Rashad

Moving Covariance

Co-variance is a representation of the average percent data points deviate from there mean. A standard calculation of Co-variance uses One standard Deviation. Using the empirical rule, we can assume that about 68.26% of Data points lie in this range.

The advantage to plotting co variance as a time series is that it will show you how volatility of a trailing period changes. Therefore trend lines and other methods of analysis such as Fibonacci retracements could be applied in order to generate volatility targets.

For the purpose of this indicator I have the mean using a vwma derived from vwap . This makes this measurement of co-variance more sensitive to changes in volume , likewise are more representative a change in volatility , thus giving this indicator a "leading aspect".
从常用的脚本中删除 添加到常用的脚本
//Moving Covariance by Rashad
study(title="Moving Covariance", shorttitle="MCV", overlay=false)
src = vwap, len = input(30, minval=1, title="Length")
mean = vwma(src, len)
stdev = stdev(src, len)
covariance = (stdev/mean)*100
plot(covariance, title = "moving covairance", style=line, linewidth = 2, color = red)
I would like to apologize, when naming this indicator I mixed up my terminology. This is coefficent of variation which shows the % a price deviates from its mean. Also known as unitized risk.
回复
首页 股票筛选器 外汇筛选器 加密货币筛选器 财经日历 剧集 如何运作 图表功能 价格 推荐朋友 网站规则 帮助中心 网站 & 经纪商解决方案 插件 图表解决方案 轻量图表库 博客 & 新闻 Twitter
概览 个人资料设置 账户和账单 推荐朋友 我的客服工单 帮助中心 已发表观点 粉丝 正在关注 私人消息 聊天 退出