference/v5/#kw_while
https://www.tradingview.com/pine-script-reference/v5/#op_\{question\}\{colon\}
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_request.seed
https://www.tradingview.com/pine-script-reference/v5/#kw_if
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security

Pine Script™ v5 User Manual

We can resolve this issue by encapsulating the if blocks within a user-defined function, as the scope of a function counts
as one embedded scope:

1 //@version=5
2 indicator("Scopes demo")
3

4 f() =>
5 var x = 0
6

7 if close > 0
8 x += 0
9 if close > 1
10 x += 1
11 // ... Repeat this `if close > n` pattern until `n = 249`.
12 if close > 249
13 x += 249
14

15 plot(f())
16 plot(request.security(syminfo.tickerid, "1D", f()) // No compilation error.

Collections

Pine Script™ collections (arrays, matrices, and maps) can have a maximum of 100,000 elements. Each key-value pair
in a map contains two elements, meaning maps can contain a maximum of 50,000 key-value pairs.

5.4.6 Other limitations

Maximum bars back

References to past values using the [] history-referencing operator are dependent on the size of the historical buffer
maintained by the Pine Script™ runtime, which is limited to a maximum of 5000 bars. This Help Center page discusses
the historical buffer and how to change its size using either the max_bars_back parameter or the max_bars_back()
function.

Maximum bars forward

When positioning drawings using xloc.bar_index, it is possible to use bar index values greater than that of the
current bar as x coordinates. A maximum of 500 bars in the future can be referenced.
This example shows how we use the maxval parameter in our input.int() function call to cap the user-defined number of
bars forward we draw a projection line so that it never exceeds the limit:

1 //@version=5
2 indicator("Max bars forward example", overlay = true)
3

4 // This function draws a `line` using bar index x-coordinates.
5 drawLine(bar1, y1, bar2, y2) =>
6 // Only execute this code on the last bar.
7 if barstate.islast
8 // Create the line only the first time this function is executed on the last␣

↪→bar.
9 var line lin = line.new(bar1, y1, bar2, y2, xloc.bar_index)
10 // Change the line's properties on all script executions on the last bar.

(continues on next page)

504 Chapter 5. Writing scripts

https://www.tradingview.com/pine-script-reference/v5/#kw_if
https://www.tradingview.com/pine-script-reference/v5/#op_op_{[}{]}
https://www.tradingview.com/support/solutions/43000587849
https://www.tradingview.com/pine-script-reference/v5/#fun_max_bars_back
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}int

Pine Script™ v5 User Manual

(continued from previous page)
11 line.set_xy1(lin, bar1, y1)
12 line.set_xy2(lin, bar2, y2)
13

14 // Input determining how many bars forward we draw the `line`.
15 int forwardBarsInput = input.int(10, "Forward Bars to Display", minval = 1, maxval =␣

↪→500)
16

17 // Calculate the line's left and right points.
18 int leftBar = bar_index[2]
19 float leftY = high[2]
20 int rightBar = leftBar + forwardBarsInput
21 float rightY = leftY + (ta.change(high)[1] * forwardBarsInput)
22

23 // This function call is executed on all bars, but it only draws the `line` on the␣
↪→last bar.

24 drawLine(leftBar, leftY, rightBar, rightY)

Chart bars

The number of bars appearing on charts is dependent on the amount of historical data available for the chart’s symbol and
timeframe, and on the type of account you hold. When the required historical date is available, the minimum number of
chart bars is:

• 20,000 bars for the Premium plan.
• 10,000 bars for Pro and Pro+ plans.
• 5000 bars for other plans.

Trade orders in backtesting

A maximum of 9000 orders can be placed when backtesting strategies. When using Deep Backtesting, the limit is
200,000.

5.4. Limitations 505

https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

506 Chapter 5. Writing scripts

CHAPTER

SIX

FAQ

• Get real OHLC price on a Heikin Ashi chart

• Get non-standard OHLC values on a standard chart

• Plot arrows on the chart

• Plot a dynamic horizontal line

• Plot a vertical line on condition

• Access the previous value

• Get a 5-days high

• Count bars in a dataset

• Enumerate bars in a day

• Find the highest and lowest values for the entire dataset

• Query the last non-na value

6.1 Get real OHLC price on a Heikin Ashi chart

Suppose, we have a Heikin Ashi chart (or Renko, Kagi, PriceBreak etc) and we’ve added a Pine script on it:

1 //@version=5
2 indicator("Visible OHLC", overlay=true)
3 c = close
4 plot(c)

You may see that variable c is a Heikin Ashi close price which is not the same as real OHLC price. Because close
built-in variable is always a value that corresponds to a visible bar (or candle) on the chart.
So, how do we get the real OHLC prices in Pine Script™ code, if current chart type is non-standard? We should use
request.security function in combination with ticker.new function. Here is an example:

1 //@version=5
2 indicator("Real OHLC", overlay = true)
3 t = ticker.new(syminfo.prefix, syminfo.ticker)
4 realC = request.security(t, timeframe.period, close)
5 plot(realC)

In a similar way we may get other OHLC prices: open, high and low.

507

Pine Script™ v5 User Manual

6.2 Get non-standard OHLC values on a standard chart

Backtesting on non-standard chart types (e.g. Heikin Ashi or Renko) is not recommended because the bars on these kinds
of charts do not represent real price movement that you would encounter while trading. If you want your strategy to enter
and exit on real prices but still use Heikin Ashi-based signals, you can use the same method to get Heikin Ashi values on
a regular candlestick chart:

1 //@version=5
2 strategy("BarUpDn Strategy", overlay = true, default_qty_type = strategy.percent_of_

↪→equity, default_qty_value = 10)
3 maxIdLossPcntInput = input.float(1, "Max Intraday Loss(%)")
4 strategy.risk.max_intraday_loss(maxIdLossPcntInput, strategy.percent_of_equity)
5 needTrade() => close > open and open > close[1] ? 1 : close < open and open <␣

↪→close[1] ? -1 : 0
6 trade = request.security(ticker.heikinashi(syminfo.tickerid), timeframe.period,␣

↪→needTrade())
7 if trade == 1
8 strategy.entry("BarUp", strategy.long)
9 if trade == -1
10 strategy.entry("BarDn", strategy.short)

6.3 Plot arrows on the chart

You may use plotshape with style shape.arrowup and shape.arrowdown:

1 //@version=5
2 indicator('Ex 1', overlay = true)
3 condition = close >= open
4 plotshape(condition, color = color.lime, style = shape.arrowup, text = "Buy")
5 plotshape(not condition, color = color.red, style = shape.arrowdown, text = "Sell")

You may use the plotchar function with any unicode character:

508 Chapter 6. FAQ

Pine Script™ v5 User Manual

1 //@version=5
2 indicator('buy/sell arrows', overlay = true)
3 condition = close >= open
4 plotchar(not condition, char='↓', color = color.lime, text = "Buy")
5 plotchar(condition, char='↑', location = location.belowbar, color = color.red, text =

↪→"Sell")

6.4 Plot a dynamic horizontal line

There is the function hline in Pine Script™, but it is limited to only plot a constant value. Here is a simple script with
a workaround to plot a changing hline:

1 //@version=5
2 indicator("Horizontal line", overlay = true)
3 plot(close[10], trackprice = true, offset = -9999)
4 // `trackprice = true` plots horizontal line on close[10]
5 // `offset = -9999` hides the plot
6 plot(close, color = #FFFFFFFF) // forces display

6.5 Plot a vertical line on condition

1 //@version=5
2 indicator("Vertical line", overlay = true, scale = scale.none)
3 // scale.none means do not resize the chart to fit this plot
4 // if the bar being evaluated is the last baron the chart (the most recent bar), then␣

↪→cond is true
5 cond = barstate.islast
6 // when cond is true, plot a histogram with a line with height value of 100,000,000,

↪→000,000,000,000.00
7 // (10 to the power of 20)

(continues on next page)

6.4. Plot a dynamic horizontal line 509

Pine Script™ v5 User Manual

(continued from previous page)
8 // when cond is false, plot no numeric value (nothing is plotted)
9 // use the style of histogram, a vertical bar
10 plot(cond ? 10e20 : na, style = plot.style_histogram)

6.6 Access the previous value

1 //@version=5
2 //...
3 s = 0.0
4 s := nz(s[1]) // Accessing previous values
5 if (condition)
6 s := s + 1

6.7 Get a 5-days high

Lookback 5 days from the current bar, find the highest bar, plot a star character at that price level above the current bar

1 //@version=5
2 indicator("High of last 5 days", overlay = true)
3

4 // Milliseconds in 5 days: millisecs * secs * mins * hours * days
5 MS_IN_5DAYS = 1000 * 60 * 60 * 24 * 5
6

7 // The range check begins 5 days from the current time.
8 leftBorder = timenow - time < MS_IN_5DAYS
9 // The range ends on the last bar of the chart.
10 rightBorder = barstate.islast
11

12 // ————— Keep track of highest `high` during the range.

(continues on next page)

510 Chapter 6. FAQ

Pine Script™ v5 User Manual

(continued from previous page)
13 // Intialize `maxHi` with `var` on bar zero only.
14 // This way, its value is preserved, bar to bar.
15 var float maxHi = na
16 if leftBorder
17 if not leftBorder[1]
18 // Range's first bar.
19 maxHi := high
20 else if not rightBorder
21 // On other bars in the range, track highest `high`.
22 maxHi := math.max(maxHi, high)
23

24 // Plot level of the highest `high` on the last bar.
25 plotchar(rightBorder ? maxHi : na, "Level", "—", location.absolute, size = size.

↪→normal)
26 // When in range, color the background.
27 bgcolor(leftBorder and not rightBorder ? color.new(color.aqua, 70) : na)

6.8 Count bars in a dataset

Get a count of all the bars in the loaded dataset. Might be useful for calculating flexible lookback periods based on number
of bars.

1 //@version=5
2 indicator("Bar Count", overlay = true, scale = scale.none)
3 plot(bar_index + 1, style = plot.style_histogram)

6.9 Enumerate bars in a day

1 //@version=5
2 indicator("My Script", overlay = true, scale = scale.none)
3

4 isNewDay() =>
5 d = dayofweek
6 na(d[1]) or d != d[1]
7

8 plot(ta.barssince(isNewDay()), style = plot.style_cross)

6.10 Find the highest and lowest values for the entire dataset

1 //@version=5
2 indicator("", "", true)
3

4 allTimetHi(source) =>
5 var atHi = source
6 atHi := math.max(atHi, source)
7

8 allTimetLo(source) =>
9 var atLo = source

(continues on next page)

6.8. Count bars in a dataset 511

Pine Script™ v5 User Manual

(continued from previous page)
10 atLo := math.min(atLo, source)
11

12 plot(allTimetHi(close), "ATH", color.green)
13 plot(allTimetLo(close), "ATL", color.red)

6.11 Query the last non-na value

You can use the script below to avoid gaps in a series:

1 //@version=5
2 indicator("")
3 series = close >= open ? close : na
4 vw = fixnan(series)
5 plot(series, style = plot.style_linebr, color = color.red) // series has na values
6 plot(vw) // all na values are replaced with the last non-empty value

512 Chapter 6. FAQ

https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

CHAPTER

SEVEN

ERROR MESSAGES

• The if statement is too long

• Script requesting too many securities

• Script could not be translated from: null

• line 2: no viable alternative at character ‘$’

• Mismatched input <…> expecting <???>

• Loop is too long (> 500 ms)

• Script has too many local variables

• Pine Script™ cannot determine the referencing length of a series. Try using max_bars_back in the indicator or
strategy function

7.1 The if statement is too long

This error occurs when the indented code inside an if statement is too large for the compiler. Because of how the compiler
works, you won’t receive a message telling you exactly how many lines of code you are over the limit. The only solution
now is to break up your if statement into smaller parts (functions or smaller if statements). The example below shows a
reasonably lengthy if statement; theoretically, this would throw line 4: if statement is too long:
To fix this code, you could move these lines into their own function:

7.2 Script requesting too many securities

The maximum number of securities in script is limited to 40. If you declare a variable as a request.security
function call and then use that variable as input for other variables and calculations, it will not result inmultiplerequest.
security calls. But if you will declare a function that calls request.security— every call to this function will
count as a request.security call.
It is not easy to say how many securities will be called looking at the source code. Following example have exactly 3 calls
to request.security after compilation:

1 //@version=5
2 indicator("Securities count")
3 a = request.security(syminfo.tickerid, '42', close) // (1) first unique security call
4 b = request.security(syminfo.tickerid, '42', close) // same call as above, will not␣

(continues on next page)

513

https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_if

Pine Script™ v5 User Manual

(continued from previous page)
↪→produce new security call after optimizations

5

6 plot(a)
7 plot(a + 2)
8 plot(b)
9

10 sym(p) => // no security call on this line
11 request.security(syminfo.tickerid, p, close)
12 plot(sym('D')) // (2) one indirect call to security
13 plot(sym('W')) // (3) another indirect call to security
14

15 request.security(syminfo.tickerid, timeframe.period, open) // result of this line is␣
↪→never used, and will be optimized out

7.3 Script could not be translated from: null

1 study($)

Usually this error occurs in version 1 Pine scripts, and means that code is incorrect. Pine Script™ of version 2 (and
higher) is better at explaining errors of this kind. So you can try to switch to version 2 by adding a special attribute in the
first line. You’ll get line 2: no viable alternative at character '$':

1 // @version=2
2 study($)

7.4 line 2: no viable alternative at character ‘$’

This error message gives a hint on what is wrong. $ stands in place of string with script title. For example:

1 // @version=2
2 study("title")

7.5 Mismatched input <…> expecting <???>

Same as no viable alternative, but it is known what should be at that place. Example:
line 3: mismatched input 'plot' expecting 'end of line without line continuation'

To fix this you should start line with plot on a new line without an indent:

514 Chapter 7. Error messages

Pine Script™ v5 User Manual

7.6 Loop is too long (> 500 ms)

We limit the computation time of loop on every historical bar and realtime tick to protect our servers from infinite or very
long loops. This limit also fail-fast indicators that will take too long to compute. For example, if you’ll have 5000 bars,
and indicator takes 500 milliseconds to compute on each of bars, it would have result in more than 16 minutes of loading:

1 //@version=5
2 indicator("Loop is too long", max_bars_back = 101)
3 s = 0
4 for i = 1 to 1e3 // to make it longer
5 for j = 0 to 100
6 if timestamp(2017, 02, 23, 00, 00) <= time[j] and time[j] < timestamp(2017,␣

↪→02, 23, 23, 59)
7 s := s + 1
8 plot(s)

It might be possible to optimize algorithm to overcome this error. In this case, algorithm may be optimized like this:

1 //@version=5
2 indicator("Loop is too long", max_bars_back = 101)
3 bar_back_at(t) =>
4 i = 0
5 step = 51
6 for j = 1 to 100
7 if i < 0
8 i := 0
9 break
10 if step == 0
11 break
12 if time[i] >= t
13 i := i + step
14 i
15 else
16 i := i - step
17 i
18 step := step / 2
19 step
20 i
21

22 s = 0
23 for i = 1 to 1e3 // to make it longer
24 s := s - bar_back_at(timestamp(2017, 02, 23, 23, 59)) +
25 bar_back_at(timestamp(2017, 02, 23, 00, 00))
26 s
27 plot(s)

7.6. Loop is too long (> 500 ms) 515

Pine Script™ v5 User Manual

7.7 Script has too many local variables

This error appears if the script is too large to be compiled. A statement var=expression creates a local variable for
var. Apart from this, it is important to note, that auxiliary variables can be implicitly created during the process of a
script compilation. The limit applies to variables created both explicitly and implicitly. The limitation of 1000 variables
is applied to each function individually. In fact, the code placed in a global scope of a script also implicitly wrapped up
into the main function and the limit of 1000 variables becomes applicable to it. There are few refactorings you can try to
avoid this issue:

var1 = expr1
var2 = expr2
var3 = var1 + var2

can be converted into:

var3 = expr1 + expr2

7.8 Pine Script™ cannot determine the referencing length of a series.
Try using max_bars_back in the indicator or strategy function

The error appears in cases where Pine Script™ wrongly autodetects the required maximum length of series used in
a script. This happens when a script’s flow of execution does not allow Pine Script™ to inspect the use of series in
branches of conditional statements (if, iff or ?), and Pine Script™ cannot automatically detect how far back the series
is referenced. Here is an example of a script causing this problem:

1 //@version=5
2 indicator("Requires max_bars_back")
3 test = 0.0
4 if bar_index > 1000
5 test := ta.roc(close, 20)
6 plot(test)

In order to help Pine Script™ with detection, you should add the max_bars_back parameter to the script’s indi-
cator or strategy function:

1 //@version=5
2 indicator("Requires max_bars_back", max_bars_back = 20)
3 test = 0.0
4 if bar_index > 1000
5 test := ta.roc(close, 20)
6 plot(test)

You may also resolve the issue by taking the problematic expression out of the conditional branch, in which case the
max_bars_back parameter is not required:

1 //@version=5
2 indicator("My Script")
3 test = 0.0
4 roc20 = ta.roc(close, 20)
5 if bar_index > 1000
6 test := roc20
7 plot(test)

516 Chapter 7. Error messages

Pine Script™ v5 User Manual

In cases where the problem is caused by a variable rather than a built-in function (vwma in our example), you may use
the max_bars_back function to explicitly define the referencing length for that variable only. This has the advantage
of requiring less runtime resources, but entails that you identify the problematic variable, e.g., variable s in the following
example:

1 //@version=5
2 indicator("My Script")
3 f(off) =>
4 t = 0.0
5 s = close
6 if bar_index > 242
7 t := s[off]
8 t
9 plot(f(301))

This situation can be resolved using the max_bars_back function to define the referencing length of variable s only,
rather than for all the script’s variables:

1 //@version=5
2 indicator("My Script")
3 f(off) =>
4 t = 0.0
5 s = close
6 max_bars_back(s, 301)
7 if bar_index > 242
8 t := s[off]
9 t
10 plot(f(301))

When using drawings that refer to previous bars through bar_index[n] and xloc = xloc.bar_index, the
time series received from this bar will be used to position the drawings on the time axis. Therefore, if it is impossible to
determine the correct size of the buffer, this error may occur. To avoid this, you need to use max_bars_back(time,
n). This behavior is described in more detail in the section about drawings.

7.8. Pine Script™ cannot determine the referencing length of a series. Try using max_bars_back
in the indicator or strategy function

517

https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

518 Chapter 7. Error messages

CHAPTER

EIGHT

RELEASE NOTES

• 2023

• 2022

• 2021

• 2020

• 2019

• 2018

• 2017

• 2016

• 2015

• 2014

• 2013

This page contains release notes of notable changes in Pine Script™.

8.1 2023

8.1.1 December 2023

We’ve added format and precision parameters to all plot*() functions, allowing indicators and strategies to
selectively apply formatting and decimal precision settings to plotted results in the chart pane’s y-axis, the script’s status
line, and the Data Window. The arguments passed to these parameters supersede the values in the indicator() and strat-
egy() functions. Both are optional. The defaults for these parameters are the same as the values specified in the script’s
declaration statement.
For example:

1 //@version=5
2 indicator("My script", format = format.percent, precision = 4)
3

4 plot(close, format = format.price) // Price format with 4-digit precision.
5 plot(100 * bar_index / close, precision = 2) // Percent format with 2-digit precision.

519

https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy

Pine Script™ v5 User Manual

8.1.2 November 2023

We’ve added the following variables and functions to the strategy.* namespace:
• strategy.grossloss_percent - The total gross loss value of all completed losing trades, expressed as a percentage of
the initial capital.

• strategy.grossprofit_percent - The total gross profit value of all completed winning trades, expressed as a percentage
of the initial capital.

• strategy.max_runup_percent - The maximum rise from a trough in the equity curve, expressed as a percentage of
the trough value.

• strategy.max_drawdown_percent - The maximum drop from a peak in the equity curve, expressed as a percentage
of the peak value.

• strategy.netprofit_percent - The total value of all completed trades, expressed as a percentage of the initial capital.
• strategy.openprofit_percent - The current unrealized profit or loss for all open positions, expressed as a percentage
of realized equity.

• strategy.closedtrades.max_drawdown_percent() - Returns the maximum drawdown of the closed trade, i.e., the
maximum possible loss during the trade, expressed as a percentage.

• strategy.closedtrades.max_runup_percent() - Returns the maximum run-up of the closed trade, i.e., the maximum
possible profit during the trade, expressed as a percentage.

• strategy.closedtrades.profit_percent() - Returns the profit/loss value of the closed trade, expressed as a percentage.
Losses are expressed as negative values.

• strategy.opentrades.max_drawdown_percent() - Returns the maximum drawdown of the open trade, i.e., the max-
imum possible loss during the trade, expressed as a percentage.

• strategy.opentrades.max_runup_percent() - Returns the maximum run-up of the open trade, i.e., the maximum
possible profit during the trade, expressed as a percentage.

• strategy.opentrades.profit_percent() - Returns the profit/loss of the open trade, expressed as a percentage. Losses
are expressed as negative values.

8.1.3 October 2023

Pine Script™ Polylines

Polylines are drawings that sequentially connect the coordinates from an array of up to 10,000 chart points using straight
or curved line segments, allowing scripts to draw custom formations that are difficult or impossible to achieve using line
or box objects. To learn more about this new drawing type, see the Polylines section of our User Manual’s page on Lines
and boxes.

8.1.4 September 2023

New functions were added:
• strategy.default_entry_qty() - Calculates the default quantity, in units, of an entry order from strategy.entry() or
strategy.order() if it were to fill at the specified fill_price value.

• chart.point.new() - Creates a new chart.point object with the specified time, index, and price.
• request.seed() - Requests data from a user-maintained GitHub repository and returns it as a series. An in-depth
tutorial on how to add new data can be found here.

520 Chapter 8. Release notes

https://www.tradingview.com/pine-script-reference/v5/#var_strategy.grossloss_percent
https://www.tradingview.com/pine-script-reference/v5/#var_strategy.grossprofit_percent
https://www.tradingview.com/pine-script-reference/v5/#var_strategy.max_runup_percent
https://www.tradingview.com/pine-script-reference/v5/#var_strategy.max_drawdown_percent
https://www.tradingview.com/pine-script-reference/v5/#var_strategy.netprofit_percent
https://www.tradingview.com/pine-script-reference/v5/#var_strategy.openprofit_percent
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy.closedtrades.max_drawdown_percent
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy.closedtrades.max_runup_percent
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy.closedtrades.profit_percent
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy.opentrades.max_drawdown_percent
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy.opentrades.max_runup_percent
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy.opentrades.profit_percent
https://www.tradingview.com/pine-script-reference/v5/#type_array
https://www.tradingview.com/pine-script-reference/v5/#type_line
https://www.tradingview.com/pine-script-reference/v5/#type_box
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy.default_entry_qty
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy.entry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy.order
https://www.tradingview.com/pine-script-reference/v5/#fun_chart.point.new
https://www.tradingview.com/pine-script-reference/v5/#op_chart.point
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}seed
https://github.com/tradingview-pine-seeds/docs

Pine Script™ v5 User Manual

• ticker.inherit() - Constructs a ticker ID for the specified symbol with additional parameters inherited from the
ticker ID passed into the function call, allowing the script to request a symbol’s data using the same modifiers that
the from_tickerid has, including extended session, dividend adjustment, currency conversion, non-standard
chart types, back-adjustment, settlement-as-close, etc.

• timeframe.from_seconds() - Converts a specified number of seconds into a valid timeframe string based on our
timeframe specification format.

The dividends.* namespace now includes variables for retrieving future dividend information:
• dividends.future_amount - Returns the payment amount of the upcoming dividend in the currency of the current
instrument, or na if this data isn’t available.

• dividends.future_ex_date - Returns the Ex-dividend date (Ex-date) of the current instrument’s next dividend pay-
ment, or na if this data isn’t available.

• dividends.future_pay_date - Returns the Payment date (Pay date) of the current instrument’s next dividend payment,
or na if this data isn’t available.

The request.security_lower_tf() function has a new parameter:
• ignore_invalid_timeframe - Determines how the function behaves when the chart’s timeframe is smaller
than the timeframe value in the function call. If false, the function will raise a runtime error and halt the
script’s execution. If true, the function will return na without raising an error.

Users can now explicitly declare variables with the const, simple, and series type qualifiers, allowing more precise
control over the types of variables in their scripts. For example:

8.1.5 August 2023

Added the following alert placeholders:
• {{syminfo.currency}} - Returns the currency code of the current symbol (“EUR”, “USD”, etc.).
• {{syminfo.basecurrency}} - Returns the base currency code of the current symbol if the symbol refers
to a currency pair. Otherwise, it returns na. For example, it returns “EUR” when the symbol is “EURUSD”.

Pine Script™ Maps

Maps are collections that hold elements in the form of key-value pairs. They associate unique keys of a fundamental
type with values of a built-in or user-defined type. Unlike arrays and matrices, these collections are unordered and do not
utilize an internal lookup index. Instead, scripts access the values of maps by referencing the keys from the key-value
pairs put into them. For more information on these new collections, see our User Manual’s page on Maps.

8.1.6 July 2023

Fixed an issue that caused strategies to occasionally calculate the sizes of limit orders incorrectly due to improper tick
rounding of the limit price.
Added a new built-in variable to the strategy.* namespace:

• strategy.margin_liquidation_price - When a strategy uses margin, returns the price value after which a margin call
will occur.

8.1. 2023 521

https://www.tradingview.com/pine-script-reference/v5/#fun_ticker\{dot\}inherit
https://www.tradingview.com/pine-script-reference/v5/#fun_timeframe.from_seconds
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Timeframes.html#timeframe-string-specifications
https://www.tradingview.com/pine-script-reference/v5/#var_dividends.future_amount
https://www.tradingview.com/pine-script-reference/v5/#var_dividends.future_ex_date
https://www.tradingview.com/pine-script-reference/v5/#var_dividends.future_pay_date
https://www.tradingview.com/pine-script-reference/v5/#fun_request.security_lower_tf
https://www.tradingview.com/support/solutions/43000531021
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}margin_liquidation_price

Pine Script™ v5 User Manual

8.1.7 June 2023

New syminfo.* built-in variables were added:
• syminfo.sector - Returns the sector of the symbol.
• syminfo.industry - Returns the industry of the symbol.
• syminfo.country - Returns the two-letter code of the country where the symbol is traded.

8.1.8 May 2023

New parameter added to the strategy.entry(), strategy.order(), strategy.close(), strategy.close_all(), and strategy.exit()
functions:

• disable_alert - Disables order fill alerts for any orders placed by the function.
Our “Indicator on indicator” feature, which allows a script to pass another indicator’s plot as a source value via the
input.source() function, now supports multiple external inputs. Scripts can use a multitude of external inputs originating
from up to 10 different indicators.
We’ve added the following array functions:

• array.every() - Returns true if all elements of the id array are true, false otherwise.
• array.some() - Returns true if at least one element of the id array is true, false otherwise.

These functions also work with arrays of int and float types, in which case zero values are considered false, and all
others true.

8.1.9 April 2023

Fixed an issue with trailing stops in strategy.exit() being filled on high/low prices rather than on intrabar prices.
Fixed behavior of array.mode(), matrix.mode() and ta.mode(). Now these functions will return the smallest value when
the data has no most frequent value.

8.1.10 March 2023

It is now possible to use seconds-based timeframe strings for the timeframe parameter in request.security() and re-
quest.security_lower_tf().
A new function was added:

• request.currency_rate() - provides a daily rate to convert a value expressed in the from currency to another in the
to currency.

522 Chapter 8. Release notes

https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}sector
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}industry
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}country
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}order
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}close
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}close_all
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}source
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}every
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}some
https://www.tradingview.com/pine-script-reference/v5/#op_int
https://www.tradingview.com/pine-script-reference/v5/#op_float
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}mode
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}mode
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}mode
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security_lower_tf
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}currency_rate

Pine Script™ v5 User Manual

8.1.11 February 2023

Pine Script™ Methods

Pine Script™ methods are specialized functions associated with specific instances of built-in or user-defined types. They
offer a more convenient syntax than standard functions, as users can access methods in the same way as object fields using
the handy dot notation syntax. Pine Script™ includes built-in methods for array, matrix, line, linefill, label, box, and table
types and facilitates user-defined methods with the new method keyword. For more details on this new feature, see our
User Manual’s page on methods.

8.1.12 January 2023

New array functions were added:
• array.first() - Returns the array’s first element.
• array.last() - Returns the array’s last element.

8.2 2022

8.2.1 December 2022

Pine Objects

Pine objects are instantiations of the new user-defined composite types (UDTs) declared using the type keyword. Expe-
rienced programmers can think of UDTs as method-less classes. They allow users to create custom types that organize
different values under one logical entity. A detailed rundown of the new functionality can be found in our User Manual’s
page on objects.
A new function was added:

• ticker.standard() - Creates a ticker to request data from a standard chart that is unaffected by modifiers like extended
session, dividend adjustment, currency conversion, and the calculations of non-standard chart types: Heikin Ashi,
Renko, etc.

New strategy.* functions were added:
• strategy.opentrades.entry_comment() - The function returns the comment message of the open trade’s entry.
• strategy.closedtrades.entry_comment() - The function returns the comment message of the closed trade’s entry.
• strategy.closedtrades.exit_comment() - The function returns the comment message of the closed trade’s exit.

8.2.2 November 2022

Fixed behaviour of math.round_to_mintick() function. For ‘na’ values it returns ‘na’.

8.2. 2022 523

https://www.tradingview.com/pine-script-reference/v5/#op_array
https://www.tradingview.com/pine-script-reference/v5/#op_matrix
https://www.tradingview.com/pine-script-reference/v5/#op_line
https://www.tradingview.com/pine-script-reference/v5/#op_linefill
https://www.tradingview.com/pine-script-reference/v5/#op_label
https://www.tradingview.com/pine-script-reference/v5/#op_box
https://www.tradingview.com/pine-script-reference/v5/#op_table
https://www.tradingview.com/pine-script-reference/v5/#op_method
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dfirst
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dlast
https://www.tradingview.com/pine-script-reference/v5/#op_type
https://www.tradingview.com/pine-script-docs/en/v5/language/Objects.html
https://www.tradingview.com/pine-script-docs/en/v5/language/Objects.html
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker\{dot\}standard
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}opentrades\{dot\}entry_comment
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}closedtrades\{dot\}entry_comment
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}closedtrades\{dot\}exit_comment
https://www.tradingview.com/pine-script-reference/v5/#fun_math\{dot\}round_to_mintick

Pine Script™ v5 User Manual

8.2.3 October 2022

Pine Script™ now has a new, more powerful and better-integrated editor. Read our blog to find out everything to know
about all the new features and upgrades.
New overload for the fill() function was added. Now it can create vertical gradients. More info about it in the blog post.
A new function was added:

• str.format_time() - Converts a timestamp to a formatted string using the specified format and time zone.

8.2.4 September 2022

The text_font_family parameter now allows the selection of a monospace font in label.new(), box.new() and
table.cell() function calls, which makes it easier to align text vertically. Its arguments can be:

• font.family_default - Specifies the default font.
• font.family_monospace - Specifies a monospace font.

The accompanying setter functions are:
• label.set_text_font_family() - The function sets the font family of the text inside the label.
• box.set_text_font_family() - The function sets the font family of the text inside the box.
• table.cell_set_text_font_family() - The function sets the font family of the text inside the cell.

8.2.5 August 2022

A new label style label.style_text_outline was added.
A new parameter for the ta.pivot_point_levels() function was added:

• developing - If false, the values are those calculated the last time the anchor condition was true. They remain
constant until the anchor condition becomes true again. If true, the pivots are developing, i.e., they constantly
recalculate on the data developing between the point of the last anchor (or bar zero if the anchor condition was
never true) and the current bar. Cannot be true when type is set to "Woodie".

A new parameter for the box.new() function was added:
• text_wrap - It defines whether the text is presented in a single line, extending past the width of the box if
necessary, or wrapped so every line is no wider than the box itself.

This parameter supports two arguments:
• text.wrap_none - Disabled wrapping mode for box.new and box.set_text_wrap functions.
• text.wrap_auto - Automatic wrapping mode for box.new and box.set_text_wrap functions.

New built-in functions were added:
• ta.min() - Returns the all-time low value of source from the beginning of the chart up to the current bar.
• ta.max() - Returns the all-time high value of source from the beginning of the chart up to the current bar.

A new annotation //@strategy_alert_message was added. If the annotation is added to the strategy, the text
written after it will be automatically set as the default alert message in the Create Alert window.

524 Chapter 8. Release notes

https://www.tradingview.com/blog/en/new-vsc-style-pine-script-editor-34159/
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/blog/en/pine-script-vertical-gradients-33586/
https://www.tradingview.com/pine-script-reference/v5/#fun_str\{dot\}format_time
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_box\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}cell
https://www.tradingview.com/pine-script-reference/v5/#var_font\{dot\}family_default
https://www.tradingview.com/pine-script-reference/v5/#var_font\{dot\}family_monospace
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}set_text_font_family
https://www.tradingview.com/pine-script-reference/v5/#fun_box\{dot\}set_text_font_family
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}cell_set_text_font_family
https://www.tradingview.com/pine-script-reference/v5/#var_label\{dot\}style_text_outline
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}pivot_point_levels
https://www.tradingview.com/pine-script-reference/v5/#fun_box\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#var_text\{dot\}wrap_none
https://www.tradingview.com/pine-script-reference/v5/#fun_box\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_box\{dot\}set_text_wrap
https://www.tradingview.com/pine-script-reference/v5/#var_text\{dot\}wrap_auto
https://www.tradingview.com/pine-script-reference/v5/#fun_box\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_box\{dot\}set_text_wrap
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}min
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}max

Pine Script™ v5 User Manual

1 //@version=5
2 // @strategy_alert_message My Default Alert Message
3 strategy("My Strategy")
4 plot(close)

8.2.6 July 2022

It is now possible to fine-tune where a script’s plot values are displayed through the introduction of new arguments for the
display parameter of the plot(), plotchar(), plotshape(), plotarrow(), plotcandle(), and plotbar() functions.
Four new arguments were added, complementing the previously available display.all and display.none:

• display.data_window displays the plot values in the Data Window, one of the items available from the chart’s right
sidebar.

• display.pane displays the plot in the pane where the script resides, as defined in with the overlay parameter of
the script’s indicator(), strategy(), or library() declaration statement.

• display.price_scale controls the display of the plot’s label and price in the price scale, if the chart’s settings allow
them.

• display.status_line displays the plot values in the script’s status line, next to the script’s name on the chart, if the
chart’s settings allow them.

The display parameter supports the addition and subtraction of its arguments:
• display.all - display.status_line will display the plot’s information everywhere except in the
script’s status line.

• display.price_scale + display.status_line will display the plot in the price scale and status
line only.

8.2.7 June 2022

The behavior of the argument used with the qty_percent parameter of strategy.exit() has changed. Previously, the
percentages used on successive exit orders of the same position were calculated from the remaining position at any given
time. Instead, the percentages now always apply to the initial position size. When executing the following strategy, for
example:

1 //@version=5
2 strategy("strategy.exit() example", overlay = true)
3 strategy.entry("Long", strategy.long, qty = 100)
4 strategy.exit("Exit Long1", "Long", trail_points = 50, trail_offset = 0, qty_percent␣

↪→= 20)
5 strategy.exit("Exit Long2", "Long", trail_points = 100, trail_offset = 0, qty_percent␣

↪→= 20)

20% of the initial position will be closed on each strategy.exit() call. Before, the first call would exit 20% of the initial
position, and the second would exit 20% of the remaining 80% of the position, so only 16% of the initial position.
Two new parameters for the built-in ta.vwap() function were added:

• anchor - Specifies the condition that triggers the reset of VWAP calculations. When true, calculations reset;
when false, calculations proceed using the values accumulated since the previous reset.

• stdev_mult - If specified, the ta.vwap() calculates the standard deviation bands based on the main VWAP series
and returns a [vwap, upper_band, lower_band] tuple.

8.2. 2022 525

https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_plotchar
https://www.tradingview.com/pine-script-reference/v5/#fun_plotshape
https://www.tradingview.com/pine-script-reference/v5/#fun_plotarrow
https://www.tradingview.com/pine-script-reference/v5/#fun_plotcandle
https://www.tradingview.com/pine-script-reference/v5/#fun_plotbar
https://www.tradingview.com/pine-script-reference/v5/#var_display\{dot\}all
https://www.tradingview.com/pine-script-reference/v5/#var_display\{dot\}none
https://www.tradingview.com/pine-script-reference/v5/#var_display\{dot\}data_window
https://www.tradingview.com/pine-script-reference/v5/#var_display\{dot\}pane
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_library
https://www.tradingview.com/pine-script-reference/v5/#var_display\{dot\}price_scale
https://www.tradingview.com/pine-script-reference/v5/#var_display\{dot\}status_line
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}vwap
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}vwap

Pine Script™ v5 User Manual

New overloaded versions of the strategy.close() and strategy.close_all() functions with the immediately parameter.
When immediately is set to true, the closing order will be executed on the tick where it has been placed, ignoring
the strategy parameters that restrict the order execution to the open of the next bar.
New built-in functions were added:

• timeframe.change() - Returns true on the first bar of a new timeframe, false otherwise.
• ta.pivot_point_levels() - Returns a float array with numerical values representing 11 pivot point levels: [P, R1,
S1, R2, S2, R3, S3, R4, S4, R5, S5]. Levels absent from the specified type return na values.

New built-in variables were added:
• session.isfirstbar - returns true if the current bar is the first bar of the day’s session, false otherwise.
• session.islastbar - returns true if the current bar is the last bar of the day’s session, false otherwise.
• session.isfirstbar_regular - returns true on the first regular session bar of the day, false otherwise.
• session.islastbar_regular - returns true on the last regular session bar of the day, false otherwise.
• chart.left_visible_bar_time - returns the time of the leftmost bar currently visible on the chart.
• chart.right_visible_bar_time - returns the time of the rightmost bar currently visible on the chart.

8.2.8 May 2022

Matrix support has been added to the request.security() function.
The historical states of arrays andmatrices can now be referenced with the [] operator. In the example below, we reference
the historic state of a matrix 10 bars ago:

1 //@version=5
2 indicator("matrix.new<float> example")
3 m = matrix.new<float>(1, 1, close)
4 float x = na
5 if bar_index > 10
6 x := matrix.get(m[10], 0, 0)
7 plot(x)
8 plot(close)

The ta.change() function now can take values of int and bool types as its source parameter and return the difference in
the respective type.
New built-in variables were added:

• chart.bg_color - Returns the color of the chart’s background from the "Chart settings/Appearance/
Background" field.

• chart.fg_color - Returns a color providing optimal contrast with chart.bg_color.
• chart.is_standard - Returns true if the chart type is bars, candles, hollow candles, line, area or baseline, false
otherwise.

• currency.USDT - A constant for the Tether currency code.
New functions were added:

• syminfo.prefix() - returns the exchange prefix of thesymbol passed to it, e.g. “NASDAQ” for “NASDAQ:AAPL”.
• syminfo.ticker() - returns the ticker of the symbol passed to it without the exchange prefix, e.g. “AAPL” for
“NASDAQ:AAPL”.

• request.security_lower_tf() - requests data from a lower timeframe than the chart’s.

526 Chapter 8. Release notes

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}close
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}close_all
https://www.tradingview.com/pine-script-reference/v5/#fun_timeframe\{dot\}change
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}pivot_point_levels
https://www.tradingview.com/pine-script-reference/v5/#var_session\{dot\}isfirstbar
https://www.tradingview.com/pine-script-reference/v5/#var_session\{dot\}islastbar
https://www.tradingview.com/pine-script-reference/v5/#var_session\{dot\}isfirstbar_regular
https://www.tradingview.com/pine-script-reference/v5/#var_session\{dot\}islastbar_regular
https://www.tradingview.com/pine-script-reference/v5/#var_chart\{dot\}left_visible_bar_time
https://www.tradingview.com/pine-script-reference/v5/#var_chart\{dot\}right_visible_bar_time
https://www.tradingview.com/pine-script-reference/v5/#op_matrix
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#op_array
https://www.tradingview.com/pine-script-reference/v5/#op_matrix
https://www.tradingview.com/pine-script-reference/v5/#op_{[}{]}
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}change
https://www.tradingview.com/pine-script-reference/v5/#op_int
https://www.tradingview.com/pine-script-reference/v5/#op_bool
https://www.tradingview.com/pine-script-reference/v5/#var_chart\{dot\}bg_color
https://www.tradingview.com/pine-script-reference/v5/#var_chart\{dot\}fg_color
https://www.tradingview.com/pine-script-reference/v5/#var_chart\{dot\}bg_color
https://www.tradingview.com/pine-script-reference/v5/#var_chart\{dot\}is_standard
https://www.tradingview.com/pine-script-reference/v5/#var_currency\{dot\}USDT
https://www.tradingview.com/pine-script-reference/v5/#fun_syminfo\{dot\}prefix
https://www.tradingview.com/pine-script-reference/v5/#fun_syminfo\{dot\}ticker
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security_lower_tf

Pine Script™ v5 User Manual

Added use_bar_magnifier parameter for the strategy() function. When true, the Broker Emulator uses lower
timeframe data during history backtesting to achieve more realistic results.
Fixed behaviour of strategy.exit() function when stop loss triggered at prices outside the bars price range.
Added new comment and alert message parameters for the strategy.exit() function:

• comment_profit - additional notes on the order if the exit was triggered by crossing profit or limit
specifically.

• comment_loss - additional notes on the order if the exit was triggered by crossing stop or loss specifically.
• comment_trailing - additional notes on the order if the exit was triggered by crossing trail_offset
specifically.

• alert_profit - text that will replace the '{{strategy.order.alert_message}}' placeholder if
the exit was triggered by crossing profit or limit specifically.

• alert_loss - text that will replace the '{{strategy.order.alert_message}}' placeholder if the
exit was triggered by crossing stop or loss specifically.

• alert_trailing - text that will replace the '{{strategy.order.alert_message}}' placeholder
if the exit was triggered by crossing trail_offset specifically.

8.2.9 April 2022

Added the display parameter to the following functions: barcolor, bgcolor, fill, hline.
A new function was added:

• request.economic() - Economic data includes information such as the state of a country’s economy or of a particular
industry.

New built-in variables were added:
• strategy.max_runup - Returns the maximum equity run-up value for the whole trading interval.
• syminfo.volumetype - Returns the volume type of the current symbol.
• chart.is_heikinashi - Returns true if the chart type is Heikin Ashi, false otherwise.
• chart.is_kagi - Returns true if the chart type is Kagi, false otherwise.
• chart.is_linebreak - Returns true if the chart type is Line break, false otherwise.
• chart.is_pnf - Returns true if the chart type is Point & figure, false otherwise.
• chart.is_range - Returns true if the chart type is Range, false otherwise.
• chart.is_renko - Returns true if the chart type is Renko, false otherwise.

New matrix functions were added:
• matrix.new<type> - Creates a new matrix object. A matrix is a two-dimensional data structure containing rows
and columns. All elements in the matrix must be of the type specified in the type template (“<type>”).

• matrix.row() - Creates a one-dimensional array from the elements of a matrix row.
• matrix.col() - Creates a one-dimensional array from the elements of a matrix column.
• matrix.get() - Returns the element with the specified index of the matrix.
• matrix.set() - Assigns value to the element at the column and row index of the matrix.
• matrix.rows() - Returns the number of rows in the matrix.

8.2. 2022 527

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-docs/en/v5/concepts/Strategies.html#broker-emulator
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit
https://www.tradingview.com/pine-script-reference/v5/#fun_barcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_bgcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_hline
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}economic
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}max_runup
https://www.tradingview.com/pine-script-reference/v5/#var_syminfo\{dot\}volumetype
https://www.tradingview.com/pine-script-reference/v5/#var_chart\{dot\}is_heikinashi
https://www.tradingview.com/pine-script-reference/v5/#var_chart\{dot\}is_kagi
https://www.tradingview.com/pine-script-reference/v5/#var_chart\{dot\}is_linebreak
https://www.tradingview.com/pine-script-reference/v5/#var_chart\{dot\}is_pnf
https://www.tradingview.com/pine-script-reference/v5/#var_chart\{dot\}is_range
https://www.tradingview.com/pine-script-reference/v5/#var_chart\{dot\}is_renko
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix%7Bdot%7Dnew%3Ctype%3E
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}row
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}col
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}get
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}set
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}rows

Pine Script™ v5 User Manual

• matrix.columns() - Returns the number of columns in the matrix.
• matrix.elements_count() - Returns the total number of matrix elements.
• matrix.add_row() - Adds a row to the matrix. The row can consist of na values, or an array can be used to provide
values.

• matrix.add_col() - Adds a column to the matrix. The column can consist of na values, or an array can be used to
provide values.

• matrix.remove_row() - Removes the row of the matrix and returns an array containing the removed row’s values.
• matrix.remove_col() - Removes the column of the matrix and returns an array containing the removed column’s
values.

• matrix.swap_rows() - Swaps the rows in the matrix.
• matrix.swap_columns() - Swaps the columns in the matrix.
• matrix.fill() - Fills a rectangular area of the matrix defined by the indices from_column to to_column.
• matrix.copy() - Creates a new matrix which is a copy of the original.
• matrix.submatrix() - Extracts a submatrix within the specified indices.
• matrix.reverse() - Reverses the order of rows and columns in the matrix. The first row and first column become the
last, and the last become the first.

• matrix.reshape() - Rebuilds the matrix to rows x cols dimensions.
• matrix.concat() - Append one matrix to another.
• matrix.sum() - Returns a newmatrix resulting from the sum of twomatrices, or of a matrix and a scalar (a numerical
value).

• matrix.diff() - Returns a new matrix resulting from the subtraction between matrices, or of matrix and a scalar (a
numerical value).

• matrix.mult() - Returns a new matrix resulting from the product between the matrices, or between a matrix and a
scalar (a numerical value), or between a matrix and a vector (an array of values).

• matrix.sort() - Rearranges the rows in the id matrix following the sorted order of the values in the column.
• matrix.avg() - Calculates the average of all elements in the matrix.
• matrix.max() - Returns the largest value from the matrix elements.
• matrix.min() - Returns the smallest value from the matrix elements.
• matrix.median() - Calculates the median (“the middle” value) of matrix elements.
• matrix.mode() - Calculates the mode of the matrix, which is the most frequently occurring value from the matrix
elements. When there are multiple values occurring equally frequently, the function returns the smallest of those
values.

• matrix.pow() - Calculates the product of the matrix by itself power times.
• matrix.det() - Returns the determinant of a square matrix.
• matrix.transpose() - Creates a new, transposed version of the matrix by interchanging the row and column index of
each element.

• matrix.pinv() - Returns the pseudoinverse of a matrix.
• matrix.inv() - Returns the inverse of a square matrix.
• matrix.rank() - Calculates the rank of the matrix.

528 Chapter 8. Release notes

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}columns
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}elements_count
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}add_row
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}add_col
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}remove_row
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}remove_col
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}swap_rows
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}swap_columns
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}fill
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}copy
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}submatrix
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}reverse
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}reshape
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}concat
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}sum
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}diff
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}mult
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}sort
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}avg
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}max
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}min
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}median
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}mode
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}pow
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}det
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}transpose
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}pinv
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}inv
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}rank

Pine Script™ v5 User Manual

• matrix.trace() - Calculates the trace of a matrix (the sum of the main diagonal’s elements).
• matrix.eigenvalues() - Returns an array containing the eigenvalues of a square matrix.
• matrix.eigenvectors() - Returns a matrix of eigenvectors, in which each column is an eigenvector of the matrix.
• matrix.kron() - Returns the Kronecker product for the two matrices.
• matrix.is_zero() - Determines if all elements of the matrix are zero.
• matrix.is_identity() - Determines if a matrix is an identity matrix (elements with ones on the main diagonal and
zeros elsewhere).

• matrix.is_binary() - Determines if the matrix is binary (when all elements of the matrix are 0 or 1).
• matrix.is_symmetric() - Determines if a square matrix is symmetric (elements are symmetric with respect to the
main diagonal).

• matrix.is_antisymmetric() - Determines if a matrix is antisymmetric (its transpose equals its negative).
• matrix.is_diagonal() - Determines if the matrix is diagonal (all elements outside the main diagonal are zero).
• matrix.is_antidiagonal() - Determines if the matrix is anti-diagonal (all elements outside the secondary diagonal
are zero).

• matrix.is_triangular() - Determines if the matrix is triangular (if all elements above or below the main diagonal are
zero).

• matrix.is_stochastic() - Determines if the matrix is stochastic.
• matrix.is_square() - Determines if the matrix is square (it has the same number of rows and columns).

Added a new parameter for the strategy() function:
• risk_free_rate - The risk-free rate of return is the annual percentage change in the value of an investment
with minimal or zero risk, used to calculate the Sharpe and Sortino ratios.

8.2.10 March 2022

New array functions were added:
• array.sort_indices() - returns an array of indices which, when used to index the original array, will access its elements
in their sorted order.

• array.percentrank() - returns the percentile rank of a value in the array.
• array.percentile_nearest_rank() - returns the value for which the specified percentage of array values (percentile)
are less than or equal to it, using the nearest-rank method.

• array.percentile_linear_interpolation() - returns the value for which the specified percentage of array values (per-
centile) are less than or equal to it, using linear interpolation.

• array.abs() - returns an array containing the absolute value of each element in the original array.
• array.binary_search() - returns the index of the value, or -1 if the value is not found.
• array.binary_search_leftmost() - returns the index of the value if it is found or the index of the next smallest element
to the left of where the value would lie if it was in the array.

• array.binary_search_rightmost() - returns the index of the value if it is found or the index of the element to the
right of where the value would lie if it was in the array.

Added a new optional nth parameter for the array.min() and array.max() functions.
Added index in for..in operator. It tracks the current iteration’s index.

8.2. 2022 529

https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}eigenvalues
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}eigenvectors
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}kronis_zero
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}is_zero
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}is_identity
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}is_binary
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}is_symmetric
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}is_antisymmetric
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}is_diagonal
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}is_antidiagonal
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}is_triangular
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}is_stochastic
https://www.tradingview.com/pine-script-reference/v5/#fun_matrix\{dot\}is_square
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}sort_indices
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}percentrank
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}percentile_nearest_rank
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}percentile_linear_interpolation
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}abs
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}binary_search
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}binary_search_leftmost
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}binary_search_rightmost
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}min
https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}max
https://www.tradingview.com/pine-script-reference/v5/#op_for\{dot\}\{dot\}\{dot\}in

Pine Script™ v5 User Manual

Table merging and cell tooltips

• It is now possible to merge several cells in a table. A merged cell doesn’t have to be a header: you can merge cells
in any direction, as long as the resulting cell doesn’t affect any already merged cells and doesn’t go outside of the
table’s bounds. Cells can be merged with the new table.merge_cells() function.

• Tables now support tooltips, floating labels that appear when you hover over a table’s cell. To add a tooltip, pass a
string to the tooltip argument of the table.cell() function or use the new table.cell_set_tooltip() function.

8.2.11 February 2022

Added templates and the ability to create arrays via templates. Instead of using one of the array.new_*() functions,
a template function array.new<type> can be used. In the example below, we use this functionality to create an array filled
with float values:

1 //@version=5
2 indicator("array.new<float> example")
3 length = 5
4 var a = array.new<float>(length, close)
5 if array.size(a) == length
6 array.remove(a, 0)
7 array.push(a, close)
8 plot(array.sum(a) / length, "SMA")

New functions were added:
• timeframe.in_seconds(timeframe) - converts the timeframe passed to the timeframe argument into seconds.
• input.text_area() - adds multiline text input area to the Script settings.
• strategy.closedtrades.entry_id() - returns the id of the closed trade’s entry.
• strategy.closedtrades.exit_id() - returns the id of the closed trade’s exit.
• strategy.opentrades.entry_id() - returns the id of the open trade’s entry.

8.2.12 January 2022

Added new functions to clone drawings:
• line.copy()
• label.copy()
• box.copy()

8.3 2021

8.3.1 December 2021

Linefills

The space between lines drawn in Pine Script™ can now be filled! We’ve added a new linefill drawing type, along
with a number of functions dedicated to manipulating it. Linefills are created by passing two lines and a color to the

530 Chapter 8. Release notes

https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}merge_cells
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}cell
https://www.tradingview.com/pine-script-reference/v5/#fun_table\{dot\}cell_set_tooltip
https://www.tradingview.com/pine-script-reference/v5/#fun_array%7Bdot%7Dnew%3Ctype%3E
https://www.tradingview.com/pine-script-reference/v5/#fun_timeframe\{dot\}in_seconds
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}text_area
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}closedtrades\{dot\}entry_id
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}closedtrades\{dot\}exit_id
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}opentrades\{dot\}entry_id
https://www.tradingview.com/pine-script-reference/v5/#fun_line\{dot\}copy
https://www.tradingview.com/pine-script-reference/v5/#fun_label\{dot\}copy
https://www.tradingview.com/pine-script-reference/v5/#fun_box\{dot\}copy

Pine Script™ v5 User Manual

linefill.new() function, and their behavior is based on the lines they’re tied to: they extend in the same direction
as the lines, move when their lines move, and are deleted when one of the two lines is deleted.
New linefill-related functions:

• array.new_linefill()
• linefill()
• linefill.delete()
• linefill.get_line1()
• linefill.get_line2()
• linefill.new()
• linefill.set_color()
• linefill.all()

New functions for string manipulation

Added a number of new functions that provide more ways to process strings, and introduce regular expressions to Pine
Script™:

• str.contains(source, str) - Determines if the source string contains the str substring.
• str.pos(source, str) - Returns the position of the str string in the source string.
• str.substring(source, begin_pos, end_pos) - Extracts a substring from the source string.
• str.replace(source, target, replacement, occurrence) - Contrary to the existing str.replace_all() function, str.
replace() allows the selective replacement of a matched substring with a replacement string.

• str.lower(source) and str.upper(source) - Convert all letters of the source string to lower or upper case:
• str.startswith(source, str) and str.endswith(source, str) - Determine if the source string starts or ends with the
str substring.

• str.match(source, regex) - Extracts the substring matching the specified regular expression.

Textboxes

Box drawings now supports text. The box.new() function has five new parameters for text manipulation: text,
text_size, text_color, text_valign, and text_halign. Additionally, five new functions to set the text
properties of existing boxes were added:

• box.set_text()
• box.set_text_color()
• box.set_text_size()
• box.set_text_valign()
• box.set_text_halign()

8.3. 2021 531

https://www.tradingview.com/pine-script-reference/v5/#fun_array\{dot\}new_linefill
https://www.tradingview.com/pine-script-reference/v5/#fun_linefill
https://www.tradingview.com/pine-script-reference/v5/#fun_linefill\{dot\}delete
https://www.tradingview.com/pine-script-reference/v5/#fun_linefill\{dot\}get_line1
https://www.tradingview.com/pine-script-reference/v5/#fun_linefill\{dot\}get_line2
https://www.tradingview.com/pine-script-reference/v5/#fun_linefill\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_linefill\{dot\}set_color
https://www.tradingview.com/pine-script-reference/v5/#var_linefill\{dot\}all
https://www.tradingview.com/pine-script-reference/v5/#fun_str\{dot\}contains
https://www.tradingview.com/pine-script-reference/v5/#fun_str\{dot\}pos
https://www.tradingview.com/pine-script-reference/v5/#fun_str\{dot\}substring
https://www.tradingview.com/pine-script-reference/v5/#fun_str\{dot\}replace
https://www.tradingview.com/pine-script-reference/v5/#fun_str\{dot\}replace_all
https://www.tradingview.com/pine-script-reference/v5/#fun_str\{dot\}lower
https://www.tradingview.com/pine-script-reference/v5/#fun_str%7Bdot%7Dupper
https://www.tradingview.com/pine-script-reference/v5/#fun_str\{dot\}startswith
https://www.tradingview.com/pine-script-reference/v5/#fun_str\{dot\}endswith
https://www.tradingview.com/pine-script-reference/v5/#fun_str\{dot\}match
https://en.wikipedia.org/wiki/Regular_expression#Perl_and_PCRE
https://www.tradingview.com/pine-script-reference/v5/#fun_box\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_box\{dot\}set_text
https://www.tradingview.com/pine-script-reference/v5/#fun_box\{dot\}set_text_color
https://www.tradingview.com/pine-script-reference/v5/#fun_box\{dot\}set_text_size
https://www.tradingview.com/pine-script-reference/v5/#fun_box\{dot\}set_text_valign
https://www.tradingview.com/pine-script-reference/v5/#fun_box\{dot\}set_text_halign

Pine Script™ v5 User Manual

New built-in variables

Added new built-in variables that return the bar_index and time values of the last bar in the dataset. Their values
are known at the beginning of the script’s calculation:

• last_bar_index - Bar index of the last chart bar.
• last_bar_time - UNIX time of the last chart bar.

New built-in source variable:
• hlcc4 - A shortcut for (high + low + close + close)/4. It averages the high and low values with the
double-weighted close.

8.3.2 November 2021

for…in

Added a new for…in operator to iterate over all elements of an array:

1 //@version=5
2 indicator("My Script")
3 int[] a1 = array.from(1, 3, 6, 3, 8, 0, -9, 5)
4

5 highest(array) =>
6 var int highestNum = na
7 for item in array
8 if na(highestNum) or item > highestNum
9 highestNum := item
10 highestNum
11

12 plot(highest(a1))

Function overloads

Added function overloads. Several functions in a script can now share the same name, as long one of the following
conditions is true:

• Each overload has a different number of parameters:

1 //@version=5
2 indicator("Function overload")
3

4 // Two parameters
5 mult(x1, x2) =>
6 x1 * x2
7

8 // Three parameters
9 mult(x1, x2, x3) =>
10 x1 * x2 * x3
11

12 plot(mult(7, 4))
13 plot(mult(7, 4, 2))

• When overloads have the same number of parameters, all parameters in each overload must be explicitly typified,
and their type combinations must be unique:

532 Chapter 8. Release notes

https://www.tradingview.com/pine-script-reference/v5/#var_last_bar_index
https://www.tradingview.com/pine-script-reference/v5/#var_last_bar_time
https://www.tradingview.com/pine-script-reference/v5/#var_hlcc4
https://www.tradingview.com/pine-script-reference/v5/#op_for\{dot\}\{dot\}\{dot\}in

Pine Script™ v5 User Manual

1 //@version=5
2 indicator("Function overload")
3

4 // Accepts both 'int' and 'float' values - any 'int' can be automatically cast to
↪→'float'

5 mult(float x1, float x2) =>
6 x1 * x2
7

8 // Returns a 'bool' value instead of a number
9 mult(bool x1, bool x2) =>
10 x1 and x2 ? true : false
11

12 mult(string x1, string x2) =>
13 str.tonumber(x1) * str.tonumber(x2)
14

15 // Has three parameters, so explicit types are not required
16 mult(x1, x2, x3) =>
17 x1 * x2 * x3
18

19 plot(mult(7, 4))
20 plot(mult(7.5, 4.2))
21 plot(mult(true, false) ? 1 : 0)
22 plot(mult("5", "6"))
23 plot(mult(7, 4, 2))

Currency conversion

Added a new currency argument to most request.*() functions. If specified, price values returned by the function
will be converted from the source currency to the target currency. The following functions are affected:

• request.dividends()
• request.earnings()
• request.financial()
• request.security()

8.3.3 October 2021

Pine Script™ v5 is here! This is a list of the new features added to the language, and a few of the changes made. See
the Pine Script™ v5 Migration guide for a complete list of the changes in v5.

New features

Libraries are a new type of publication. They allow you to create custom functions for reuse in other scripts. See this
manual’s page on Libraries.
Pine Script™ now supports switch structures! They provide a more convenient and readable alternative to long ternary
operators and if statements.
while loops are here! They allow you to create a loop that will only stop when its controlling condition is false, or a break
command is used in the loop.
New built-in array variables are maintained by the Pine Script™ runtime to hold the IDs of all the active objects of the
same type drawn by your script. They are label.all, line.all, box.all and table.all.

8.3. 2021 533

https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}dividends
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}earnings
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}financial
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security
https://www.tradingview.com/pine-script-reference/v5/#op_switch
https://www.tradingview.com/pine-script-reference/v5/#op_if
https://www.tradingview.com/pine-script-reference/v5/#op_while
https://www.tradingview.com/pine-script-reference/v5/#var_label\{dot\}all
https://www.tradingview.com/pine-script-reference/v5/#var_line\{dot\}all
https://www.tradingview.com/pine-script-reference/v5/#var_box\{dot\}all
https://www.tradingview.com/pine-script-reference/v5/#var_table\{dot\}all

Pine Script™ v5 User Manual

The runtime.error() function makes it possible to halt the execution of a script and display a runtime error with a custom
message. You can use any condition in your script to trigger the call.
Parameter definitions in user-defined functions can now include a default value: a function defined as f(x = 1) => x
will return 1 when called as f(), i.e., without providing an argument for its x parameter.
New variables and functions provide better script visibility on strategy information:

• strategy.closedtrades.entry_price() and strategy.opentrades.entry_price()
• strategy.closedtrades.entry_bar_index() and strategy.opentrades.entry_bar_index()
• strategy.closedtrades.entry_time() and strategy.opentrades.entry_time()
• strategy.closedtrades.size() and strategy.opentrades.size()
• strategy.closedtrades.profit() and strategy.opentrades.profit()
• strategy.closedtrades.commission() and strategy.opentrades.commission()
• strategy.closedtrades.max_runup() and strategy.opentrades.max_runup()
• strategy.closedtrades.max_drawdown() and strategy.opentrades.max_drawdown()
• strategy.closedtrades.exit_price()
• strategy.closedtrades.exit_bar_index()
• strategy.closedtrades.exit_time()
• strategy.convert_to_account()
• strategy.convert_to_symbol()
• strategy.account_currency

A new earnings.standardized constant for the request.earnings() function allows requesting standardized earnings data.
A v4 to v5 converter is now included in the Pine Script™ Editor. See the Pine Script™ v5 Migration guide for more
information on converting your scripts to v5.
The Reference Manual now includes the systematic mention of the form and type (e.g., “simple int”) required for each
function parameter.
The User Manual was reorganized and new content was added.

Changes

Many built-in variables, functions and function arguments were renamed or moved to new namespaces in v5. The ven-
erable study(), for example, is now indicator(), and security() is now request.security(). New namespaces now
group related functions and variables together. This consolidation implements a more rational nomenclature and provides
an orderly space to accommodate the many additions planned for Pine Script™.
See the Pine Script™ v5 Migration guide for a complete list of the changes made in v5.

534 Chapter 8. Release notes

https://www.tradingview.com/pine-script-reference/v5/#fun_runtime\{dot\}error
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}closedtrades\{dot\}entry_price
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}opentrades\{dot\}entry_price
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}closedtrades\{dot\}entry_bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}opentrades\{dot\}entry_bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}closedtrades\{dot\}entry_time
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}opentrades\{dot\}entry_time
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}closedtrades\{dot\}size
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}opentrades\{dot\}size
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}closedtrades\{dot\}profit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}opentrades\{dot\}profit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}closedtrades\{dot\}commission
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}opentrades\{dot\}commission
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}closedtrades\{dot\}max_runup
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}opentrades\{dot\}max_runup
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}closedtrades\{dot\}max_drawdown
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}opentrades\{dot\}max_drawdown
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}closedtrades\{dot\}exit_price
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}closedtrades\{dot\}exit_bar_index
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}closedtrades\{dot\}exit_time
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}convert_to_account
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}convert_to_symbol
https://www.tradingview.com/pine-script-reference/v5/#var_strategy\{dot\}account_currency
https://www.tradingview.com/pine-script-reference/v5/#var_earnings\{dot\}standardized
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}earnings
https://www.tradingview.com/pine-script-reference/v5/
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_request\{dot\}security

Pine Script™ v5 User Manual

8.3.4 September 2021

New parameter has been added for the dividends(), earnings(), financial(), quandl(), security(),
and splits() functions:

• ignore_invalid_symbol - determines the behavior of the function if the specified symbol is not found: if
false, the script will halt and return a runtime error; if true, the function will return na and execution will
continue.

8.3.5 July 2021

tostring now accepts “bool” and “string” types.
New argument for time and time_close functions was added:

• timezone - timezone of the session argument, can only be used when a session is specified. Can be written
out in GMT notation (e.g. “GMT-5”) or as an IANA time zone database name (e.g. “America/New_York”).

It is now possible to place a drawing object in the future with xloc = xloc.bar_index.
New argument for study and strategy functions was added:

• explicit_plot_zorder - specifies the order in which the indicator’s plots, fills, and hlines are rendered. If
true, the plots will be drawn based on the order in which they appear in the indicator’s code, each newer plot being
drawn above the previous ones.

8.3.6 June 2021

New variable was added:
• barstate.islastconfirmedhistory - returns true if script is executing on the dataset’s last bar when
market is closed, or script is executing on the bar immediately preceding the real-time bar, if market is open.
Returns false otherwise.

New function was added:
• round_to_mintick(x) - returns the value rounded to the symbol’s mintick, i.e. the nearest value that can be
divided by syminfo.mintick, without the remainder, with ties rounding up.

Expanded tostring() functionality. The function now accepts three new formatting arguments:
• format.mintick to format to tick precision.
• format.volume to abbreviate large values.
• format.percent to format percentages.

8.3.7 May 2021

Improved backtesting functionality by adding the Leverage mechanism.
Added support for table drawings and functions for working with them. Tables are unique objects that are not anchored
to specific bars; they float in a script’s space, independently of the chart bars being viewed or the zoom factor used. For
more information, see the Tables User Manual page.
New functions were added:

• color.rgb(red, green, blue, transp) - creates a new color with transparency using the RGB color
model.

8.3. 2021 535

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Pine Script™ v5 User Manual

• color.from_gradient(value, bottom_value, top_value, bottom_color,
top_color) - returns color calculated from the linear gradient between bottom_color to top_color.

• color.r(color), color.g(color), color.b(color), color.t(color) - retrieves the value of
one of the color components.

• array.from() - takes a variable number of arguments with one of the types: int, float, bool, string,
label, line, color, box, table and returns an array of the corresponding type.

A new box drawing has been added to Pine Script™, making it possible to draw rectangles on charts using the Pine
Script™ syntax. For more details see the Pine Script™ reference and the Lines and boxes User Manual page.
The color.new function can now accept series and input arguments, in which case, the colors will be calculated at
runtime. For more information about this, see our Colors User Manual page.

8.3.8 April 2021

New math constants were added:
• math.pi - is a named constant for Archimedes’ constant. It is equal to 3.1415926535897932.
• math.phi - is a named constant for the golden ratio. It is equal to 1.6180339887498948.
• math.rphi - is a named constant for the golden ratio conjugate. It is equal to 0.6180339887498948.
• math.e - is a named constant for Euler’s number. It is equal to 2.7182818284590452.

New math functions were added:
• round(x, precision) - returns the value of x rounded to the nearest integer, with ties rounding up. If the
precision parameter is used, returns a float value rounded to that number of decimal places.

• median(source, length) - returns the median of the series.
• mode(source, length) - returns the mode of the series. If there are several values with the same frequency,
it returns the smallest value.

• range(source, length) - returns the difference between the min and max values in a series.
• todegrees(radians) - returns an approximately equivalent angle in degrees from an angle measured in ra-
dians.

• toradians(degrees) - returns an approximately equivalent angle in radians from an angle measured in de-
grees.

• random(min, max, seed) - returns a pseudo-random value. The function will generate a different sequence
of values for each script execution. Using the same value for the optional seed argument will produce a repeatable
sequence.

New functions were added:
• session.ismarket - returns true if the current bar is a part of the regular trading hours (i.e. market hours),
false otherwise.

• session.ispremarket - returns true if the current bar is a part of the pre-market, false otherwise.
• session.ispostmarket - returns true if the current bar is a part of the post-market, false otherwise.
• str.format - converts the values to strings based on the specified formats. Accepts certain numbermodifiers:
integer, currency, percent.

536 Chapter 8. Release notes

https://www.tradingview.com/pine-script-reference/v5/#fun_box\{dot\}new

Pine Script™ v5 User Manual

8.3.9 March 2021

New assignment operators were added:
• += - addition assignment
• -= - subtraction assignment
• *= - multiplication assignment
• /= - division assignment
• %= - modulus assignment

New parameters for inputs customization were added:
• inline - combines all the input calls with the same inline value in one line.
• group - creates a header above all inputs that use the same group string value. The string is also used as the header
text.

• tooltip - adds a tooltip icon to the Inputs menu. The tooltip string is shown when hovering over the tooltip
icon.

New argument for fill function was added:
• fillgaps - controls whether fills continue on gaps when one of the plot calls returns an na value.

A new keyword was added:
• varip - is similar to the var keyword, but variables declared with varip retain their values between the updates
of a real-time bar.

New functions were added:
• tonumber() - converts a string value into a float.
• time_close() - returns the UNIX timestamp of the close of the current bar, based on the resolution and session
that is passed to the function.

• dividends() - requests dividends data for the specified symbol.
• earnings() - requests earnings data for the specified symbol.
• splits() - requests splits data for the specified symbol.

New arguments for the study() function were added:
• resolution_gaps - fills the gaps between values fetched from higher timeframes when using resolution.
• format.percent - formats the script output values as a percentage.

8.3.10 February 2021

New variable was added:
• time_tradingday - the beginning time of the trading day the current bar belongs to.

8.3. 2021 537

Pine Script™ v5 User Manual

8.3.11 January 2021

The following functions now accept a series length parameter:
• bb()
• bbw()
• cci()
• cmo()
• cog()
• correlation()
• dev()
• falling()
• mfi()
• percentile_linear_interpolation()
• percentile_nearest_rank()
• percentrank()
• rising()
• roc()
• stdev()
• stoch()
• variance()
• wpr()

A new type of alerts was added - script alerts. More information can be found in our Help Center.

8.4 2020

8.4.1 December 2020

New array types were added:
• array.new_line()

• array.new_label()

• array.new_string()

New functions were added:
• str.length() - returns number of chars in source string.
• array.join() - concatenates all of the elements in the array into a string and separates these elements with the
specified separator.

• str.split() - splits a string at a given substring separator.

538 Chapter 8. Release notes

https://www.tradingview.com/pine-script-reference/v4/#fun_bb
https://www.tradingview.com/pine-script-reference/v4/#fun_bbw
https://www.tradingview.com/pine-script-reference/v4/#fun_cci
https://www.tradingview.com/pine-script-reference/v4/#fun_cmo
https://www.tradingview.com/pine-script-reference/v4/#fun_cog
https://www.tradingview.com/pine-script-reference/v4/#fun_correlation
https://www.tradingview.com/pine-script-reference/v4/#fun_dev
https://www.tradingview.com/pine-script-reference/v4/#fun_falling
https://www.tradingview.com/pine-script-reference/v4/#fun_mfi
https://www.tradingview.com/pine-script-reference/v4/#fun_percentile_linear_interpolation
https://www.tradingview.com/pine-script-reference/v4/#fun_percentile_nearest_rank
https://www.tradingview.com/pine-script-reference/v4/#fun_percentrank
https://www.tradingview.com/pine-script-reference/v4/#fun_rising
https://www.tradingview.com/pine-script-reference/v4/#fun_roc
https://www.tradingview.com/pine-script-reference/v4/#fun_stdev
https://www.tradingview.com/pine-script-reference/v4/#fun_stoch
https://www.tradingview.com/pine-script-reference/v4/#fun_variance
https://www.tradingview.com/pine-script-reference/v4/#fun_wpr
https://www.tradingview.com/support/solutions/43000597494/

Pine Script™ v5 User Manual

8.4.2 November 2020

• New max_labels_count and max_lines_count parameters were added to the study and strategy func-
tions. Now you can manage the number of lines and labels by setting values for these parameters from 1 to 500.

New function was added:
• array.range() - return the difference between the min and max values in the array.

8.4.3 October 2020

The behavior of rising() and falling() functions have changed. For example, rising(close,3) is now
calculated as following:

close[0] > close[1] and close[1] > close[2] and close[2] > close[3]

8.4.4 September 2020

Added support for input.color to the input() function. Now you can provide script users with color selection
through the script’s “Settings/Inputs” tab with the same color widget used throughout the TradingView user interface.
Learn more about this feature in our blog

1 //@version=4
2 study("My Script", overlay = true)
3 color c_labelColor = input(color.green, "Main Color", input.color)
4 var l = label.new(bar_index, close, yloc = yloc.abovebar, text = "Colored label")
5 label.set_x(l, bar_index)
6 label.set_color(l, c_labelColor)

8.4. 2020 539

https://www.tradingview.com/blog/en/create-color-inputs-in-pine-20751/

Pine Script™ v5 User Manual

Added support for arrays and functions for working with them. You can now use the powerful new array feature to build
custom datasets. See our User Manual page on arrays and our blog

1 //@version=4
2 study("My Script")
3 a = array.new_float(0)
4 for i = 0 to 5
5 array.push(a, close[i] - open[i])
6 plot(array.get(a, 4))

The following functions now accept a series length parameter. Learn more about this feature in our blog:
• alma()
• change()
• highest()
• highestbars()
• linreg()
• lowest()
• lowestbars()
• mom()
• sma()
• sum()

540 Chapter 8. Release notes

https://www.tradingview.com/pine-script-docs/en/v4/essential/Arrays.html
https://www.tradingview.com/blog/en/arrays-are-now-available-in-pine-script-20052/
https://www.tradingview.com/blog/en/pine-functions-support-dynamic-length-arguments-20554/
https://www.tradingview.com/pine-script-reference/v4/#fun_alma
https://www.tradingview.com/pine-script-reference/v4/#fun_change
https://www.tradingview.com/pine-script-reference/v4/#fun_highest
https://www.tradingview.com/pine-script-reference/v4/#fun_highestbars
https://www.tradingview.com/pine-script-reference/v4/#fun_linreg
https://www.tradingview.com/pine-script-reference/v4/#fun_lowest
https://www.tradingview.com/pine-script-reference/v4/#fun_lowestbars
https://www.tradingview.com/pine-script-reference/v4/#fun_mom
https://www.tradingview.com/pine-script-reference/v4/#fun_sma
https://www.tradingview.com/pine-script-reference/v4/#fun_sum

Pine Script™ v5 User Manual

• vwma()
• wma()

1 //@version=4
2 study("My Script", overlay = true)
3 length = input(10, "Length", input.integer, minval = 1, maxval = 100)
4 avgBar = avg(highestbars(length), lowestbars(length))
5 float dynLen = nz(abs(avgBar) + 1, length)
6 dynSma = sma(close, int(dynLen))
7 plot(dynSma)

8.4.5 August 2020

• Optimized script compilation time. Scripts now compile 1.5 to 2 times faster.

8.4.6 July 2020

• Minor bug fixes and improvements.

8.4.7 June 2020

• New resolution parameter was added to the study function. Now you can add MTF functionality to scripts
and decide the timeframe you want the indicator to run on.

Please note that you need to reapply the indicator in order for the resolution parameter to appear.

8.4. 2020 541

https://www.tradingview.com/pine-script-reference/v4/#fun_vwma
https://www.tradingview.com/pine-script-reference/v4/#fun_wma

Pine Script™ v5 User Manual

• The tooltip argument was added to the label.new function along with the label.set_tooltip func-
tion:

1 //@version=4
2 study("My Script", overlay=true)
3 var l=label.new(bar_index, close, yloc=yloc.abovebar, text="Label")
4 label.set_x(l,bar_index)
5 label.set_tooltip(l, "Label Tooltip")

• Added an ability to create alerts on strategies.
• A new function line.get_price() can be used to determine the price level at which the line is located on a certain
bar.

• New label styles allow you to position the label pointer in any direction.

542 Chapter 8. Release notes

https://www.tradingview.com/support/solutions/43000481368
https://www.tradingview.com/pine-script-reference/v4/#fun_line\{dot\}get_price
https://www.tradingview.com/pine-script-reference/v4/#fun_label\{dot\}new

Pine Script™ v5 User Manual

• Find and Replace was added to Pine Editor. To use this, press CTRL+F (find) or CTRL+H (find and replace).

• timezone argument was added for time functions. Now you can specify timezone for second, minute, hour,
year, month, dayofmonth, dayofweek functions:

1 //@version=4
2 study("My Script")
3 plot(hour(1591012800000, "GMT+1"))

• syminfo.basecurrency variable was added. Returns the base currency code of the current symbol. For
EURUSD symbol returns EUR.

8.4. 2020 543

Pine Script™ v5 User Manual

8.4.8 May 2020

• else if statement was added
• The behavior of security() function has changed: the expression parameter can be series or tuple.

8.4.9 April 2020

New function was added:
• quandl() - request quandl data for a symbol

8.4.10 March 2020

New function was added:
• financial() - request financial data for a symbol

New functions for common indicators were added:
• cmo() - Chande Momentum Oscillator
• mfi() - Money Flow Index
• bb() - Bollinger Bands
• bbw() - Bollinger Bands Width
• kc() - Keltner Channels
• kcw() - Keltner Channels Width
• dmi() - DMI/ADX
• wpr() - Williams % R
• hma() - Hull Moving Average
• supertrend() - SuperTrend

Added a detailed description of all the fields in the Strategy Tester Report.

8.4.11 February 2020

• New Pine Script™ indicator VWAP Anchored was added. Now you can specify the time period: Session, Month,
Week, Year.

• Fixed a problem with calculating percentrank function. Now it can return a zero value, which did not happen
before due to an incorrect calculation.

• The default transparency parameter for the plot(), plotshape(), and plotchar() functions is now
0%.

• For the functions plot(), plotshape(), plotchar(), plotbar(), plotcandle(), plotar-
row(), you can set the display parameter, which controls the display of the plot. The following values can be
assigned to it:

– display.none - the plot is not displayed
– display.all - the plot is displayed (Default)

544 Chapter 8. Release notes

https://www.tradingview.com/support/folders/43000587044-i-d-like-to-know-more-about-values-in-the-strategy-tester-report/

Pine Script™ v5 User Manual

• The textalign argument was added to the label.new function along with the label.set_textalign
function. Using those, you can control the alignment of the label’s text:

8.4.12 January 2020

New built-in variables were added:
• iii - Intraday Intensity Index
• wvad - Williams Variable Accumulation/Distribution
• wad - Williams Accumulation/Distribution
• obv - On Balance Volume
• pvt - Price-Volume Trend
• nvi - Negative Volume Index
• pvi - Positive Volume Index

New parameters were added for strategy.close():
• qty - the number of contracts/shares/lots/units to exit a trade with
• qty_percent - defines the percentage of entered contracts/shares/lots/units to exit a trade with
• comment - addtional notes on the order

New parameter was added for strategy.close_all:
• comment - additional notes on the order

8.5 2019

8.5.1 December 2019

• Warning messages were added.
For example, if you don’t specify exit parameters for strategy.exit - profit, limit, loss, stop or
one of the following pairs: trail_offset and trail_price / trail_points - you will see a warning
message in the console in the Pine Script™ editor.

• Increased the maximum number of arguments in max, min, avg functions. Now you can use up to ten arguments
in these functions.

8.5.2 October 2019

• plotchar() function now supports most of the Unicode symbols:
• New bordercolor argument of the plotcandle() function allows you to change the color of candles’ bor-
ders:

1 //@version=4
2 study("My Script")
3 plotcandle(open, high, low, close, title='Title', color = open < close ? color.green␣

↪→: color.red, wickcolor=color.black, bordercolor=color.orange)

8.5. 2019 545

Pine Script™ v5 User Manual

• New variables added:
– syminfo.description - returns a description of the current symbol
– syminfo.currency - returns the currency code of the current symbol (EUR, USD, etc.)
– syminfo.type - returns the type of the current symbol (stock, futures, index, etc.)

8.5.3 September 2019

New parameters to the strategy function were added:
• process_orders_on_close allows the broker emulator to try to execute orders after calculating the strategy
at the bar’s close

• close_entries_rule allows to define the sequence used for closing positions
Some fixes were made:

• fill() function now works correctly with na as the color parameter value
• sign() function now calculates correctly for literals and constants

str.replace_all(source, target, replacement) function was added. It replaces each occurrence of a
target string in the source string with a replacement string

8.5.4 July-August 2019

New variables added:
• timeframe.isseconds returns true when current resolution is in seconds
• timeframe.isminutes returns true when current resolution is in minutes
• time_close returns the current bar’s close time

The behavior of some functions, variables and operators has changed:
• The time variable returns the correct open time of the bar for more special cases than before
• An optional seconds parameter of the timestamp() function allows you to set the time to within seconds
• security() function:

– Added the possibility of requesting resolutions in seconds:
1, 5, 15, 30 seconds (chart resolution should be less than or equal to the requested resolution)

– Reduced the maximum value that can be requested in some of the other resolutions:
from 1 to 1440 minutes
from 1 to 365 days
from 1 to 52 weeks
from 1 to 12 months

• Changes to the evaluation of ternary operator branches:
In Pine Script™ v3, during the execution of a ternary operator, both its branches are calculated, so when this script
is added to the chart, a long position is opened, even if the long() function is not called:

546 Chapter 8. Release notes

Pine Script™ v5 User Manual

8.5.5 June 2019

• Support for drawing objects. Added label and line drawings
• var keyword for one time variable initialization
• Type system improvements:

– series string data type
– functions for explicit type casting
– syntax for explicit variable type declaration
– new input type forms

• Renaming of built-ins and a version 3 to 4 converter utility
• max_bars_back function to control series variables internal history buffer sizes
• Pine Script™ documentation versioning

8.6 2018

8.6.1 October 2018

• To increase the number of indicators available to the whole community, Invite-Only scripts can now be published
by Premium users only.

8.6.2 April 2018

• Improved the Strategy Tester by reworking the Maximum Drawdown calculation formula.

8.7 2017

8.7.1 August 2017

• With the new argument show_last in the plot-type functions, you can restrict the number of bars that the plot
is displayed on.

8.7.2 June 2017

• A major script publishing improvement: it is now possible to update your script without publishing a new one via
the Update button in the publishing dialog.

8.6. 2018 547

Pine Script™ v5 User Manual

8.7.3 May 2017

• Expanded the type system by adding a new type of constants that can be calculated during compilation.

8.7.4 April 2017

• Expanded the keyword argument functionality: it is now possible to use keyword arguments in all built-in functions.
• A new barstate.isconfirmed variable has been added to the list of variables that return bar status. It lets
you create indicators that are calculated based on the closed bars only.

• The options argument for the input() function creates an input with a set of options defined by the script’s
author.

8.7.5 March 2017

• Pine Script™ v3 is here! Some important changes:
– Changes to the default behavior of the security() function: it can no longer access the future data by
default. This can be changes with the lookahead parameter.

– An implicit conversion of boolean values to numeric values was replaced with an implicit conversion of
numeric values (integer and float) to boolean values.

– Self-referenced and forward-referenced variables were removed. Any PineScript code that used those lan-
guage constructions can be equivalently rewritten using mutable variables.

8.7.6 February 2017

• Several improvements to the strategy tester and the strategy report:
– New Buy & Hold equity graph – a new graph that lets you compare performance of your strategy versus a
“buy and hold”, i.e if you just bought a security and held onto it without trading.

– Added percentage values to the absolute currency values.
– Added Buy & Hold Return to display the final value of Buy & Hold Equity based on last price.
– Added Sharpe Ratio – it shows the relative effectiveness of the investment portfolio (security), a measure
that indicates the average return minus the risk-free return divided by the standard deviation of return on an
investment.

– Slippage lets you simulate a situation when orders are filled at a worse price than expected. It can be set
through the Properties dialog or through the slippage argument in the strategy() function.

– Commission allows yot to add commission for placed orders in percent of order value, fixed price or per
contract. The amount of commission paid is shown in the Commission Paid field. The commission size
and its type can be set through the Properties dialog or through the commission_type and commission_value
arguments in the strategy() function.

548 Chapter 8. Release notes

Pine Script™ v5 User Manual

8.8 2016

8.8.1 December 2016

• Added invite-only scripts. The invite-only indicators are visible in the Community Scripts, but nobody can use
them without explicit permission from the author, and only the author can see the source code.

8.8.2 October 2016

• Introduded indicator revisions. Each time an indicator is saved, it gets a new revision, and it is possible to easily
switch to any past revision from the Pine Editor.

8.8.3 September 2016

• It is now possible to publish indicators with protected source code. These indicators are available in the public
Script Library, and any user can use them, but only the author can see the source code.

8.8.4 July 2016

• Improved the behavior of the fill() function: one call can now support several different colors.

8.8.5 March 2016

• Color type variables now have an additional parameter to set default transparency. The transparency can be set with
the color.new() function, or by adding an alpha-channel value to a hex color code.

8.8.6 February 2016

• Added for loops and keywords break and continue.
• Pine Script™ now supports mutable variables! Use the := operator to assign a new value to a variable that has
already been defined.

• Multiple improvements and bug fixes for strategies.

8.8.7 January 2016

• A new alertcondition() function allows for creating custom alert conditions in Pine Script™-based indi-
cators.

8.8. 2016 549

Pine Script™ v5 User Manual

8.9 2015

8.9.1 October 2015

• Pine has graduated to v2! The new version of Pine Script™ added support for if statements, making it easier to
write more readable and concise code.

8.9.2 September 2015

• Added backtesting functionality to Pine Script™. It is now possible to create trading strategies, i.e. scripts that can
send, modify and cancel orders to buy or sell. Strategies allow you to perform backtesting (emulation of strategy
trading on historical data) and forward testing (emulation of strategy trading on real-time data) according to your
algorithms. Detailed information about the strategy’s calculations and the order fills can be seen in the newly added
Strategy Tester tab.

8.9.3 July 2015

• A new editable parameter allows hiding the plot from the Style menu in the indicator settings so that it is not
possible to edit its style. The parameter has been added to all the following functions: all plot-type functions,
barcolor(), bgcolor(), hline(), and fill().

8.9.4 June 2015

• Added two new functions to display custom barsets using PineScipt: plotbar() and plotcandle().

8.9.5 April 2015

• Added two new shapes to the plotshape() function: shape.labelup and shape.labeldown.
• PineScipt Editor has been improved and moved to a new panel at the bottom of the page.
• Added a new step argument for the input() function, allowing to specify the step size for the indicator’s inputs.

8.9.6 March 2015

• Added support for inputs with the source type to the input() function, allowing to select the data source for
the indicator’s calculations from its settings.

8.9.7 February 2015

• Added a new text argument to plotshape() and plotchar() functions.
• Added four new shapes to the plotshape() function: shape.arrowup, shape.arrowdown, shape.square,
shape.diamond.

550 Chapter 8. Release notes

Pine Script™ v5 User Manual

8.10 2014

8.10.1 August 2014

• Improved the script sharing capabilities, changed the layout of the Indicators menu and separated published scripts
from ideas.

8.10.2 July 2014

• Added three new plotting functions, plotshape(), plotchar(), and plotarrow() for situations when
you need to highlight specific bars on a chart without drawing a line.

• Integrated QUANDL data into Pine Script™. The data can be accessed by passing the QUANDL ticker to the
security function.

8.10.3 June 2014

• Added Pine Script™ sharing, enabling programmers and traders to share their scripts with the rest of the Trad-
ingView community.

8.10.4 April 2014

• Added line wrapping.

8.10.5 February 2014

• Added support for inputs, allowing users to edit the indicator inputs through the properties window, without needing
to edit the Pine script.

• Added self-referencing variables.
• Added support for multiline functions.
• Implemented the type-casting mechanism, automatically casting constant and simple float and int values to series
when it is required.

• Added several new functions and improved the existing ones:
– barssince() and valuewhen() allow you to check conditions on historical data easier.
– The new barcolor() function lets you specify a color for a bar based on filling of a certain condition.
– Similar to the barcolor() function, the bgcolor() function changes the color of the background.
– Reworked the security() function, further expanding its functionality.
– Improved the fill() function, enabling it to be used more than once in one script.
– Added the round() function to round and convert float values to integers.

8.10. 2014 551

Pine Script™ v5 User Manual

8.11 2013

• The first version of Pine Script™ is introduced to all TradingView users, initially as an open beta, on December
13th.

552 Chapter 8. Release notes

https://www.tradingview.com/

CHAPTER

NINE

MIGRATION GUIDES

9.1 To Pine Script™ version 5

• Introduction

• v4 to v5 converter

• Renamed functions and variables

• Renamed function parameters

• Removed an `rsi()` overload

• Reserved keywords

• Removed `iff()` and `offset()`

• Split of `input()` into several functions

• Some function parameters now require built-in arguments

• Deprecated the `transp` parameter

• Changed the default session days for `time()` and `time_close()`

• `strategy.exit()` now must do something

• Common script conversion errors

• All variable, function, and parameter name changes

553

https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

9.1.1 Introduction

This guide documents the changes made to Pine Script™ from v4 to v5. It will guide you in the adaptation of existing
Pine scripts to Pine Script™ v5. See our Release notes for a list of the new features in Pine Script™ v5.
The most frequent adaptations required to convert older scripts to v5 are:

• Changing study() for indicator() (the function’s signature has not changed).
• Renaming built-in function calls to include their new namespace (e.g., highest() in v4 becomes ta.highest() in v5).
• Restructuring inputs to use the more specialized input.*() functions.
• Eliminating uses of the deprecated transp parameter by using color.new() to simultaneously define color and
transparency for use with the color parameter.

• If you used the resolution and resolution_gaps parameters in v4’s study(), they will require changing
to timeframe and timeframe_gaps in v5’s indicator().

9.1.2 v4 to v5 converter

The Pine Editor includes a utility to automatically convert v4 scripts to v5. To access it, open a script with //
@version=4 in it and select the “Convert to v5” option in the “More” menu identified by three dots at the top-right of
the Editor’s pane:

Not all scripts can be automatically converted from v4 to v5. If you want to convert the script manually or if your indicator
returns a compilation error after conversion, use the following sections to determine how to complete the conversion. A
list of some errors you can encounter during the automatic conversion and how to fix them can be found in the Common
script conversion errors section of this guide.

554 Chapter 9. Migration guides

https://www.tradingview.com/pine-script-reference/v4/#fun_study
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v4/#fun_highest
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}highest
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}new
https://www.tradingview.com/pine-script-reference/v4/#fun_study
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator

Pine Script™ v5 User Manual

9.1.3 Renamed functions and variables

For clarity and consistency, many built-in functions and variables were renamed in v5. The inclusion of v4 function names
in a new namespace is the cause of most changes. For example, the sma() function in v4 is moved to the ta. namespace
in v5: ta.sma(). Remembering the new namespaces is not necessary; if you type the older name of a function without its
namespace in the Editor and press the ‘Auto-complete’ hotkey (Ctrl + Space, or Cmd + Space on MacOS), a popup
showing matching suggestions appears:

Not counting functions moved to new namespaces, only two functions have been renamed:
• study() is now indicator().
• tickerid() is now ticker.new().

The full list of renamed functions and variables can be found in the All variable, function, and parameter name changes
section of this guide.

9.1.4 Renamed function parameters

The parameter names of some built-in functions were changed to improve the nomenclature. This has no bearing on most
scripts, but if you used these parameter names when calling functions, they will require adaptation. For example, we have
standardized all mentions:

// Valid in v4. Not valid in v5.
timev4 = time(resolution = "1D")
// Valid in v5.
timev5 = time(timeframe = "1D")
// Valid in v4 and v5.
timeBoth = time("1D")

The full list of renamed function parameters can be found in the All variable, function, and parameter name changes
section of this guide.

9.1. To Pine Script™ version 5 555

https://www.tradingview.com/pine-script-reference/v4/#fun_sma
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}sma
https://www.tradingview.com/pine-script-reference/v5/#fun_indicator
https://www.tradingview.com/pine-script-reference/v5/#fun_ticker\{dot\}new

Pine Script™ v5 User Manual

9.1.5 Removed an `rsi()` overload

In v4, the rsi() function had two different overloads:
• rsi(series float, simple int) for the normal RSI calculation, and
• rsi(series float, series float) for an overload used in the MFI indicator, which did a calculation
equivalent to 100.0 - (100.0 / (1.0 + arg1 / arg2)).

This caused a single built-in function to behave in two very different ways, and it was difficult to distinguish which one
applied because it depended on the type of the second argument. As a result, a number of indicators misused the function
and were displaying incorrect results. To avoid this, the second overload was removed in v5.
The ta.rsi() function in v5 only accepts a “simple int” argument for its length parameter. If your v4 code used the now
deprecated overload of the function with a float second argument, you can replace the whole rsi() call with the
following formula, which is equivalent:

100.0 - (100.0 / (1.0 + arg1 / arg2))

Note that when your v4 code used a “series int” value as the second argument to rsi(), it was automatically cast to “series
float” and the second overload of the function was used. While this was syntactically correct, it most probably did not yield
the result you expected. In v5, ta.rsi() requires a “simple int” for the argument to length, which precludes dynamic (or
“series”) lengths. The reason for this is that RSI calculations use the ta.rma() moving average, which is similar to ta.ema()
in that it relies on a length-dependent recursive process using the values of previous bars. This makes it impossible to
achieve correct results with a “series” length that could vary bar to bar.
If your v4 code used a length that was “const int”, “input int” or “simple int”, no changes are required.

9.1.6 Reserved keywords

A number of words are reserved and cannot be used for variable or function names. They are: catch, class, do,
ellipse, in, is, polygon, range, return, struct, text, throw, try. If your v4 indicator uses any of
these, rename your variable or function for the script to work in v5.

9.1.7 Removed `iff()` and `offset()`

The iff() and offset() functions have been removed. Code using the iff() function can be rewritten using the ternary
operator:

// iff(<condition>, <return_when_true>, <return_when_false>)
// Valid in v4, not valid in v5
barColorIff = iff(close >= open, color.green, color.red)
// <condition> ? <return_when_true> : <return_when_false>
// Valid in v4 and v5
barColorTernary = close >= open ? color.green : color.red

Note that the ternary operator is evaluated “lazily”; only the required value is calculated (depending on the condition’s
evaluation to true or false). This is different from iff(), which always evaluated both values but returned only the
relevant one.
Some functions require evaluation on every bar to correctly calculate, so you will need to make special provisions for these
by pre-evaluating them before the ternary:

// `iff()` in v4: `highest()` and `lowest()` are calculated on every bar
v1 = iff(close > open, highest(10), lowest(10))
plot(v1)

(continues on next page)

556 Chapter 9. Migration guides

https://www.tradingview.com/pine-script-reference/v4/#fun_rsi
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}rsi
https://www.tradingview.com/pine-script-reference/v4/#fun_rsi
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}rsi
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}rma
https://www.tradingview.com/pine-script-reference/v5/#fun_ta\{dot\}ema
https://www.tradingview.com/pine-script-reference/v4/#fun_iff
https://www.tradingview.com/pine-script-reference/v4/#fun_offset
https://www.tradingview.com/pine-script-reference/v4/#fun_iff
https://www.tradingview.com/pine-script-reference/v4/#fun_iff

Pine Script™ v5 User Manual

(continued from previous page)
// In v5: forced evaluation on every bar prior to the ternary statement.
h1 = ta.highest(10)
l1 = ta.lowest(10)
v1 = close > open ? h1 : l1
plot(v1)

The offset() function was deprecated because the more readable [] operator is equivalent:

// Valid in v4. Not valid in v5.
prevClosev4 = offset(close, 1)
// Valid in v4 and v5.
prevClosev5 = close[1]

9.1.8 Split of `input()` into several functions

The v4 input() function was becoming crowded with a plethora of overloads and parameters. We split its functionality
into different functions to clear that space and provide a more robust structure to accommodate the additions planned for
inputs. Each new function uses the name of the input.* type of the v4 input() call it replaces. E.g., there is now
a specialized input.float() function replacing the v4 input(1.0, type = input.float) call. Note that you
can still use input(1.0) in v5, but because only input.float() allows for parameters such as minval, maxval, etc.,
it is more powerful. Also note that input.int() is the only specialized input function that does not use its equivalent v4
input.integer name. The input.* constants have been removed because they were used as arguments for the
type parameter, which was deprecated.
To convert, for example, a v4 script using an input of type input.symbol, the input.symbol() function must be used
in v5:

// Valid in v4. Not valid in v5.
aaplTicker = input("AAPL", type = input.symbol)
// Valid in v5
aaplTicker = input.symbol("AAPL")

The input() function persists in v5, but in a simpler form, with less parameters. It has the advantage of automatically
detecting input types “bool/color/int/float/string/source” from the argument used for defval:

// Valid in v4 and v5.
// While "AAPL" is a valid symbol, it is only a string here because `input.symbol()`␣
↪→is not used.
tickerString = input("AAPL", title = "Ticker string")

9.1.9 Some function parameters now require built-in arguments

In v4, built-in constants such as plot.style_area used as arguments when calling Pine Script™ functions corre-
sponded to pre-defined values of a specific type. For example, the value of barmerge.lookahead_on was true,
so you could use true instead of the named constant when supplying an argument to the lookahead parameter in a
security() function call. We found this to be a common source of confusion, which caused unsuspecting programmers to
produce code yielding unintended results.
In v5, the use of correct built-in named constants as arguments to function parameters requiring them is mandatory:

// Not valid in v5: `true` is used as an argument for `lookahead`.
request.security(syminfo.tickerid, "1D", close, lookahead = true)

(continues on next page)

9.1. To Pine Script™ version 5 557

https://www.tradingview.com/pine-script-reference/v4/#fun_offset
https://www.tradingview.com/pine-script-reference/v5/#op_{[}{]}
https://www.tradingview.com/pine-script-reference/v4/#fun_input
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}float
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}float
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}int
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}symbol
https://www.tradingview.com/pine-script-reference/v5/#fun_input
https://www.tradingview.com/pine-script-reference/v4/#fun_security

Pine Script™ v5 User Manual

(continued from previous page)
// Valid in v5: uses a named constant instead of `true`.
request.security(syminfo.tickerid, "1D", close, lookahead = barmerge.lookahead_on)

// Would compile in v4 because `plot.style_columns` was equal to 5.
// Won't compile in v5.
a = 2 * plot.style_columns
plot(a)

To convert your script from v4 to v5, make sure you use the correct named built-in constants as function arguments.

9.1.10 Deprecated the `transp` parameter

The transp= parameter used in the signature of many v4 plotting functions was deprecated because it interfered with
RGB functionality. Transparency must now be specified along with the color as an argument to parameters such as
color, textcolor, etc. The color.new() or color.rgb() functions will be needed in those cases to join a color and its
transparency.
Note that in v4, the bgcolor() and fill() functions had an optional transp parameter that used a default value of 90.
This meant that the code below could display Bollinger Bands with a semi-transparent fill between two bands and a semi-
transparent backround color where bands cross price, even though no argument is used for the transp parameter in its
bgcolor() and fill() calls:

1 //@version=4
2 study("Bollinger Bands", overlay = true)
3 [middle, upper, lower] = bb(close, 5, 4)
4 plot(middle, color=color.blue)
5 p1PlotID = plot(upper, color=color.green)
6 p2PlotID = plot(lower, color=color.green)
7 crossUp = crossover(high, upper)
8 crossDn = crossunder(low, lower)
9 // Both `fill()` and `bgcolor()` have a default `transp` of 90
10 fill(p1PlotID, p2PlotID, color = color.green)
11 bgcolor(crossUp ? color.green : crossDn ? color.red : na)

In v5 we need to explictly mention the 90 transparency with the color, yielding:

1 //@version=5
2 indicator("Bollinger Bands", overlay = true)
3 [middle, upper, lower] = ta.bb(close, 5, 4)
4 plot(middle, color=color.blue)
5 p1PlotID = plot(upper, color=color.green)
6 p2PlotID = plot(lower, color=color.green)
7 crossUp = ta.crossover(high, upper)
8 crossDn = ta.crossunder(low, lower)
9 var TRANSP = 90
10 // We use `color.new()` to explicitly pass transparency to both functions
11 fill(p1PlotID, p2PlotID, color = color.new(color.green, TRANSP))
12 bgcolor(crossUp ? color.new(color.green, TRANSP) : crossDn ? color.new(color.red,␣

↪→TRANSP) : na)

558 Chapter 9. Migration guides

https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}new
https://www.tradingview.com/pine-script-reference/v5/#fun_color\{dot\}rgb
https://www.tradingview.com/pine-script-reference/v5/#fun_bgcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_fill
https://www.tradingview.com/pine-script-reference/v5/#fun_bgcolor
https://www.tradingview.com/pine-script-reference/v5/#fun_fill

Pine Script™ v5 User Manual

9.1.11 Changed the default session days for `time()` and `time_close()`

The default set of days forsession strings used in the time() and time_close() functions, and returned by input.session(),
has changed from "23456" (Monday to Friday) to "1234567" (Sunday to Saturday):

// On symbols that are traded during weekends, this will behave differently in v4 and␣
↪→v5.
t0 = time("1D", "1000-1200")
// v5 equivalent of the behavior of `t0` in v4.
t1 = time("1D", "1000-1200:23456")
// v5 equivalent of the behavior of `t0` in v5.
t2 = time("1D", "1000-1200:1234567")

This change in behavior should not have much impact on scripts running on conventional markets that are closed dur-
ing weekends. If it is important for you to ensure your session definitions preserve their v4 behavior in v5 code, add
":23456" to your session strings. See this manual’s page on Sessions for more information.

9.1.12 `strategy.exit()` now must do something

Gone are the days when the strategy.exit() function was allowed to loiter. Now it must actually have an effect on the
strategy by using at least one of the following parameters: profit, limit, loss, stop, or one of the following
pairs: trail_offset combined with either trail_price or trail_points. When uses of strategy.exit() not
meeting these criteria trigger an error while converting a strategy to v5, you can safely eliminate these lines, as they didn’t
do anything in your code anyway.

9.1.13 Common script conversion errors

Invalid argument ‘style’/’linestyle’ in ‘plot’/’hline’ call

To make this work, you need to change the “int” arguments used for the style and linestyle arguments in plot()
and hline() for built-in constants:

// Will cause an error during conversion
plotStyle = input(1)
hlineStyle = input(1)
plot(close, style = plotStyle)
hline(100, linestyle = hlineStyle)

// Will work in v5
//@version=5
indicator("")
plotStyleInput = input.string("Line", options = ["Line", "Stepline", "Histogram",
↪→"Cross", "Area", "Columns", "Circles"])
hlineStyleInput = input.string("Solid", options = ["Solid", "Dashed", "Dotted"])

plotStyle = plotStyleInput == "Line" ? plot.style_line :
plotStyleInput == "Stepline" ? plot.style_stepline :
plotStyleInput == "Histogram" ? plot.style_histogram :
plotStyleInput == "Cross" ? plot.style_cross :
plotStyleInput == "Area" ? plot.style_area :
plotStyleInput == "Columns" ? plot.style_columns :
plot.style_circles

hlineStyle = hlineStyleInput == "Solid" ? hline.style_solid :

(continues on next page)

9.1. To Pine Script™ version 5 559

https://www.tradingview.com/pine-script-reference/v5/#fun_time
https://www.tradingview.com/pine-script-reference/v5/#fun_time_close
https://www.tradingview.com/pine-script-reference/v5/#fun_input\{dot\}session
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}exit
https://www.tradingview.com/pine-script-reference/v5/#fun_plot
https://www.tradingview.com/pine-script-reference/v5/#fun_hline

Pine Script™ v5 User Manual

(continued from previous page)
hlineStyleInput == "Dashed" ? hline.style_dashed :
hline.style_dotted

plot(close, style = plotStyle)
hline(100, linestyle = hlineStyle)

See the Some function parameters now require built-in arguments section of this guide for more information.

Undeclared identifier ‘input.%input_name%’

To fix this issue, remove the input.* constants from your code:

// Will cause an error during conversion
_integer = input.integer
_bool = input.bool
i1 = input(1, "Integer", _integer)
i2 = input(true, "Boolean", _bool)

// Will work in v5
i1 = input.int(1, "Integer")
i2 = input.bool(true, "Boolean")

See the User Manual’s page on Inputs, and the Some function parameters now require built-in arguments section of this
guide for more information.

Invalid argument ‘when’ in ‘strategy.close’ call

This is caused by a confusion between strategy.entry() and strategy.close().
The second parameter of strategy.close() is when, which expects a “bool” argument. In v4, it was allowed to use
strategy.long an argument because it was a “bool”. With v5, however, named built-in constants must be used
as arguments, so strategy.long is no longer allowed as an argument to the when parameter.
The strategy.close("Short", strategy.long) call in this code is equivalent to strategy.
close("Short"), which is what must be used in v5:

// Will cause an error during conversion
if (longCondition)

strategy.close("Short", strategy.long)
strategy.entry("Long", strategy.long)

// Will work in v5:
if (longCondition)

strategy.close("Short")
strategy.entry("Long", strategy.long)

See the Some function parameters now require built-in arguments section of this guide for more information.

560 Chapter 9. Migration guides

https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}entry
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}close
https://www.tradingview.com/pine-script-reference/v5/#fun_strategy\{dot\}close

Pine Script™ v5 User Manual

Cannot call ‘input.int’ with argument ‘minval’=’%value%’. An argument of ‘literal float’ type was used
but a ‘const int’ is expected

In v4, it was possible to pass a “float” argument to minvalwhen an “int” value was being input. This is no longer possible
in v5; “int” values are required for “int” inputs:

// Works in v4, will break on conversion because minval is a 'float' value
int_input = input(1, "Integer", input.integer, minval = 1.0)

// Works in v5
int_input = input.int(1, "Integer", minval = 1)

See the User Manual’s page on Inputs, and the Some function parameters now require built-in arguments section of this
guide for more information.

9.1.14 All variable, function, and parameter name changes

Removed functions and variables

v4 v5
input.bool input Replaced by input.bool()
input.color input Replaced by input.color()
input.float input Replaced by input.float()
input.integer input Replaced by input.int()
input.resolution input Replaced by input.timeframe()
input.session input Replaced by input.session()
input.source input Replaced by input.source()
input.string input Replaced by input.string()
input.symbol input Replaced by input.symbol()
input.time input Replaced by input.time()
iff() Use the ?: operator instead
offset() Use the [] operator instead

Renamed functions and parameters

No namespace change

v4 v5
study(<...>, resolution,
resolution_gaps, <...>)

indicator(<...>, timeframe,
timeframe_gaps, <...>)

strategy.entry(long) strategy.entry(direction)
strategy.order(long) strategy.order(direction)
time(resolution) time(timeframe)
time_close(resolution) time_close(timeframe)
nz(x, y) nz(source, replacement)

9.1. To Pine Script™ version 5 561

Pine Script™ v5 User Manual

“ta” namespace for technical analysis functions and variables

v4 v5
Indicator functions and variables

accdist ta.accdist
alma() ta.alma()
atr() ta.atr()
bb() ta.bb()
bbw() ta.bbw()
cci() ta.cci()
cmo() ta.cmo()
cog() ta.cog()
dmi() ta.dmi()
ema() ta.ema()
hma() ta.hma()
iii ta.iii
kc() ta.kc()
kcw() ta.kcw()
linreg() ta.linreg()
macd() ta.macd()
mfi() ta.mfi()
mom() ta.mom()
nvi ta.nvi
obv ta.obv
pvi ta.pvi
pvt ta.pvt
rma() ta.rma()
roc() ta.roc()
rsi(x, y) ta.rsi(source, length)
sar() ta.sar()
sma() ta.sma()
stoch() ta.stoch()
supertrend() ta.supertrend()
swma(x) ta.swma(source)
tr ta.tr
tr() ta.tr()
tsi() ta.tsi()
vwap ta.vwap
vwap(x) ta.vwap(source)
vwma() ta.vwma()
wad ta.wad
wma() ta.wma()
wpr() ta.wpr()
wvad ta.wvad
Supporting functions

barsince() ta.barsince()
change() ta.change()
correlation(source_a, source_b, length) ta.correlation(source1, source2, length)
cross(x, y) ta.cross(source1, source2)
crossover(x, y) ta.crossover(source1, source2)
crossunder(x, y) ta.crossunder(source1, source2)
cum(x) ta.cum(source)

continues on next page

562 Chapter 9. Migration guides

Pine Script™ v5 User Manual

Table 1 – continued from previous page
dev() ta.dev()
falling() ta.falling()
highest() ta.highest()
highestbars() ta.highestbars()
lowest() ta.lowest()
lowestbars() ta.lowestbars()
median() ta.median()
mode() ta.mode()
percentile_linear_interpolation() ta.percentile_linear_interpolation()
percentile_nearest_rank() ta.percentile_nearest_rank()
percentrank() ta.percentrank()
pivothigh() ta.pivothigh()
pivotlow() ta.pivotlow()
range() ta.range()
rising() ta.rising()
stdev() ta.stdev()
valuewhen() ta.valuewhen()
variance() ta.variance()

“math” namespace for math-related functions and variables

v4 v5
abs(x) math.abs(number)
acos(x) math.acos(number)
asin(x) math.asin(number)
atan(x) math.atan(number)
avg() math.avg()
ceil(x) math.ceil(number)
cos(x) math.cos(angle)
exp(x) math.exp(number)
floor(x) math.floor(number)
log(x) math.log(number)
log10(x) math.log10(number)
max() math.max()
min() math.min()
pow() math.pow()
random() math.random()
round(x, precision) math.round(number, precision)
round_to_mintick(x) math.round_to_mintick(number)
sign(x) math.sign(number)
sin(x) math.sin(angle)
sqrt(x) math.sqrt(number)
sum() math.sum()
tan(x) math.tan(angle)
todegrees() math.todegrees()
toradians() math.toradians()

9.1. To Pine Script™ version 5 563

Pine Script™ v5 User Manual

“request” namespace for functions that request external data

v4 v5
financial() request.financial()
quandl() request.quandl()
security(<...>, resolution, <...>) request.security(<...>, timeframe, <...>)
splits() request.splits()
dividends() request.dividends()
earnings() request.earnings()

“ticker” namespace for functions that help create tickers

v4 v5
heikinashi() ticker.heikinashi()
kagi() ticker.kagi()
linebreak() ticker.linebreak()
pointfigure() ticker.pointfigure()
renko() ticker.renko()
tickerid() ticker.new()

“str” namespace for functions that manipulate strings

v4 v5
tostring(x, y) str.tostring(value, format)
tonumber(x) str.tonumber(string)

9.2 To Pine Script™ version 4

This is a guide to converting Pine Script™ code from @version=3 to @version=4.

564 Chapter 9. Migration guides

https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

9.2.1 Converter

The Pine Editor comes with a utility to automatically convert v3 indicators and strategies to v4. To access it, open a script
with //@version=3 in it and select the Convert to v4 option in the More dropdown menu:

Not all scripts can be automatically converted from v3 to v4. If you want to convert the script manually or if your indicator
returns a compilation error after conversion, consult the guide below for more information.

9.2.2 Renaming of built-in constants, variables, and functions

In Pine Script™ v4 the following built-in constants, variables, and functions were renamed:
• Color constants (e.g red) are moved to the color.* namespace (e.g. color.red).
• The color function has been renamed to color.new.
• Constants forinput() types (e.g. integer) aremoved to theinput.* namespace (e.g. input.integer).
• The plot style constants (e.g. histogram style) are moved to the plot.style_* namespace (e.g. plot.
style_histogram).

• Style constants for the hline function (e.g. the dotted style) are moved to the hline.style_* namespace
(e.g. hline.style_dotted).

• Constants of days of the week (e.g. sunday) are moved to the dayofweek.* namespace (e.g. dayofweek.
sunday).

9.2. To Pine Script™ version 4 565

Pine Script™ v5 User Manual

• The variables of the current chart timeframe (e.g. period, isintraday) are moved to the timeframe.*
namespace (e.g. timeframe.period, timeframe.isintraday).

• The interval variable was renamed to timeframe.multiplier.
• The ticker and tickerid variables are renamed to syminfo.ticker and syminfo.tickerid re-
spectively.

• The n variable that contains the bar index value has been renamed to bar_index.
The reason behind renaming all of the above was to structure the standard language tools and make working with code
easier. New names are grouped according to assignments under common prefixes. For example, you will see a list with
all available color constants if you type ‘color’ in the editor and press Ctrl + Space.

9.2.3 Explicit variable type declaration

In Pine Script™ v4 it’s no longer possible to create variables with an unknown data type at the time of their declaration.
This was done to avoid a number of issues that arise when the variable type changes after its initialization with the na
value. From now on, you need to explicitly specify their type using keywords or type functions (for example, float)
when declaring variables with the na value:

9.3 To Pine Script™ version 3

This document helps to migrate Pine Script™ code from @version=2 to @version=3.

9.3.1 Default behaviour of security function has changed

Let’s look at the simple security function use case. Add this indicator on an intraday chart:

1 // Add this indicator on an intraday (e.g., 30 minutes) chart
2 //@version=2
3 study("My Script", overlay=true)
4 s = security(tickerid, 'D', high, false)
5 plot(s)

This indicator is calculated based on historical data and looks somewhat into the future. At the first bar of every session
an indicator plots the high price of the entire day. This could be useful in some cases for analysis, but doesn’t work for
backtesting strategies.
We worked on this and made changes in Pine Script™ version 3. If this indica-
tor is compiled with //@version=3 directive, we get a completely different picture:

566 Chapter 9. Migration guides

https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

The old behaviour is still available though. We added a parameter to the security function (the fifth one) called
lookahead.
It can take on the form of two different values: barmerge.lookahead_off (and this is the default for Pine Script™
version 3) or barmerge.lookahead_on (which is the default for Pine Script™ version 2).

9.3.2 Self-referenced variables are removed

Pine Script™ version 2 pieces of code, containing a self-referencing variable:

1 //@version=2
2 //...
3 s = nz(s[1]) + close

Compiling this piece of code with Pine Script™ version 3 will give you an Undeclared identifier 's' error.
It should be rewritten as:

1 //@version=3
2 //...
3 s = 0.0
4 s := nz(s[1]) + close

s is now a mutable variable that is initialized at line 3. At line 3 the initial value gives the Pine Script™ compiler the
information about the variable type. It’s a float in this example.
In some cases you may initialize that mutable variable (like s) with a na value. But in complex cases that won’t work.

9.3. To Pine Script™ version 3 567

Pine Script™ v5 User Manual

9.3.3 Forward-referenced variables are removed

1 //@version=2
2 //...
3 d = nz(f[1])
4 e = d + 1
5 f = e + close

In this example f is a forward-referencing variable, because it’s referenced at line 3 before it was declared and initialized.
In Pine Script™ version 3 this will give you an error Undeclared identifier 'f'. This example should be
rewritten in Pine Script™ version 3 as follows:

1 //@version=3
2 //...
3 f = 0.0
4 d = nz(f[1])
5 e = d + 1
6 f := e + close

9.3.4 Resolving a problem with a mutable variable in a security expression

When you migrate script to version 3 it’s possible that after removing self-referencing and forward-referencing variables
the Pine Script™ compiler will give you an error:

1 //@version=3
2 //...
3 s = 0.0
4 s := nz(s[1]) + close
5 t = security(tickerid, period, s)

Cannot use mutable variable as an argument for security function!

This limitation exists since mutable variables were introduced in Pine Script™, i.e., in version 2. It can be resolved as
before: wrap the code with a mutable variable in a function:

1 //@version=3
2 //...
3 calcS() =>
4 s = 0.0
5 s := nz(s[1]) + close
6 t = security(tickerid, period, calcS())

9.3.5 Math operations with booleans are forbidden

In Pine Script™ v2 there were rules of implicit conversion of booleans into numeric types. In v3 this is forbidden. There
is a conversion of numeric types into booleans instead (0 and na values are false, all the other numbers are true).
Example (In v2 this code compiles fine):

1 //@version=2
2 study("My Script")
3 s = close >= open
4 s1 = close[1] >= open[1]
5 s2 = close[2] >= open[2]
6 sum = s + s1 + s2

(continues on next page)

568 Chapter 9. Migration guides

Pine Script™ v5 User Manual

(continued from previous page)
7 col = sum == 1 ? white : sum == 2 ? blue : sum == 3 ? red : na
8 bgcolor(col)

Variables s, s1 and s2 are of bool type. But at line 6 we add three of them and store the result in a variable sum. sum
is a number, since we cannot add booleans. Booleans were implicitly converted to numbers (true values to 1.0 and
false to 0.0) and then they were added.
This approach leads to unintentional errors in more complicated scripts. That’s why we no longer allow implicit conversion
of booleans to numbers.
If you try to compile this example as a Pine Script™ v3 code, you’ll get an error: Cannot call `operator +`
with arguments (series__bool, series__bool); <...> It means that you cannot use the addition
operator with boolean values. To make this example work in Pine Script™ v3 you can do the following:

1 //@version=3
2 study("My Script")
3 bton(b) =>
4 b ? 1 : 0
5 s = close >= open
6 s1 = close[1] >= open[1]
7 s2 = close[2] >= open[2]
8 sum = bton(s) + bton(s1) + bton(s2)
9 col = sum == 1 ? white : sum == 2 ? blue : sum == 3 ? red : na
10 bgcolor(col)

Function bton (abbreviation of boolean-to-number) explicitly converts any boolean value to a number if you really need
this.

9.3. To Pine Script™ version 3 569

https://www.tradingview.com/
https://www.tradingview.com/pine-script-docs/en/v5/Introduction.html

Pine Script™ v5 User Manual

570 Chapter 9. Migration guides

CHAPTER

TEN

WHERE CAN I GET MORE INFORMATION?

• External resources

• Download this manual

• A description of all the Pine Script™ operators, variables and functions can be found in the Reference Manual.
• Use the code from one of TradingView’s built-in scripts to start from. Open a new chart and click the “Pine Editor”
button on the toolbar. Once in the editor window, click the “Open” button, then select “Built-in script…” from the
dropdown list to open a dialog box containing a list of TradingView’s built-in scripts.

• There is a TradingView public chat dedicated to Pine Script™ Q&A where active developers of our community
help each other out.

• Information about major releases andmodifications to Pine Script™ (as well as other features) is regularly published
on TradingView’s blog.

• TradingView’s Community Scripts contain all user-published scripts. They can also be accessed from charts using
the “Indicators & Strategies” button and the “Community Scripts” tab of the script searching dialog box.

10.1 External resources

• The PineCoders account on TradingView publishes useful information for Pine Script™ programmers. They also
have content on their website.

• Kodify has TradingView tutorials on various topics for beginners and more experienced programmers alike. Topics
include plotting, alerts, strategy orders, and complete example indicators and strategies.

• Backtest Rookies publishes good quality blog articles focusing on realizing specific tasks in Pine Script™.
• You can ask questions about programming in Pine Script™ in the [pine-script] tag on StackOverflow.

10.2 Download this manual

Available versions:
• PDF

571

https://www.tradingview.com/pine-script-reference/v5/
https://www.tradingview.com/chat/#BfmVowG1TZkKO235
https://www.tradingview.com/blog/en/category/market-analysis/pine/
https://www.tradingview.com/script/
https://www.tradingview.com/u/PineCoders/#published-scripts
https://www.pinecoders.com/
https://kodify.net/tradingview-programming-articles
https://backtest-rookies.com/category/tradingview
https://stackoverflow.com/questions/tagged/pine-script
https://www.tradingview.com/

	Welcome to Pine Script™ v5
	Pine Script™ primer
	First steps
	Introduction
	Using scripts
	Loading scripts from the chart
	Browsing Community Scripts
	Changing script settings

	Reading scripts
	Writing scripts

	First indicator
	The Pine Editor
	First version
	Second version
	Next

	Next steps
	“indicators” vs “strategies”
	How scripts are executed
	Time series
	Publishing scripts
	Getting around the Pine Script™ documentation
	Where to go from here?

	Language
	Execution model
	Calculation based on historical bars
	Calculation based on realtime bars
	Events triggering the execution of a script
	More information
	Historical values of functions
	Why this behavior?
	Exceptions

	Time series
	Script structure
	Version
	Declaration statement
	Code
	Comments
	Line wrapping
	Compiler annotations

	Identifiers
	Operators
	Introduction
	Arithmetic operators
	Comparison operators
	Logical operators
	`?:` ternary operator
	`[]` history-referencing operator
	Operator precedence
	`=` assignement operator
	`:=` reassignement operator

	Variable declarations
	Introduction
	Initialization with `na`
	Tuple declarations

	Variable reassignment
	Declaration modes
	On each bar
	`var`
	`varip`

	Conditional structures
	Introduction
	`if` structure
	`if` used for its side effects
	`if` used to return a value

	`switch` structure
	`switch` with an expression
	`switch` without an expression

	Matching local block type requirement

	Loops
	Introduction
	When loops are not needed
	When loops are necessary

	`for`
	`while`

	Type system
	Introduction
	Qualifiers
	const
	input
	simple
	series

	Types
	int
	float
	bool
	color
	string
	plot and hline
	Drawing types
	Chart points
	Collections
	User-defined types
	void

	`na` value
	Type templates
	Type casting
	Tuples

	Built-ins
	Introduction
	Built-in variables
	Built-in functions

	User-defined functions
	Introduction
	Single-line functions
	Multi-line functions
	Scopes in the script
	Functions that return multiple results
	Limitations

	Objects
	Introduction
	Creating objects
	Changing field values
	Collecting objects
	Copying objects
	Shadowing

	Methods
	Introduction
	Built-in methods
	User-defined methods
	Method overloading
	Advanced example

	Arrays
	Introduction
	Declaring arrays
	Using `var` and `varip` keywords

	Reading and writing array elements
	Looping through array elements
	Scope
	History referencing
	Inserting and removing array elements
	Inserting
	Removing
	Using an array as a stack
	Using an array as a queue

	Calculations on arrays
	Manipulating arrays
	Concatenation
	Copying
	Joining
	Sorting
	Reversing
	Slicing

	Searching arrays
	Error handling
	Index xx is out of bounds. Array size is yy
	Cannot call array methods when ID of array is ‘na’
	Array is too large. Maximum size is 100000
	Cannot create an array with a negative size
	Cannot use shift() if array is empty.
	Cannot use pop() if array is empty.
	Index ‘from’ should be less than index ‘to’
	Slice is out of bounds of the parent array

	Matrices
	Introduction
	Declaring a matrix
	Using `var` and `varip` keywords

	Reading and writing matrix elements
	`matrix.get()` and `matrix.set()`
	`matrix.fill()`

	Rows and columns
	Retrieving
	Inserting
	Removing
	Swapping
	Replacing

	Looping through a matrix
	`for`
	`for…in`

	Copying a matrix
	Shallow copies
	Deep copies
	Submatrices

	Scope and history
	Inspecting a matrix
	Manipulating a matrix
	Reshaping
	Reversing
	Transposing
	Sorting
	Concatenating

	Matrix calculations
	Element-wise calculations
	Special calculations
	`matrix.sum()` and `matrix.diff()`
	`matrix.mult()`
	`matrix.det()`
	`matrix.inv()` and `matrix.pinv()`
	`matrix.rank()`

	Error handling
	The row/column index (xx) is out of bounds, row/column size is (yy).
	The array size does not match the number of rows/columns in the matrix.
	Cannot call matrix methods when the ID of matrix is ‘na’.
	Matrix is too large. Maximum size of the matrix is 100,000 elements.
	The row/column index must be 0 <= from_row/column < to_row/column.
	Matrices ‘id1’ and ‘id2’ must have an equal number of rows and columns to be added.
	The number of columns in the ‘id1’ matrix must equal the number of rows in the matrix (or the number of elements in the array) ‘id2’.
	Operation not available for non-square matrices.

	Maps
	Introduction
	Declaring a map
	Using `var` and `varip` keywords

	Reading and writing
	Putting and getting key-value pairs
	Inspecting keys and values
	`map.keys()` and `map.values()`
	`map.contains()`

	Removing key-value pairs
	Combining maps

	Looping through a map
	Copying a map
	Shallow copies
	Deep copies

	Scope and history
	Maps of other collections

	Concepts
	Alerts
	Introduction
	Background
	Which type of alert is best?

	Script alerts
	`alert()` function events
	Using all `alert()` calls
	Using selective `alert()` calls
	In strategies

	Order fill events

	`alertcondition()` events
	Using one condition
	Using compound conditions
	Placeholders

	Avoiding repainting with alerts

	Backgrounds
	Bar coloring
	Bar plotting
	Introduction
	Plotting candles with `plotcandle()`
	Plotting bars with `plotbar()`

	Bar states
	Introduction
	Bar state built-in variables
	`barstate.isfirst`
	`barstate.islast`
	`barstate.ishistory`
	`barstate.isrealtime`
	`barstate.isnew`
	`barstate.isconfirmed`
	`barstate.islastconfirmedhistory`

	Example

	Chart information
	Introduction
	Prices and volume
	Symbol information
	Chart timeframe
	Session information

	Colors
	Introduction
	Transparency
	Z-index

	Constant colors
	Conditional coloring
	Calculated colors
	color.new()
	color.rgb()
	color.from_gradient()

	Mixing transparencies
	Tips
	Designing usable colors schemes
	Plot crisp lines
	Customize gradients
	Color selection through script settings

	Fills
	Introduction
	`plot()` and `hline()` fills
	Line fills

	Inputs
	Introduction
	Input functions
	Input function parameters
	Input types
	Simple input
	Integer input
	Float input
	Boolean input
	Color input
	Timeframe input
	Symbol input
	Session input
	Source input
	Time input

	Other features affecting Inputs
	Tips

	Levels
	`hline()` levels
	Fills between levels

	Libraries
	Introduction
	Creating a library
	Library functions
	Qualified type control
	User-defined types and objects

	Publishing a library
	House Rules

	Using a library

	Lines and boxes
	Introduction
	Lines
	Creating lines
	Modifying lines
	Line styles
	Reading line values
	Cloning lines
	Deleting lines

	Boxes
	Creating boxes
	Modifying boxes
	Box styles
	Reading box values
	Cloning boxes
	Deleting boxes

	Polylines
	Creating polylines
	Curved drawings
	Closed shapes

	Deleting polylines
	Redrawing polylines

	Realtime behavior
	Limitations
	Total number of objects
	Future references with `xloc.bar_index`
	Other contexts
	Historical buffer and `max_bars_back`

	Non-standard charts data
	Introduction
	`ticker.heikinashi()`
	`ticker.renko()`
	`ticker.linebreak()`
	`ticker.kagi()`
	`ticker.pointfigure()`

	Other timeframes and data
	Introduction
	Common characteristics
	Usage
	`gaps`
	`ignore_invalid_symbol`
	`currency`
	`lookahead`

	Data feeds
	`request.security()`
	Timeframes
	Higher timeframes
	Lower timeframes

	Requestable data
	Built-in variables and functions
	Calculated variables
	Tuples
	User-defined functions
	Chart points
	Collections
	User-defined types

	`request.security_lower_tf()`
	Requesting intrabar data
	Intrabar data arrays
	Tuples of intrabar data
	Requesting collections

	Custom contexts
	Historical and realtime behavior
	Avoiding Repainting
	Higher-timeframe data
	Lower-timeframe data

	`request.currency_rate()`
	`request.dividends()`, `request.splits()`, and `request.earnings()`
	`request.quandl()`
	`request.financial()`
	Calculating financial metrics
	Financial IDs
	Income statements
	Balance sheet
	Cash flow
	Statistics

	`request.economic()`
	Country/region codes
	Field codes

	`request.seed()`

	Plots
	Introduction
	`plot()` parameters
	Plotting conditionally
	Value control
	Color control

	Levels
	Offsets
	Plot count limit
	Scale
	Merging two indicators

	Repainting
	Introduction
	For script users
	For Pine Script™ programmers

	Historical vs realtime calculations
	Fluid data values
	Repainting `request.security()` calls
	Using `request.security()` at lower timeframes
	Future leak with `request.security()`
	`varip`
	Bar state built-ins
	`timenow`
	Strategies

	Plotting in the past
	Dataset variations
	Starting points
	Revision of historical data

	Sessions
	Introduction
	Session strings
	Session string specifications
	Using session strings

	Session states
	Using sessions with `request.security()`

	Strategies
	Introduction
	A simple strategy example
	Applying a strategy to a chart
	Strategy tester
	Overview
	Performance summary
	List of trades
	Properties

	Broker emulator
	Bar magnifier

	Orders and entries
	Order types
	Market orders
	Limit orders
	Stop and stop-limit orders

	Order placement commands
	`strategy.entry()`
	`strategy.order()`
	`strategy.exit()`
	`strategy.close()` and `strategy.close_all()`
	`strategy.cancel()` and `strategy.cancel_all()`

	Position sizing
	Closing a market position
	OCA groups
	`strategy.oca.cancel`
	`strategy.oca.reduce`
	`strategy.oca.none`

	Currency
	Altering calculation behavior
	`calc_on_every_tick`
	`calc_on_order_fills`
	`process_orders_on_close`

	Simulating trading costs
	Commission
	Slippage and unfilled limits

	Risk management
	Margin
	Strategy Alerts
	Notes on testing strategies
	Backtesting and forward testing
	Lookahead bias
	Selection bias
	Overfitting

	Tables
	Introduction
	Creating tables
	Placing a single value in a fixed position
	Coloring the chart’s background
	Creating a display panel
	Displaying a heatmap

	Tips

	Text and shapes
	Introduction
	`plotchar()`
	`plotshape()`
	`plotarrow()`
	Labels
	Creating and modifying labels
	Positioning labels
	Reading label properties
	Cloning labels
	Deleting labels
	Realtime behavior

	Time
	Introduction
	Four references
	Time built-ins
	Time zones
	Time zone strings

	Time variables
	`time` and `time_close`
	`time_tradingday`
	`timenow`
	Calendar dates and times
	`syminfo.timezone()`

	Time functions
	`time()` and `time_close()`
	Testing for sessions
	Testing for changes in higher timeframes

	Calendar dates and times
	`timestamp()`

	Formatting dates and time

	Timeframes
	Introduction
	Timeframe string specifications
	Comparing timeframes

	Writing scripts
	Style guide
	Introduction
	Naming Conventions
	Script organization
	<license>
	<version>
	<declaration_statement>
	<import_statements>
	<constant_declarations>
	<inputs>
	<function_declarations>
	<calculations>
	<strategy_calls>
	<visuals>
	<alerts>

	Spacing
	Line wrapping
	Vertical alignment
	Explicit typing

	Debugging
	Introduction
	The lay of the land
	Displaying numeric values
	When the script’s scale is unimportant
	When the script’s scale must be preserved

	Displaying strings
	Labels on each bar
	Labels on last bar

	Debugging conditions
	Single conditions
	Compound conditions

	Debugging from inside functions
	Debugging from inside `for` loops
	Extracting a single value
	Using lines and labels
	Extracting multiple values

	Tips

	Publishing scripts
	Script visibility and access
	When you publish a script
	Visibility
	Public
	Private

	Access
	Open
	Protected
	Invite-only

	Preparing a publication
	Publishing a script
	Updating a publication

	Limitations
	Introduction
	Time
	Script compilation
	Script execution
	Loop execution

	Chart visuals
	Plot limits
	Line, box, polyline, and label limits
	Table limits

	`request.*()` calls
	Number of calls
	Intrabars
	Tuple element limit

	Script size and memory
	Compiled tokens
	Variables per scope
	Scope count
	Collections

	Other limitations
	Maximum bars back
	Maximum bars forward
	Chart bars
	Trade orders in backtesting

	FAQ
	Get real OHLC price on a Heikin Ashi chart
	Get non-standard OHLC values on a standard chart
	Plot arrows on the chart
	Plot a dynamic horizontal line
	Plot a vertical line on condition
	Access the previous value
	Get a 5-days high
	Count bars in a dataset
	Enumerate bars in a day
	Find the highest and lowest values for the entire dataset
	Query the last non-na value

	Error messages
	The if statement is too long
	Script requesting too many securities
	Script could not be translated from: null
	line 2: no viable alternative at character ‘$’
	Mismatched input <…> expecting <???>
	Loop is too long (> 500 ms)
	Script has too many local variables
	Pine Script™ cannot determine the referencing length of a series. Try using max_bars_back in the indicator or strategy function

	Release notes
	2023
	December 2023
	November 2023
	October 2023
	Pine Script™ Polylines

	September 2023
	August 2023
	Pine Script™ Maps

	July 2023
	June 2023
	May 2023
	April 2023
	March 2023
	February 2023
	Pine Script™ Methods

	January 2023

	2022
	December 2022
	Pine Objects

	November 2022
	October 2022
	September 2022
	August 2022
	July 2022
	June 2022
	May 2022
	April 2022
	March 2022
	Table merging and cell tooltips

	February 2022
	January 2022

	2021
	December 2021
	Linefills
	New functions for string manipulation
	Textboxes
	New built-in variables

	November 2021
	for…in
	Function overloads
	Currency conversion

	October 2021
	New features
	Changes

	September 2021
	July 2021
	June 2021
	May 2021
	April 2021
	March 2021
	February 2021
	January 2021

	2020
	December 2020
	November 2020
	October 2020
	September 2020
	August 2020
	July 2020
	June 2020
	May 2020
	April 2020
	March 2020
	February 2020
	January 2020

	2019
	December 2019
	October 2019
	September 2019
	July-August 2019
	June 2019

	2018
	October 2018
	April 2018

	2017
	August 2017
	June 2017
	May 2017
	April 2017
	March 2017
	February 2017

	2016
	December 2016
	October 2016
	September 2016
	July 2016
	March 2016
	February 2016
	January 2016

	2015
	October 2015
	September 2015
	July 2015
	June 2015
	April 2015
	March 2015
	February 2015

	2014
	August 2014
	July 2014
	June 2014
	April 2014
	February 2014

	2013

	Migration guides
	To Pine Script™ version 5
	Introduction
	v4 to v5 converter
	Renamed functions and variables
	Renamed function parameters
	Removed an `rsi()` overload
	Reserved keywords
	Removed `iff()` and `offset()`
	Split of `input()` into several functions
	Some function parameters now require built-in arguments
	Deprecated the `transp` parameter
	Changed the default session days for `time()` and `time_close()`
	`strategy.exit()` now must do something
	Common script conversion errors
	Invalid argument ‘style’/’linestyle’ in ‘plot’/’hline’ call
	Undeclared identifier ‘input.%input_name%’
	Invalid argument ‘when’ in ‘strategy.close’ call
	Cannot call ‘input.int’ with argument ‘minval’=’%value%’. An argument of ‘literal float’ type was used but a ‘const int’ is expected

	All variable, function, and parameter name changes
	Removed functions and variables
	Renamed functions and parameters
	No namespace change
	“ta” namespace for technical analysis functions and variables
	“math” namespace for math-related functions and variables
	“request” namespace for functions that request external data
	“ticker” namespace for functions that help create tickers
	“str” namespace for functions that manipulate strings

	To Pine Script™ version 4
	Converter
	Renaming of built-in constants, variables, and functions
	Explicit variable type declaration

	To Pine Script™ version 3
	Default behaviour of security function has changed
	Self-referenced variables are removed
	Forward-referenced variables are removed
	Resolving a problem with a mutable variable in a security expression
	Math operations with booleans are forbidden

	Where can I get more information?
	External resources
	Download this manual

