PROTECTED SOURCE SCRIPT
QUANTA - LAB GARCH

Institutional volatility modeling suite with GARCH estimation, VaR/CVaR risk metrics, and Basel III backtesting.
Models Available:
GARCH(1,1) — symmetric volatility clustering
GJR-GARCH(1,1) — asymmetric leverage effect
EGARCH(1,1) — log-variance specification
Risk Metrics:
VaR (95%/99%) with Student-t fat tails
CVaR/Expected Shortfall (coherent risk measure)
Multi-horizon VaR (1d, 5d, 10d) with persistence-adjusted scaling
DoF estimation via method of moments (±15-25% uncertainty)
Backtesting (Basel III Compliant):
Kupiec unconditional coverage test
Christoffersen independence test
Traffic light system (Green/Yellow/Red zones)
Diagnostics:
ARCH-LM test for residual effects
AIC/BIC information criteria
Structural break detection (CUSUM-based)
Jump/outlier detection
Model confidence score (0-100)
V3.6 Improvements:
Adaptive grid search (~60% faster)
High persistence warning (p > 0.98)
Persistence-adjusted multi-horizon scaling (better than √T)
Dashboard Includes:
Real-time conditional volatility (annualized)
Parameter estimates (α, β, γ, θ)
Persistence and half-life
Regime classification (Normal/Elevated/Crisis)
Important:
Grid search produces point estimates (no confidence intervals)
Parameters may differ ±3-5% from true MLE
NOT for illiquid assets or significant overnight gaps
Screening tool only — validate with Python arch / R rugarch
References: Bollerslev (1986), Nelson (1991), GJR (1993), Engle (1982), McNeil et al. (2015), Kupiec (1995), Christoffersen (1998)
Models Available:
GARCH(1,1) — symmetric volatility clustering
GJR-GARCH(1,1) — asymmetric leverage effect
EGARCH(1,1) — log-variance specification
Risk Metrics:
VaR (95%/99%) with Student-t fat tails
CVaR/Expected Shortfall (coherent risk measure)
Multi-horizon VaR (1d, 5d, 10d) with persistence-adjusted scaling
DoF estimation via method of moments (±15-25% uncertainty)
Backtesting (Basel III Compliant):
Kupiec unconditional coverage test
Christoffersen independence test
Traffic light system (Green/Yellow/Red zones)
Diagnostics:
ARCH-LM test for residual effects
AIC/BIC information criteria
Structural break detection (CUSUM-based)
Jump/outlier detection
Model confidence score (0-100)
V3.6 Improvements:
Adaptive grid search (~60% faster)
High persistence warning (p > 0.98)
Persistence-adjusted multi-horizon scaling (better than √T)
Dashboard Includes:
Real-time conditional volatility (annualized)
Parameter estimates (α, β, γ, θ)
Persistence and half-life
Regime classification (Normal/Elevated/Crisis)
Important:
Grid search produces point estimates (no confidence intervals)
Parameters may differ ±3-5% from true MLE
NOT for illiquid assets or significant overnight gaps
Screening tool only — validate with Python arch / R rugarch
References: Bollerslev (1986), Nelson (1991), GJR (1993), Engle (1982), McNeil et al. (2015), Kupiec (1995), Christoffersen (1998)
受保护脚本
此脚本以闭源形式发布。 但是,您可以自由使用,没有任何限制 — 了解更多信息这里。
Institutional-grade diagnostics: GARCH, HMM Regimes, Cointegration, Microstructure, Fractal Analysis | Research only
免责声明
这些信息和出版物并非旨在提供,也不构成TradingView提供或认可的任何形式的财务、投资、交易或其他类型的建议或推荐。请阅读使用条款了解更多信息。
受保护脚本
此脚本以闭源形式发布。 但是,您可以自由使用,没有任何限制 — 了解更多信息这里。
Institutional-grade diagnostics: GARCH, HMM Regimes, Cointegration, Microstructure, Fractal Analysis | Research only
免责声明
这些信息和出版物并非旨在提供,也不构成TradingView提供或认可的任何形式的财务、投资、交易或其他类型的建议或推荐。请阅读使用条款了解更多信息。