OPEN-SOURCE SCRIPT

VWMA with kNN Machine Learning: MFI/ADX

已更新
This is an experimental strategy that uses a Volume-weighted MA (VWMA) crossing together with Machine Learning kNN filter that uses ADX and MFI to predict, whether the signal is useful. k-nearest neighbours (kNN) is one of the simplest Machine Learning classification algorithms: it puts input parameters in a multidimensional space, and then when a new set of parameters are given, it makes a prediction based on plurality vote of its k neighbours.

Money Flow Index (MFI) is an oscillator similar to RSI, but with volume taken into account. Average Directional Index (ADX) is an indicator of trend strength. By putting them together on two-dimensional space and checking, whether nearby values have indicated a strong uptrend or downtrend, we hope to filter out bad signals from the MA crossing strategy.

This is an experiment, so any feedback would be appreciated. It was tested on BTC/USDT pair on 5 minute timeframe. I am planning to expand this strategy in the future to include more moving averages and filters.
版本注释
fixed a misleading comment
版本注释
new parameters:
  • Apply kNN filter - if you want to try just the MA crossing without the kNN filter
  • kNN minimum difference - skews the number of votes needed for the decision, so this many more votes are needed to allow taking a position (e.g., if this is 1, the position would not be taken if there are 3 agains 3 votes, but would be taken if there are 4 agains 3 votes)
ADXAverage Directional Index (ADX)DMIknnmachinelearningMFIVolume Weighted Moving Average (VWMA)

开源脚本

本着真正的TradingView精神,此脚本的作者已将其开源,以便交易者可以理解和验证它。向作者致敬!您可以免费使用它,但在出版物中重复使用此代码受网站规则约束。 您可以收藏它以在图表上使用。

想在图表上使用此脚本?


Tips in TradingView Coins are appreciated
更多:

免责声明