PINE LIBRARY
CGMA

Library "CGMA"
This library provides a function to calculate a moving average based on Chebyshev-Gauss Quadrature. This method samples price data more intensely from the beginning and end of the lookback window, giving it a unique character that responds quickly to recent changes while also having a long "memory" of the trend's start. Inspired by reading https://rohangautam.github.io/blog/chebyshev_gauss/
What is Chebyshev-Gauss Quadrature?
It's a numerical method to approximate the integral of a function f(x) that is weighted byPine Script® over the interval [-1, 1]. The approximation is a simple sum: Pine Script® where xᵢ are special points called Chebyshev nodes.
How is this applied to a Moving Average?
A moving average can be seen as the "mean value" of the price over a lookback window. The mean value of a function with the Chebyshev weight is calculated as:
Pine Script®
The math simplifies beautifully, resulting in the mean being the simple arithmetic average of the function evaluated at the Chebyshev nodes:
Pine Script®
What's unique about this MA?
The Chebyshev nodes xᵢ are not evenly spaced. They are clustered towards the ends of the interval [-1, 1]. We map this interval to our lookback period. This means the moving average samples prices more intensely from the beginning and the end of the lookback window, and less intensely from the middle. This gives it a unique character, responding quickly to recent changes while also having a long "memory" of the start of the trend.
This library provides a function to calculate a moving average based on Chebyshev-Gauss Quadrature. This method samples price data more intensely from the beginning and end of the lookback window, giving it a unique character that responds quickly to recent changes while also having a long "memory" of the trend's start. Inspired by reading https://rohangautam.github.io/blog/chebyshev_gauss/
What is Chebyshev-Gauss Quadrature?
It's a numerical method to approximate the integral of a function f(x) that is weighted by
1/sqrt(1-x^2)
∫ f(x)/sqrt(1-x^2) dx ≈ (π/n) * Σ f(xᵢ)
How is this applied to a Moving Average?
A moving average can be seen as the "mean value" of the price over a lookback window. The mean value of a function with the Chebyshev weight is calculated as:
Mean = [∫ f(x)*w(x) dx] / [∫ w(x) dx]
The math simplifies beautifully, resulting in the mean being the simple arithmetic average of the function evaluated at the Chebyshev nodes:
Mean = (1/n) * Σ f(xᵢ)
What's unique about this MA?
The Chebyshev nodes xᵢ are not evenly spaced. They are clustered towards the ends of the interval [-1, 1]. We map this interval to our lookback period. This means the moving average samples prices more intensely from the beginning and the end of the lookback window, and less intensely from the middle. This gives it a unique character, responding quickly to recent changes while also having a long "memory" of the start of the trend.
Pine脚本库
本着真正的TradingView精神,作者将此Pine代码发布为开源库,以便我们社区的其他Pine程序员可以重复使用它。向作者致敬!您可以私密或在其他开源出版物中使用此库,但在出版物中重复使用此代码受网站规则约束。
免责声明
这些信息和出版物并不意味着也不构成TradingView提供或认可的金融、投资、交易或其它类型的建议或背书。请在使用条款阅读更多信息。
Pine脚本库
本着真正的TradingView精神,作者将此Pine代码发布为开源库,以便我们社区的其他Pine程序员可以重复使用它。向作者致敬!您可以私密或在其他开源出版物中使用此库,但在出版物中重复使用此代码受网站规则约束。
免责声明
这些信息和出版物并不意味着也不构成TradingView提供或认可的金融、投资、交易或其它类型的建议或背书。请在使用条款阅读更多信息。