loxx

Bachelier 1900 Option Pricing Model w/ Numerical Greeks [Loxx]

loxx 已更新   
Bachelier 1900 Option Pricing Model w/ Numerical Greeks is an adaptation of the Bachelier 1900 Option Pricing Model in Pine Script. The following information is an except from Espen Gaarder Haug's book "Option Pricing Formulas"

Before Black Scholes Merton
The curious reader may be asking how people priced options before the BSM breakthrough was published in 1973. This section offers a quick overview of some of the most important precursors to the BSM model. As early as 1900, Louis Bachelier published his now famous work on option pricing. In contrast to Black, Scholes, and Merton, Bachelier assumed a normal distribution for the asset price—in other words, an arithmetic Brownian motion process:

dS = sigma * dz

Where S is the asset price and dz is a Wiener process. This implies a positive probability for observing a negative asset price—a feature that is not popular for stocks and any other asset with limited liability features.

The current call price is the expected price at expiration. This argument yields:

c = (S - X)*N(d1) + v * T^0.5 * n(d1)

and for a put option we get

p = (S - X)*N(-d1) + v * T^0.5 * n(d1)

where

d1 = (S - X) / (v * T^0.5)

Inputs
S = Stock price.
X = Strike price of option.
T = Time to expiration in years.
v = Volatility of the underlying asset price
cnd(x) = The cumulative normal distribution function
nd(x) = The standard normal density function

Numerical Greeks or Greeks by Finite Difference
Analytical Greeks are the standard approach to estimating Delta, Gamma etc... That is what we typically use when we can derive from closed form solutions. Normally, these are well-defined and available in text books. Previously, we relied on closed form solutions for the call or put formulae differentiated with respect to the Black Scholes parameters. When Greeks formulae are difficult to develop or tease out, we can alternatively employ numerical Greeks - sometimes referred to finite difference approximations. A key advantage of numerical Greeks relates to their estimation independent of deriving mathematical Greeks. This could be important when we examine American options where there may not technically exist an exact closed form solution that is straightforward to work with. (via VinegarHill FinanceLabs)

Things to know
  • Volatility for this model is price, so dollars or whatever currency you're using. Historical volatility is also reported in currency.
  • There is no risk-free rate input
  • There is no dividend adjustment input
版本注释:
fixed error

Public Telegram Group, t.me/algxtrading_public

VIP Membership Info: www.patreon.com/algxtrading/membership
开源脚本

本着真正的TradingView精神,该脚本的作者将其开源发布,以便交易者可以理解和验证它。为作者喝彩!您可以免费使用它,但在出版物中重复使用此代码受网站规则的约束。 您可以收藏它以在图表上使用。

免责声明

这些信息和出版物并不意味着也不构成TradingView提供或认可的金融、投资、交易或其它类型的建议或背书。请在使用条款阅读更多信息。

想在图表上使用此脚本?