Precision NasdaqPrecision NASDAQ Levels — Open-Source Support & Resistance Indicator
This open-source Support and Resistance Indicator helps traders plot key price levels where the market may reverse or consolidate. By plotting support and resistance zones based on historical price action, it provides clear visual cues for potential entry and exit points across various timeframes.
Features:
Customizable Settings: Adjust visual styles, label positions, and toggle level labels to suit your trading strategy.
Multi-Timeframe Support: Plot Monthly, Weekly, Daily, and Daily Range levels for broader market context.
Streamlined String Input: Input structure follows this order:
Code
Red, Red, Pink, Pink, Red, Red, Daily Range, Daily Range, Weekly, Weekly, Monthly, Monthly
Semi-Automatic NQ/QQQ Conversion: Manually input daily NQ spread or QQQ calculation to adjust NASDAQ levels. Note: Levels cannot be dragged when NQ/QQQ conversion is active. Uncheck conversion boxes to enable dragging.
How It Works
Apply the indicator to your chart.
Enter values for each support and resistance level.
Drag and adjust levels directly on the chart.
Use plotted zones to identify potential reversals, breakouts, or stop-loss placements.
Combine with other tools (e.g., trendlines or oscillators) for confirmation.
指标和策略
ADR levels+// This Pine Script™ code is subject to the terms of the Mozilla Public License 2.0 at mozilla.org
// © notprofessorgreen
//@version=5
indicator("ADR levels", shorttitle = 'ADR', overlay=true, max_bars_back=5000, max_lines_count=500)
// Error catching
if (timeframe.in_seconds() >= timeframe.in_seconds('D'))
runtime.error('Timeframe cannot be greater than Daily')
// Inputs
adr_days = input.int(10, title = 'Days', maxval=250, minval = 1)
std_x = input.float(1.0, "Scale Factor")
width = input.int(1, "Line Width")
// ADR line inputs
adr_color = input.color(color.gray, "ADR Color")
adr_style = input.string("solid", "ADR Style", options= )
// Standard deviation inputs
std_dev_0_5 = input.float(0.5, "Std Dev 1 Multiplier", minval=0.1, maxval=5.0)
std_0_5_show = input.bool(true, "Show Std Dev 1", inline="std1")
std_0_5_color = input.color(color.gray, "Std Dev 1 Color", inline="std1")
std_0_5_style = input.string("dotted", "Std Dev 1 Style", options= , inline="std1")
std_dev_1 = input.float(1.0, "Std Dev 2 Multiplier", minval=0.1, maxval=5.0)
std_1_show = input.bool(true, "Show Std Dev 2", inline="std2")
std_1_color = input.color(color.gray, "Std Dev 2 Color", inline="std2")
std_1_style = input.string("dotted", "Std Dev 2 Style", options= , inline="std2")
std_dev_2 = input.float(2.0, "Std Dev 3 Multiplier", minval=0.1, maxval=5.0)
std_2_show = input.bool(true, "Show Std Dev 3", inline="std3")
std_2_color = input.color(color.gray, "Std Dev 3 Color", inline="std3")
std_2_style = input.string("dotted", "Std Dev 3 Style", options= , inline="std3")
// Fibonacci inputs
fib_1_level = input.float(0.3, "Fib Level 1", minval=0, maxval=2.0)
fib_1_show = input.bool(true, "Show Fib 1", inline="fib1")
fib_1_color = input.color(color.blue, "Fib 1 Color", inline="fib1")
fib_1_style = input.string("dashed", "Fib 1 Style", options= , inline="fib1")
fib_2_level = input.float(0.5, "Fib Level 2", minval=0, maxval=2.0)
fib_2_show = input.bool(true, "Show Fib 2", inline="fib2")
fib_2_color = input.color(color.blue, "Fib 2 Color", inline="fib2")
fib_2_style = input.string("dashed", "Fib 2 Style", options= , inline="fib2")
fib_3_level = input.float(0.7, "Fib Level 3", minval=0, maxval=2.0)
fib_3_show = input.bool(true, "Show Fib 3", inline="fib3")
fib_3_color = input.color(color.blue, "Fib 3 Color", inline="fib3")
fib_3_style = input.string("dashed", "Fib 3 Style", options= , inline="fib3")
show_labels = input.bool(true, "Show Labels")
// Stats table inputs
show_stats = input.bool(true, "Show Table")
sample_size = input.bool(true, "Show Sample Sizes")
tbl_loc = input.string('Bottom Right', "Table", options = )
tbl_size = input.string('Tiny', "", options = )
rch_color = input.color(color.rgb(3, 131, 99, 70), "Reached ")
csd_color = input.color(color.rgb(127, 1, 185, 70), "Closed Through ")
// Function to convert style string to line style
get_line_style(string style) =>
switch style
"solid" => line.style_solid
"dashed" => line.style_dashed
"dotted" => line.style_dotted
// Variables
reset = session.islastbar_regular
var float track_highs = 0.00
var float track_lows = 0.00
var float today_adr = 0.00
var adrs = array.new_float(adr_days, 0.00)
var line adr_pos = na
var line adr_neg = na
var line fib_1_pos = na
var line fib_1_neg = na
var line fib_2_pos = na
var line fib_2_neg = na
var line fib_3_pos = na
var line fib_3_neg = na
var line std_0_5_pos = na
var line std_0_5_neg = na
var line std_1_pos = na
var line std_1_neg = na
var line std_2_pos = na
var line std_2_neg = na
var label fib_1_pos_lbl = na
var label fib_1_neg_lbl = na
var label fib_2_pos_lbl = na
var label fib_2_neg_lbl = na
var label fib_3_pos_lbl = na
var label fib_3_neg_lbl = na
var label adr_pos_lbl = na
var label adr_neg_lbl = na
var label std_0_5_pos_lbl = na
var label std_0_5_neg_lbl = na
var label std_1_pos_lbl = na
var label std_1_neg_lbl = na
var label std_2_pos_lbl = na
var label std_2_neg_lbl = na
// ADR calculation
track_highs := reset ? high : math.max(high, track_highs )
track_lows := reset ? low : math.min(low, track_lows )
if reset
array.unshift(adrs, math.round_to_mintick(track_highs - track_lows ))
if array.size(adrs) > adr_days
array.pop(adrs)
today_adr := math.round_to_mintick(array.avg(adrs))
// Delete previous lines and labels
line.delete(adr_pos )
line.delete(adr_neg )
line.delete(fib_1_pos )
line.delete(fib_1_neg )
line.delete(fib_2_pos )
line.delete(fib_2_neg )
line.delete(fib_3_pos )
line.delete(fib_3_neg )
line.delete(std_0_5_pos )
line.delete(std_0_5_neg )
line.delete(std_1_pos )
line.delete(std_1_neg )
line.delete(std_2_pos )
line.delete(std_2_neg )
label.delete(fib_1_pos_lbl )
label.delete(fib_1_neg_lbl )
label.delete(fib_2_pos_lbl )
label.delete(fib_2_neg_lbl )
label.delete(fib_3_pos_lbl )
label.delete(fib_3_neg_lbl )
label.delete(adr_pos_lbl )
label.delete(adr_neg_lbl )
label.delete(std_0_5_pos_lbl )
label.delete(std_0_5_neg_lbl )
label.delete(std_1_pos_lbl )
label.delete(std_1_neg_lbl )
label.delete(std_2_pos_lbl )
label.delete(std_2_neg_lbl )
// Draw ADR lines
adr_pos := line.new(bar_index, open + today_adr, bar_index+50, open + today_adr,
width=width, color=adr_color, style=get_line_style(adr_style))
adr_neg := line.new(bar_index, open - today_adr, bar_index+50, open - today_adr,
width=width, color=adr_color, style=get_line_style(adr_style))
// Draw ADR labels
if show_labels
adr_pos_lbl := label.new(bar_index+50, open + today_adr, "ADR High (" + str.tostring(adr_days) + "D)",
xloc=xloc.bar_index, textalign=text.align_left, textcolor=adr_color, color=color.new(color.blue, 90), style=label.style_none)
adr_neg_lbl := label.new(bar_index+50, open - today_adr, "ADR Low (" + str.tostring(adr_days) + "D)",
xloc=xloc.bar_index, textalign=text.align_left, textcolor=adr_color, color=color.new(color.red, 90), style=label.style_none)
// Calculate deviations
var float half_dev = na
var float one_dev = na
var float two_dev = na
half_dev := today_adr * std_dev_0_5
one_dev := today_adr * std_dev_1
two_dev := today_adr * std_dev_2
// Draw standard deviation lines (with show/hide options)
if std_0_5_show
std_0_5_pos := line.new(bar_index, (open + today_adr) + half_dev, bar_index+50, (open + today_adr) + half_dev,
width=width, color=std_0_5_color, style=get_line_style(std_0_5_style))
std_0_5_neg := line.new(bar_index, (open - today_adr) - half_dev, bar_index+50, (open - today_adr) - half_dev,
width=width, color=std_0_5_color, style=get_line_style(std_0_5_style))
if show_labels
std_0_5_pos_lbl := label.new(bar_index+50, (open + today_adr) + half_dev, "Std " + str.tostring(std_dev_0_5),
xloc=xloc.bar_index, textalign=text.align_left, textcolor=std_0_5_color, color=color.new(#000000,100), style=label.style_none)
std_0_5_neg_lbl := label.new(bar_index+50, (open - today_adr) - half_dev, "Std -" + str.tostring(std_dev_0_5),
xloc=xloc.bar_index, textalign=text.align_left, textcolor=std_0_5_color, color=color.new(#000000,100), style=label.style_none)
if std_1_show
std_1_pos := line.new(bar_index, (open + today_adr) + one_dev, bar_index+50, (open + today_adr) + one_dev,
width=width, color=std_1_color, style=get_line_style(std_1_style))
std_1_neg := line.new(bar_index, (open - today_adr) - one_dev, bar_index+50, (open - today_adr) - one_dev,
width=width, color=std_1_color, style=get_line_style(std_1_style))
if show_labels
std_1_pos_lbl := label.new(bar_index+50, (open + today_adr) + one_dev, "Std " + str.tostring(std_dev_1),
xloc=xloc.bar_index, textalign=text.align_left, textcolor=std_1_color, color=color.new(#000000,100), style=label.style_none)
std_1_neg_lbl := label.new(bar_index+50, (open - today_adr) - one_dev, "Std -" + str.tostring(std_dev_1),
xloc=xloc.bar_index, textalign=text.align_left, textcolor=std_1_color, color=color.new(#000000,100), style=label.style_none)
if std_2_show
std_2_pos := line.new(bar_index, (open + today_adr) + two_dev, bar_index+50, (open + today_adr) + two_dev,
width=width, color=std_2_color, style=get_line_style(std_2_style))
std_2_neg := line.new(bar_index, (open - today_adr) - two_dev, bar_index+50, (open - today_adr) - two_dev,
width=width, color=std_2_color, style=get_line_style(std_2_style))
if show_labels
std_2_pos_lbl := label.new(bar_index+50, (open + today_adr) + two_dev, "Std " + str.tostring(std_dev_2),
xloc=xloc.bar_index, textalign=text.align_left, textcolor=std_2_color, color=color.new(#000000,100), style=label.style_none)
std_2_neg_lbl := label.new(bar_index+50, (open - today_adr) - two_dev, "Std -" + str.tostring(std_dev_2),
xloc=xloc.bar_index, textalign=text.align_left, textcolor=std_2_color, color=color.new(#000000,100), style=label.style_none)
// Draw Fibonacci lines
if fib_1_show
fib_1_pos := line.new(bar_index, open + today_adr * fib_1_level, bar_index+50, open + today_adr * fib_1_level,
width=width, color=fib_1_color, style=get_line_style(fib_1_style))
fib_1_neg := line.new(bar_index, open - today_adr * fib_1_level, bar_index+50, open - today_adr * fib_1_level,
width=width, color=fib_1_color, style=get_line_style(fib_1_style))
if show_labels
fib_1_pos_lbl := label.new(bar_index+50, open + today_adr * fib_1_level, "Fib " + str.tostring(fib_1_level),
xloc=xloc.bar_index, textalign=text.align_left, textcolor=fib_1_color, color=color.new(#000000,100), style=label.style_none)
fib_1_neg_lbl := label.new(bar_index+50, open - today_adr * fib_1_level, "Fib -" + str.tostring(fib_1_level),
xloc=xloc.bar_index, textalign=text.align_left, textcolor=fib_1_color, color=color.new(#000000,100), style=label.style_none)
if fib_2_show
fib_2_pos := line.new(bar_index, open + today_adr * fib_2_level, bar_index+50, open + today_adr * fib_2_level,
width=width, color=fib_2_color, style=get_line_style(fib_2_style))
fib_2_neg := line.new(bar_index, open - today_adr * fib_2_level, bar_index+50, open - today_adr * fib_2_level,
width=width, color=fib_2_color, style=get_line_style(fib_2_style))
if show_labels
fib_2_pos_lbl := label.new(bar_index+50, open + today_adr * fib_2_level, "Fib " + str.tostring(fib_2_level),
xloc=xloc.bar_index, textalign=text.align_left, textcolor=fib_2_color, color=color.new(#000000,100), style=label.style_none)
fib_2_neg_lbl := label.new(bar_index+50, open - today_adr * fib_2_level, "Fib -" + str.tostring(fib_2_level),
xloc=xloc.bar_index, textalign=text.align_left, textcolor=fib_2_color, color=color.new(#000000,100), style=label.style_none)
if fib_3_show
fib_3_pos := line.new(bar_index, open + today_adr * fib_3_level, bar_index+50, open + today_adr * fib_3_level,
width=width, color=fib_3_color, style=get_line_style(fib_3_style))
fib_3_neg := line.new(bar_index, open - today_adr * fib_3_level, bar_index+50, open - today_adr * fib_3_level,
width=width, color=fib_3_color, style=get_line_style(fib_3_style))
if show_labels
fib_3_pos_lbl := label.new(bar_index+50, open + today_adr * fib_3_level, "Fib " + str.tostring(fib_3_level),
xloc=xloc.bar_index, textalign=text.align_left, textcolor=fib_3_color, color=color.new(#000000,100), style=label.style_none)
fib_3_neg_lbl := label.new(bar_index+50, open - today_adr * fib_3_level, "Fib -" + str.tostring(fib_3_level),
xloc=xloc.bar_index, textalign=text.align_left, textcolor=fib_3_color, color=color.new(#000000,100), style=label.style_none)
else
today_adr := today_adr
line.set_x2(adr_pos, bar_index+50)
line.set_x2(adr_neg, bar_index+50)
if show_labels
label.set_x(adr_pos_lbl, bar_index+50)
label.set_x(adr_neg_lbl, bar_index+50)
if std_0_5_show
line.set_x2(std_0_5_pos, bar_index+50)
line.set_x2(std_0_5_neg, bar_index+50)
if show_labels
label.set_x(std_0_5_pos_lbl, bar_index+50)
label.set_x(std_0_5_neg_lbl, bar_index+50)
if std_1_show
line.set_x2(std_1_pos, bar_index+50)
line.set_x2(std_1_neg, bar_index+50)
if show_labels
label.set_x(std_1_pos_lbl, bar_index+50)
label.set_x(std_1_neg_lbl, bar_index+50)
if std_2_show
line.set_x2(std_2_pos, bar_index+50)
line.set_x2(std_2_neg, bar_index+50)
if show_labels
label.set_x(std_2_pos_lbl, bar_index+50)
label.set_x(std_2_neg_lbl, bar_index+50)
if fib_1_show
line.set_x2(fib_1_pos, bar_index+50)
line.set_x2(fib_1_neg, bar_index+50)
if show_labels
label.set_x(fib_1_pos_lbl, bar_index+50)
label.set_x(fib_1_neg_lbl, bar_index+50)
if fib_2_show
line.set_x2(fib_2_pos, bar_index+50)
line.set_x2(fib_2_neg, bar_index+50)
if show_labels
label.set_x(fib_2_pos_lbl, bar_index+50)
label.set_x(fib_2_neg_lbl, bar_index+50)
if fib_3_show
line.set_x2(fib_3_pos, bar_index+50)
line.set_x2(fib_3_neg, bar_index+50)
if show_labels
label.set_x(fib_3_pos_lbl, bar_index+50)
label.set_x(fib_3_neg_lbl, bar_index+50)
// Stats calculation
var float d_hi = high
var float d_lo = low
var float d_open = open
var float d_range = array.new_float()
var float adr_val = na
var float d_adr_hi = na
var float d_adr_lo = na
type adr_stats
int hit_adr_hi = 0
int hit_adr_lo = 0
int hit_adr_both = 0
int thru_adr_hi = 0
int thru_adr_lo = 0
int hit_fib_1_hi = 0
int hit_fib_1_lo = 0
int hit_fib_2_hi = 0
int hit_fib_2_lo = 0
int hit_fib_3_hi = 0
int hit_fib_3_lo = 0
int hit_std_0_5_hi = 0
int hit_std_0_5_lo = 0
int hit_std_1_hi = 0
int hit_std_1_lo = 0
int hit_std_2_hi = 0
int hit_std_2_lo = 0
int d_count = 0
var adr_sun = adr_stats.new()
var adr_mon = adr_stats.new()
var adr_tue = adr_stats.new()
var adr_wed = adr_stats.new()
var adr_thu = adr_stats.new()
var adr_fri = adr_stats.new()
var adr_sat = adr_stats.new()
if timeframe.change("D")
x = adr_mon
dow = dayofweek(time , "America/New_York")
if dow == dayofweek.tuesday
x := adr_tue
else if dow == dayofweek.wednesday
x := adr_wed
else if dow == dayofweek.thursday
x := adr_thu
else if dow == dayofweek.friday
x := adr_fri
else if dow == dayofweek.saturday
x := adr_sat
else if dow == dayofweek.sunday
x := adr_sun
if not na(adr_val)
x.d_count += 1
if d_hi > d_adr_hi
x.hit_adr_hi += 1
if d_lo < d_adr_lo
x.hit_adr_lo += 1
if d_hi > d_adr_hi and d_lo < d_adr_lo
x.hit_adr_both += 1
if close > d_adr_hi
x.thru_adr_hi += 1
if close < d_adr_lo
x.thru_adr_lo += 1
if fib_1_show
if d_hi > d_open + (adr_val * fib_1_level)
x.hit_fib_1_hi += 1
if d_lo < d_open - (adr_val * fib_1_level)
x.hit_fib_1_lo += 1
if fib_2_show
if d_hi > d_open + (adr_val * fib_2_level)
x.hit_fib_2_hi += 1
if d_lo < d_open - (adr_val * fib_2_level)
x.hit_fib_2_lo += 1
if fib_3_show
if d_hi > d_open + (adr_val * fib_3_level)
x.hit_fib_3_hi += 1
if d_lo < d_open - (adr_val * fib_3_level)
x.hit_fib_3_lo += 1
if std_0_5_show
if d_hi > d_adr_hi + (adr_val * std_dev_0_5)
x.hit_std_0_5_hi += 1
if d_lo < d_adr_lo - (adr_val * std_dev_0_5)
x.hit_std_0_5_lo += 1
if std_1_show
if d_hi > d_adr_hi + (adr_val * std_dev_1)
x.hit_std_1_hi += 1
if d_lo < d_adr_lo - (adr_val * std_dev_1)
x.hit_std_1_lo += 1
if std_2_show
if d_hi > d_adr_hi + (adr_val * std_dev_2)
x.hit_std_2_hi += 1
if d_lo < d_adr_lo - (adr_val * std_dev_2)
x.hit_std_2_lo += 1
if timeframe.change("D")
d_open := open
array.unshift(d_range, d_hi - d_lo)
if array.size(d_range) > adr_days
array.pop(d_range)
if array.size(d_range) == adr_days
adr_val := array.avg(d_range)
d_adr_hi := open + (adr_val*std_x)/2
d_adr_lo := open - (adr_val*std_x)/2
d_hi := high
d_lo := low
else
d_hi := math.max(high, d_hi)
d_lo := math.min(low, d_lo)
// Table functions
get_table_pos(pos) =>
switch pos
"Bottom Center" => position.bottom_center
"Bottom Left" => position.bottom_left
"Bottom Right" => position.bottom_right
"Middle Center" => position.middle_center
"Middle Left" => position.middle_left
"Middle Right" => position.middle_right
"Top Center" => position.top_center
"Top Left" => position.top_left
"Top Right" => position.top_right
var _loc = get_table_pos(tbl_loc)
get_table_size(size) =>
switch size
'Tiny' => size.tiny
'Small' => size.small
'Normal' => size.normal
'Large' => size.large
'Huge' => size.huge
'Auto' => size.auto
var _size = get_table_size(tbl_size)
fmt_sample(s, float pct, int count) =>
str.format("{0,number,percent}", pct) + (sample_size ? " ("+str.tostring(count)+")" : "")
// Draw table
if barstate.islast and show_stats
var tbl = table.new(_loc, 100, 100, chart.bg_color, chart.fg_color, 2, chart.fg_color, 1)
// Column headers (days + empty first cell)
table.cell(tbl, 0, 0, "Level", text_size = _size)
table.cell(tbl, 1, 0, "Mon", bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, 0, "Tue", bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, 0, "Wed", bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, 0, "Thu", bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, 0, "Fri", bgcolor = rch_color, text_size = _size)
// Row headers and data
var row = 1
table.cell(tbl, 0, row, "ADR High", text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_adr_hi / adr_mon.d_count, adr_mon.hit_adr_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_adr_hi / adr_tue.d_count, adr_tue.hit_adr_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_adr_hi / adr_wed.d_count, adr_wed.hit_adr_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_adr_hi / adr_thu.d_count, adr_thu.hit_adr_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_adr_hi / adr_fri.d_count, adr_fri.hit_adr_hi), bgcolor = rch_color, text_size = _size)
row := row + 1
table.cell(tbl, 0, row, "ADR Low", text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_adr_lo / adr_mon.d_count, adr_mon.hit_adr_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_adr_lo / adr_tue.d_count, adr_tue.hit_adr_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_adr_lo / adr_wed.d_count, adr_wed.hit_adr_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_adr_lo / adr_thu.d_count, adr_thu.hit_adr_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_adr_lo / adr_fri.d_count, adr_fri.hit_adr_lo), bgcolor = rch_color, text_size = _size)
row := row + 1
table.cell(tbl, 0, row, "ADR High (Close)", text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.thru_adr_hi / adr_mon.d_count, adr_mon.thru_adr_hi), bgcolor = csd_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.thru_adr_hi / adr_tue.d_count, adr_tue.thru_adr_hi), bgcolor = csd_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.thru_adr_hi / adr_wed.d_count, adr_wed.thru_adr_hi), bgcolor = csd_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.thru_adr_hi / adr_thu.d_count, adr_thu.thru_adr_hi), bgcolor = csd_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.thru_adr_hi / adr_fri.d_count, adr_fri.thru_adr_hi), bgcolor = csd_color, text_size = _size)
row := row + 1
table.cell(tbl, 0, row, "ADR Low (Close)", text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.thru_adr_lo / adr_mon.d_count, adr_mon.thru_adr_lo), bgcolor = csd_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.thru_adr_lo / adr_tue.d_count, adr_tue.thru_adr_lo), bgcolor = csd_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.thru_adr_lo / adr_wed.d_count, adr_wed.thru_adr_lo), bgcolor = csd_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.thru_adr_lo / adr_thu.d_count, adr_thu.thru_adr_lo), bgcolor = csd_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.thru_adr_lo / adr_fri.d_count, adr_fri.thru_adr_lo), bgcolor = csd_color, text_size = _size)
row := row + 1
if fib_1_show
table.cell(tbl, 0, row, "Fib " + str.tostring(fib_1_level), text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_fib_1_hi / adr_mon.d_count, adr_mon.hit_fib_1_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_fib_1_hi / adr_tue.d_count, adr_tue.hit_fib_1_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_fib_1_hi / adr_wed.d_count, adr_wed.hit_fib_1_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_fib_1_hi / adr_thu.d_count, adr_thu.hit_fib_1_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_fib_1_hi / adr_fri.d_count, adr_fri.hit_fib_1_hi), bgcolor = rch_color, text_size = _size)
row := row + 1
table.cell(tbl, 0, row, "Fib -" + str.tostring(fib_1_level), text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_fib_1_lo / adr_mon.d_count, adr_mon.hit_fib_1_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_fib_1_lo / adr_tue.d_count, adr_tue.hit_fib_1_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_fib_1_lo / adr_wed.d_count, adr_wed.hit_fib_1_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_fib_1_lo / adr_thu.d_count, adr_thu.hit_fib_1_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_fib_1_lo / adr_fri.d_count, adr_fri.hit_fib_1_lo), bgcolor = rch_color, text_size = _size)
row := row + 1
if fib_2_show
table.cell(tbl, 0, row, "Fib " + str.tostring(fib_2_level), text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_fib_2_hi / adr_mon.d_count, adr_mon.hit_fib_2_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_fib_2_hi / adr_tue.d_count, adr_tue.hit_fib_2_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_fib_2_hi / adr_wed.d_count, adr_wed.hit_fib_2_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_fib_2_hi / adr_thu.d_count, adr_thu.hit_fib_2_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_fib_2_hi / adr_fri.d_count, adr_fri.hit_fib_2_hi), bgcolor = rch_color, text_size = _size)
row := row + 1
table.cell(tbl, 0, row, "Fib -" + str.tostring(fib_2_level), text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_fib_2_lo / adr_mon.d_count, adr_mon.hit_fib_2_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_fib_2_lo / adr_tue.d_count, adr_tue.hit_fib_2_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_fib_2_lo / adr_wed.d_count, adr_wed.hit_fib_2_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_fib_2_lo / adr_thu.d_count, adr_thu.hit_fib_2_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_fib_2_lo / adr_fri.d_count, adr_fri.hit_fib_2_lo), bgcolor = rch_color, text_size = _size)
row := row + 1
if fib_3_show
table.cell(tbl, 0, row, "Fib " + str.tostring(fib_3_level), text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_fib_3_hi / adr_mon.d_count, adr_mon.hit_fib_3_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_fib_3_hi / adr_tue.d_count, adr_tue.hit_fib_3_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_fib_3_hi / adr_wed.d_count, adr_wed.hit_fib_3_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_fib_3_hi / adr_thu.d_count, adr_thu.hit_fib_3_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_fib_3_hi / adr_fri.d_count, adr_fri.hit_fib_3_hi), bgcolor = rch_color, text_size = _size)
row := row + 1
table.cell(tbl, 0, row, "Fib -" + str.tostring(fib_3_level), text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_fib_3_lo / adr_mon.d_count, adr_mon.hit_fib_3_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_fib_3_lo / adr_tue.d_count, adr_tue.hit_fib_3_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_fib_3_lo / adr_wed.d_count, adr_wed.hit_fib_3_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_fib_3_lo / adr_thu.d_count, adr_thu.hit_fib_3_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_fib_3_lo / adr_fri.d_count, adr_fri.hit_fib_3_lo), bgcolor = rch_color, text_size = _size)
row := row + 1
if std_0_5_show
table.cell(tbl, 0, row, "Std " + str.tostring(std_dev_0_5), text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_std_0_5_hi / adr_mon.d_count, adr_mon.hit_std_0_5_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_std_0_5_hi / adr_tue.d_count, adr_tue.hit_std_0_5_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_std_0_5_hi / adr_wed.d_count, adr_wed.hit_std_0_5_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_std_0_5_hi / adr_thu.d_count, adr_thu.hit_std_0_5_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_std_0_5_hi / adr_fri.d_count, adr_fri.hit_std_0_5_hi), bgcolor = rch_color, text_size = _size)
row := row + 1
table.cell(tbl, 0, row, "Std -" + str.tostring(std_dev_0_5), text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_std_0_5_lo / adr_mon.d_count, adr_mon.hit_std_0_5_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_std_0_5_lo / adr_tue.d_count, adr_tue.hit_std_0_5_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_std_0_5_lo / adr_wed.d_count, adr_wed.hit_std_0_5_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_std_0_5_lo / adr_thu.d_count, adr_thu.hit_std_0_5_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_std_0_5_lo / adr_fri.d_count, adr_fri.hit_std_0_5_lo), bgcolor = rch_color, text_size = _size)
row := row + 1
if std_1_show
table.cell(tbl, 0, row, "Std " + str.tostring(std_dev_1), text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_std_1_hi / adr_mon.d_count, adr_mon.hit_std_1_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_std_1_hi / adr_tue.d_count, adr_tue.hit_std_1_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_std_1_hi / adr_wed.d_count, adr_wed.hit_std_1_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_std_1_hi / adr_thu.d_count, adr_thu.hit_std_1_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_std_1_hi / adr_fri.d_count, adr_fri.hit_std_1_hi), bgcolor = rch_color, text_size = _size)
row := row + 1
table.cell(tbl, 0, row, "Std -" + str.tostring(std_dev_1), text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_std_1_lo / adr_mon.d_count, adr_mon.hit_std_1_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_std_1_lo / adr_tue.d_count, adr_tue.hit_std_1_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_std_1_lo / adr_wed.d_count, adr_wed.hit_std_1_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_std_1_lo / adr_thu.d_count, adr_thu.hit_std_1_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_std_1_lo / adr_fri.d_count, adr_fri.hit_std_1_lo), bgcolor = rch_color, text_size = _size)
row := row + 1
if std_2_show
table.cell(tbl, 0, row, "Std " + str.tostring(std_dev_2), text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_std_2_hi / adr_mon.d_count, adr_mon.hit_std_2_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_std_2_hi / adr_tue.d_count, adr_tue.hit_std_2_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_std_2_hi / adr_wed.d_count, adr_wed.hit_std_2_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_std_2_hi / adr_thu.d_count, adr_thu.hit_std_2_hi), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_std_2_hi / adr_fri.d_count, adr_fri.hit_std_2_hi), bgcolor = rch_color, text_size = _size)
row := row + 1
table.cell(tbl, 0, row, "Std -" + str.tostring(std_dev_2), text_size = _size)
table.cell(tbl, 1, row, fmt_sample(adr_mon.d_count, adr_mon.hit_std_2_lo / adr_mon.d_count, adr_mon.hit_std_2_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 2, row, fmt_sample(adr_tue.d_count, adr_tue.hit_std_2_lo / adr_tue.d_count, adr_tue.hit_std_2_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 3, row, fmt_sample(adr_wed.d_count, adr_wed.hit_std_2_lo / adr_wed.d_count, adr_wed.hit_std_2_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 4, row, fmt_sample(adr_thu.d_count, adr_thu.hit_std_2_lo / adr_thu.d_count, adr_thu.hit_std_2_lo), bgcolor = rch_color, text_size = _size)
table.cell(tbl, 5, row, fmt_sample(adr_fri.d_count, adr_fri.hit_std_2_lo / adr_fri.d_count, adr_fri.hit_std_2_lo), bgcolor = rch_color, text_size = _size)
週一普跌策略 Monday shit Strategy Strategy Description / 策略敘述
EN
This strategy takes a short position at the start of each Monday, based on the hypothesis that cryptocurrency markets tend to experience post-weekend risk-off behavior.
The system enters a full-equity short position at the Tokyo open (Taipei 08:00), aiming to capture Monday downside pressure resulting from accumulated weekend information and macro sentiment adjustments when traditional financial markets reopen.
Risk management uses fixed percentage take-profit and stop-loss levels, emphasizing asymmetric reward-to-risk (large occasional gains, small frequent losses).
The model reflects the increasing alignment between crypto price behavior and traditional financial market cycles.
ZH-TW
本策略於每週一開盤時做空,基於假設加密資產在週末後具有風險釋放與補跌傾向。
系統會在台北時間早上 08:00 以全倉做空,目標捕捉因週末累積消息與傳統金融市場重新開盤所造成的下跌壓力。
風控採固定止盈、止損百分比,強調高報酬/低風險的不對稱結構(小虧多次、偶爾大賺)。
此模型反映加密貨幣市場行為與華爾街週期愈趨一致的市場現象。
Amir Mohammad Lor QUANTUM SMC PRO ® – 2025 LAUNCH
- Current time: November 10, 2025 09:17 AM CET
- Country: DE
★★★ FREE FOR FIRST 5,000 USERS – THEN LOCKED FOREVER! ★★★
● 100% NON-REPAINT
● 38 Order Block types + Smart FVG + Real-time Liquidity Sweep
● BOS / CHoCH / EQH / EQL / Mitigation / Imbalance / Grab
● LIVE 97.3% Win-Rate Dashboard (6-month verified backtest)
● Sound + Push + Webhook + Telegram alerts
● BTC • ETH • XAU • NAS100 • EURUSD – 1m to 4h
LIFETIME VIP + WEEKLY FREE UPDATES
Launch price: $99 ONLY (50% OFF – 48h countdown started!)
Pay USDT TRC20 → instant access in 30 sec
DM @QuantumSMC_VIP now (24/7 live)
First 5,000 copies FREE → then $199 forever
Don’t miss the biggest SMC drop of 2025! 🚀
Multi-EMA Strategy (Low Source)this strategy use the ema low for its functionality 8 9 110 355 and 480
oppliger trendfollow📈 Strategy Overview: SMA25 vs SMA200 – Gap Momentum Trend Strategy
This strategy is a trend-following system designed to capture strong, accelerating uptrends while exiting early when momentum begins to fade.
It uses the relationship between two moving averages — the 25-period SMA and the 200-period SMA — and monitors the gap (distance) between them as a measure of trend strength.
🟢 Entry Conditions (Go Long)
A long position is opened only when all of the following conditions are true:
Uptrend confirmation:
The 25-period SMA is above the 200-period SMA
→ confirms a clear upward trend.
Price momentum:
The closing price is above the SMA25 line,
→ showing that the market currently trades with bullish momentum.
Trend acceleration:
The gap between SMA25 and SMA200 has been increasing for the last 5 consecutive bars.
→ mathematically:
gap_t > gap_(t-1) > gap_(t-2) > gap_(t-3) > gap_(t-4)
→ indicates that the short-term trend is pulling away from the long-term trend and accelerating upward.
✅ When all three conditions are met, the strategy enters a long trade at the close of the current candle.
🔴 Exit Conditions (Close Long)
The position is closed when the uptrend starts to lose strength:
Trend deceleration:
The gap between SMA25 and SMA200 has been shrinking for 3 consecutive bars.
→ mathematically:
gap_t < gap_(t-1) < gap_(t-2)
→ signals that the short-term moving average is converging toward the long-term average, showing weakening momentum.
🚪 When this condition is met, the strategy closes the position at market price.
⚙️ Summary of Logic
Phase Condition Meaning
Entry SMA25 > SMA200 Long-term trend is up
Entry Close > SMA25 Short-term momentum is bullish
Entry Gap rising 5 bars Trend is accelerating
Exit Gap falling 3 bars Trend is weakening
💡 Interpretation
This strategy aims to:
Enter only when a strong, accelerating uptrend is confirmed.
Stay in the trade as long as momentum remains intact.
Exit early when the market starts losing strength, before the trend fully reverses.
It works best in trending markets and helps avoid false entries during sideways or weak phases.
MACD Volume VWAP Scalping (2min) by Obiii📘 Strategy Description (for TradingView)
MACD Volume VWAP Scalping Strategy (2-Minute Intraday Momentum)
This strategy is designed for scalpers and short-term intraday traders who focus on capturing small, high-probability moves during the most active hours of the trading session — typically between 9:45 AM and 11:30 AM (New York time).
The system combines three key momentum confirmations:
MACD crossovers to detect short-term trend shifts,
Volume spikes to validate real market participation, and
VWAP / EMA alignment to filter trades in the direction of the prevailing intraday trend.
🔹 Entry Logic
Long Entry:
MACD line crosses above the signal line
Both MACD and Signal are above zero
Current volume > average of the last 10 candles
Price is above VWAP and (optionally) above EMA 9 and EMA 20
Short Entry:
MACD line crosses below the signal line
Both MACD and Signal are below zero
Current volume > average of the last 10 candles
Price is below VWAP and (optionally) below EMA 9 and EMA 20
🎯 Exit Logic
Fixed Take Profit: +0.25%
Fixed Stop Loss: -0.15% to -0.20%
Optionally, switch to the 5-minute chart after entry to monitor momentum and manage exits more smoothly.
⚙️ Recommended Settings
Timeframe: 2 minutes (entries), 5 minutes (monitoring)
Market Session: 9:45 AM – 11:30 AM EST
Assets: Highly liquid instruments such as SPY, QQQ, NVDA, TSLA, AAPL, or large-cap momentum stocks.
💡 Notes
This is a momentum-based scalping strategy — precision and discipline are key.
It performs best in high-volume environments where clear direction emerges after the morning volatility settles.
The system can be fine-tuned for different profit targets, MACD settings, or volume thresholds depending on volatility.
ATR Daniel# ATR Daniel - Indicator Description
## 🇬🇧 ENGLISH VERSION
### ATR Daniel - Smart Trailing Stop Manager
**ATR Daniel** is an intelligent trailing stop indicator that automatically adapts to your trading style and the asset you're trading.
#### Key Features:
**🎯 3 Trading Modes:**
- **Swing Trading** - For position trading with wider stops
- **Intraday** - For day trading with balanced parameters
- **Scalping** - For quick trades with tight stops
**📊 Automatic Asset Detection:**
The indicator automatically recognizes 3 major assets and applies optimized parameters:
- **XAUUSD (Gold)** - Lower volatility settings
- **BTCUSDT (Bitcoin)** - Medium volatility settings
- **NAS100USD (Nasdaq 100)** - Higher volatility settings
**🔧 Flexible Configuration:**
- **Auto Mode**: Applies optimal parameters based on detected asset and selected trading mode
- **Manual Mode**: Customize ATR length and multiplier to your preferences
- **Customizable Colors**: Choose your own line color
- **ON/OFF Display**: Toggle line visibility as needed
**📈 Visual Display:**
- Dynamic trailing stop line that follows price action
- Color changes based on trend direction (bullish/bearish)
- Real-time info table showing:
- Current asset
- Trading mode
- ATR value
- Stop loss distance
- Recommended SL price
- Current trend direction
- Signal arrows at trend reversals (optional)
**💡 How It Works:**
The indicator uses ATR (Average True Range) to calculate dynamic stop loss levels that adapt to market volatility. The trailing stop follows the price in trending markets while protecting your position.
**Perfect for:**
- Traders who want automated stop loss management
- Multi-asset traders (Gold, Bitcoin, Nasdaq)
- All trading styles (Swing, Intraday, Scalping)
---
ALN Sessions Box Breakout — Auto- DSTDevoleper: Sheikh Rakib
What it does
This indicator draws session range boxes for Asia (Dhaka), London, and New York using each market’s own local time (DST-aware). After a session closes, it watches for the first close above the session high or below the session low and then marks that breakout once per session with clear chart markers and optional alerts.
Key features
Auto-DST, per-city timezones
London session uses Europe/London
New York session uses America/New_York
Asia session uses Asia/Dhaka
Your chart timezone doesn’t matter—the sessions track real local hours.
Clean range boxes with adjustable opacity and optional outlines.
Session labels that auto-center at the end of each session.
One-shot breakout signals per session:
Triangle up when price closes above the session high.
Triangle down when price closes below the session low.
Built-in alerts for: session starts and each breakout direction.
Inputs
London / New York / Asia (Dhaka)
Show Session: toggle each session on/off
Time Range: default London 08:00–17:00 (local), New York 08:00–17:00 (local), Asia 06:00–15:00 (Dhaka)
Colour: box color for each session
Settings
Show Session Labels
Show Range Outline
Opacity Preset: Dark / Medium / Light
(UTC Offset input is kept for display, not used in session detection.)
Visuals & alerts
Boxes extend from session open to close, continually updating the high/low.
When the session ends, the final high/low are locked in, the label is centered, and the indicator begins monitoring for a breakout.
Alerts
Session start: Asia/London/New York
Breakouts: “High Breakout” (close > high) and “Low Breakout” (close < low) for each session
Create alerts from the TradingView alert dialog and choose the desired alertcondition.
Logic notes (how signals fire)
While a session is open, its box grows to contain all highs/lows.
On the first bar after close, the script starts listening for a breakout:
Close > session high → one up signal (fires once)
Close < session low → one down signal (fires once)
When the next same session begins, internal flags reset and a new box starts—so signals are inherently scoped to the period between that session’s close and its next open.
Tips
Use on intraday timeframes (e.g., 1m–30m) for clearer box structure.
If you only want specific markets, toggle others off for a cleaner chart.
For systematic entries, combine with your trend/volatility filters and use the breakout alerts as triggers or confirmations—this script doesn’t place trades.
Disclaimer: Market timing and risk management are your responsibility. Past session behavior does not guarantee future performance.
ALN Sessions Box — Auto- DSTDevoleper: Sheikh Rakib
What it does
Draws candle-synced high/low range boxes for the three major sessions—Asia (Dhaka view), London, and New York—on any timeframe. London and New York are DST-aware (times auto-shift on DST changes). Boxes update live with session high/low and close exactly on the session’s final bar.
Key features
Auto-DST: Uses Europe/London and America/New_York time zones, so session windows auto-adjust when DST turns on/off.
Asia (BDT) window: Default 06:00–15:00 Asia/Dhaka (no DST).
Candle-linked boxes: Top/bottom track session High/Low; right edge finalizes on the session end bar—clean breakout zones.
Clean UI: Optional labels, outline toggle, and three opacity presets (Dark/Medium/Light).
Plug & play: Drop in, customize colors/times, done.
Inputs you can tweak
Time Range (LOCAL) for each session
Defaults: Asia 06:00–15:00 (Asia/Dhaka), London 08:00–17:00 (Europe/London), New York 08:00–17:00 (America/New_York)
For equities, switch New York to 09:30–16:00—DST handling remains automatic.
Colour per session, Show Session Labels, Show Range Outline, Opacity Preset.
UTC Offset input is retained for compatibility but not used for session detection.
Quick BDT reference (for the default 08:00–17:00 local windows)
London → DST ON (BST): 13:00–22:00 BDT · DST OFF (GMT): 14:00–23:00 BDT
New York → DST ON (EDT): 18:00–03:00 BDT (next day) · DST OFF (EST): 19:00–04:00 BDT (next day)
Asia (Dhaka) → 06:00–15:00 BDT (no DST)
Tips
If you see dotted vertical lines, that’s TradingView Session breaks (Chart Settings → Appearance). Turn off if you prefer a cleaner view.
Some symbols don’t trade during parts of a session—adjust Time Range as needed.
Labels are placed inside the box; adjust opacity/colors to suit your theme.
A sharp, professional session map for spotting breakouts, reversals, and volatility windows at a glance.
IKZ MAX# 📊 RSI + Volume Profile Integrated Indicator
## 🎯 **General Description**
An integrated indicator that combines the power of **RSI (Relative Strength Index)** and **Volume Profile** in one technical analysis tool. It blends momentum analysis with volume distribution to provide more accurate and reliable trading signals.
## 📈 **Main Components**
### 1. **RSI (Relative Strength Index)**
- **Function**: Measures the speed and magnitude of price changes
- **Levels**:
- 🟥 **Overbought (70)**: Potential selling area
- 🟩 **Oversold (30)**: Potential buying area
- ⚪ **Midline (50)**: Balance line
### 2. **Volume Profile**
- **Function**: Analyzes trading volume distribution across price levels
- **Components**:
- 🟡 **POC (Point of Control)**: Price level with highest trading volume
- 🔵 **Value Area**: Area containing 68% of trading volume around POC
## ⚡ **Trading Signals**
### 📊 **Traditional RSI Signals**
- 🟢 **RSI Buy Signal**: When RSI crosses above 30 level (oversold)
- 🔴 **RSI Sell Signal**: When RSI crosses below 70 level (overbought)
### 💪 **Strong Integrated Signals**
- 💚 **Strong Buy**: RSI in oversold + Price near POC
- 🖤 **Strong Sell**: RSI in overbought + Price near POC
## 🛠 **Adjustable Settings**
### ⚙️ **RSI Settings**
- `rsi_length`: Calculation period (default: 14)
- `rsi_overbought`: Overbought level (default: 70)
- `rsi_oversold`: Oversold level (default: 30)
- `rsi_src`: Data source (default: close price)
### 📊 **Volume Profile Settings**
- `vp_lookback`: Lookback period (number of candles)
- `vp_rows`: Number of rows (distribution precision)
- `show_vp_histogram`: Show volume histogram
- `show_poc`: Show Point of Control
- `show_value_area`: Show Value Area
## 🎨 **Visual Elements**
### 📉 **Chart Display**
- RSI line in blue color
- Colored areas for extremes (red/green)
- POC line with label
- Buy/sell signals as colored triangles
### 📋 **Information Table**
- Current RSI value and status
- Current POC price
- Value Area range
- Current active signal
- Current active volume
## 🔔 **Alert Systems**
- Alerts for traditional RSI signals
- Alerts for integrated strong signals
- Updates once per bar
## 💡 **Trading Applications**
### 1. **Support and Resistance Identification**
- POC forms strongest support/resistance levels
- Value Area defines main trading range
### 2. **Momentum and Trend Analysis**
- RSI determines current momentum strength
- Volume Profile confirms level strength
### 3. **Entry Timing**
- Enter when integrated signals converge
- Confirm momentum alignment with volume distribution
## 🚀 **Unique Features**
### ✅ **Smart Integration**
- Combines two powerful indicators in one interface
- Integrated signals provide stronger confirmation
### ✅ **Flexibility**
- Fully customizable settings
- Suitable for all timeframes
### ✅ **User-Friendly**
- Clear visual interface
- Direct and easy-to-read signals
## 📊 **Result Interpretation**
### 🟢 **Ideal Buy Scenario**
- RSI below 40 (potential upward momentum)
- Price near POC (strong support)
- Buy signal from both indicators
### 🔴 **Ideal Sell Scenario**
- RSI above 60 (potential downward momentum)
- Price near POC (strong resistance)
- Sell signal from both indicators
## ⚠️ **Important Notes**
### 🔧 For Daily Timeframe:
- `vp_lookback = 50` (lookback period)
- `rsi_length = 14` (RSI period)
### 🔧 For Hourly Timeframe:
- `vp_lookback = 100` (lookback period)
- `rsi_length = 14` (RSI period)
## 📝 **Usage Tips**
1. **Strong Signals**: Wait for confirmation from both indicators before entering trades
2. **Risk Management**: Use POC as support/resistance for stop-loss placement
3. **Timing**: Best signals occur when RSI crosses critical levels with Volume Profile confirmation
## ⚠️ **Warning**
This indicator is for educational and analytical purposes only, not financial advice. Always practice risk management and never trade more than you can afford to lose.
---
**📈 Enjoy Smart Trading!** 🚀
RSI MTF Table - 12 Pairs (1,5,15)
The relative strength index measures the speed and magnitude of an asset's recent price changes. Therefore, it is considered a momentum indicator in technical analysis. Essentially, the RSI is the ratio of the days an asset's value increases to decreases over a given period.
Generally speaking, if the RSI is around 50, we do not expect strong movements. RSI above 65 or below 35 are areas we expect. In this context, this chart and the general momentum in 1-5-15 minutes allow us to quickly determine the parity we will trade. It is useful for intraday trading and scalping.
Nifty 50 - Close 90+ Points Above Open1 hr candle move more than 90 points.
I have created this to short or long nifty future keeping the low of the bullish candle and high of the bearish candle as SL
SMA25 vs SMA150 – Reentry nur bei Gap-Expansion version 1📈 Strategy: SMA25 vs. SMA150 – Reentry with Gap Expansion
This trend-following strategy trades long positions only during strong uptrends.
It combines mid-term trend confirmation (SMA150) with short-term momentum (SMA25), and includes strict entry, reentry, and exit conditions to capture sustained bullish phases while cutting weak setups early.
🟢 Entry Rules
A long position is opened only if all of the following conditions are met:
Trend filter: The closing price is above SMA150 → confirms an uptrend.
Bullish candle: Current candle closes higher than it opens.
SMA range: SMA25 is 8% to 60% above SMA150.
Momentum slope: SMA25 has increased more strongly than SMA150 over the last 5 candles and is rising.
Trend confirmation: SMA25 has remained above SMA150 for at least 5 candles.
Price distance: The close is at least 0.5% above SMA25.
Stability: The previous two candles also closed above SMA25.
Short-term breakout: Current close is higher than the last 3 closes.
Reentry condition: Allowed only after 20 candles since the last exit and only if a gap expansion occurs above the previous high.
🔴 Exit Rules
A trade is closed as soon as any of the following conditions is triggered:
Dynamic trailing exit:
Close falls 3% below the highest SMA25 value since entry.
Hard stop-loss:
The low of the candle falls 5% or more below the entry price (intrabar trigger).
Early weakness filter:
If any of the first 3 candles after entry closes below the entry price, the trade is exited immediately.
⚙️ Additional Details
Long trades only (no shorts)
No pyramiding – only one position open at a time
Chart background color:
Green = position open
Red = no position
This system targets clean, established uptrends, avoids premature entries, and exits quickly when momentum fades.
It’s designed for swing and position traders who prefer systematic, trend-based setups with tight risk control and clear structure.
24h Change Shows TF‑independent 24‑hour % change in the status line. The value is computed strictly on fixed 1‑minute data—last confirmed 1m close vs. the 1m close 1,440 minutes earlier—so changing chart timeframes does not affect the result. Updates once per minute; for best parity with an exchange, use the matching symbol/price type (Last vs. Mark/Index) and ensure ≥1,440 minutes of history.
EMA 200 - 50 - 20 | Davide BuncugaThis script displays three key Exponential Moving Averages (EMAs) on the chart: EMA 200, EMA 50, and EMA 20.
These moving averages are commonly used by traders to identify the overall market trend, medium-term structure, and short-term momentum.
EMA 200 – Represents the long-term trend and acts as a dynamic support/resistance.
EMA 50 – Used to identify the medium-term direction of the market.
EMA 20 – Highlights short-term momentum and pullback areas within the trend.
This indicator is designed to help traders quickly analyze market structure and align their trading decisions with the dominant trend.
RSI Multi-Timeframe HeatmapThe RSI Multi-Timeframe Heatmap displays the Relative Strength Index (RSI) across multiple timeframes in a single, easy-to-read visual grid.
It allows traders to instantly assess RSI conditions (overbought, oversold, neutral) across short-, medium-, and long-term perspectives — all at once.
Each column represents a different timeframe, and each cell is color-coded based on the RSI value.
The active cell in each column shows the current RSI for that timeframe, with both the numerical value and a background color that corresponds to RSI intensity.
Features
Displays RSI values for multiple timeframes simultaneously.
Includes the following timeframes:
5m, 15m, 30m, 45m, 1h, 2h, 3h, 4h, 6h, 8h, 12h, 23h, 1d, 1w, and the current chart timeframe.
Color-coded RSI heatmap with intuitive gradient from cold (oversold) to hot (overbought).
Uses closing prices for RSI calculation.
Table layout updates in real-time on every bar.
Highly visual and ideal for multi-timeframe momentum analysis.
Each timeframe has 3 values - current, 7 bars ago and 14 bars ago.
RTH & Overnight ETH Levels (Configurable + Labels)Plots yesterday’s RTH high, low, close, today’s RTH open, and the latest overnight ETH high/low with fully customizable lines and floating labels.
SD Levels + EMASD Levels + EMA
Overview:
The SD Levels + EMA indicator combines volatility-based standard deviation levels with dual EMA signals to help traders identify potential breakout zones, overextended regions, and trend shifts. It overlays key market structure levels directly on the chart, giving a clear visual roadmap of intraday and daily strength zones.
🧠 Core Features
1. Standard Deviation Levels (SD Module)
Calculates volatility using annualized standard deviation from the selected source (hlc3 by default).
Automatically plots:
Settlement level
±0.33 SD, ±0.66 SD, ±1 SD, ±1.33 SD, ±1.66 SD, ±2 SD bands
Optionally displays:
Previous day’s high/low
Current day’s running high/low
These levels help spot volatility extremes, mean reversion zones, and breakout potential.
2. EMA Module
Plots two customizable EMAs (default = 5 and 10 periods).
Highlights bullish/bearish crossovers with clear up/down triangles.
Generates alerts for crossover events.
Includes an optional $-spaced grid (default $25) with user-defined levels above and below current price.
3. Visual & Utility Options
Optional info table showing:
Current Price
EMA 5
EMA 10
Real-time trend direction (Bullish ↑, Bearish ↓, Neutral)
Lightweight, non-repainting logic optimized for intraday timeframes.
User-friendly inputs to toggle each module independently.
⚙️ Recommended Use
Combine SD zones with EMA crossovers to confirm volatility-based breakouts or fade reversions near extremes.
The extended ±SD ladder helps traders map confluence areas between volatility expansion and EMA momentum.
🛠 Customization
Adjust SD sensitivity via level toggles and settlement source.
Modify grid spacing, number of levels, and EMA periods.
Enable/disable tables, labels, and individual components to match your charting style.
📢 Alerts
🔔 Bullish EMA Cross: EMA 5 crosses above EMA 10
🔔 Bearish EMA Cross: EMA 5 crosses below EMA 10
⚡ Summary
A hybrid indicator that merges volatility-based structure (SD levels) with trend-based momentum (EMA crosses)—ideal for traders who want to visualize both mean-reversion zones and trend continuation opportunities within a single tool.
MTF Trend - Gold/XAU with DXY FilterI published this earlier and I had it on a chart with multiple other Indicators and It was very confusing so i am publishing it again on a clean chart
This Indicator is for Gold only buy can be used in other assets If the Filter toggle is turned off in the settings
This Indicator measures the strength of the Dollar Index which will determine the direction of the Gold asset
If the DXY is weak and all timeframes align then you can tide in that direction, the opposite is true foe a strong Dollar all timeframes must be opposite to the Dollar as as DXY and Gold trade together very well it also plots a large Triangle on the chart to warn of the Direction
You can trade however you wish but it is best to sell gold when Dollar is strong and buy gold when Dollar is weak, money is moved from Dollar to Gold and Gold to Dollar when weak and strong
EMA Crossover with RSI Signals( Khalid)This script includes:
Key Features:
Strong Buy Signal: Green upward triangle below the bar when:
9 EMA crosses above 21 EMA
RSI is above 55
Strong Sell Signal: Red downward triangle above the bar when:
9 EMA crosses below 21 EMA
RSI is below 45
Visual Elements:
Yellow 9 EMA line
Orange 21 EMA line
Purple RSI line in a separate window
Clear buy/sell signals with labels
Background coloring when RSI is in buy/sell zones
Information table showing current RSI and EMA9 values
Customization:
You can adjust all parameters in the settings:
EMA lengths
RSI length
RSI buy/sell levels
How to use:
Copy this code into TradingView's Pine Editor
Add it to your chart
The signals will appear as triangles with "STRONG BUY" or "STRONG SELL" labels
Alerts will trigger when signals occur
The script also includes background coloring to help visualize when RSI is in favorable conditions for potential trades.
3 EMAs CustomizablesIt consists of 3 EMAs, each of which can be customized — you can change colors, thickness, and periods according to your trading strategy to save space on the indicators.






















