PINE LIBRARY
已更新 f_maSelect

Library "f_maSelect"
Easy to use drop-in facade function to lots of different moving average calculations, including some that are not natively available in PineScript v5 such as Zero-Lag EMA. Simply call f_maSelect(series float serie, simple string ma_type="sma", ma_length=14) instead of a ta.*ma() call and you get access to all MAs offered by PineScript and more.
zema(src, len)
Zero-lag EMA (ZLMA)
Parameters:
src: Input series
len: Lookback period
Returns: Series smoothed with ZLMA
approximate_sma(x, ma_length)
Approximate Standard Moving Average, which substracts the average instead of popping the oldest element, hence losing the base frequency and is why it is approximative. For some reason, this appears to give the same results as a standard RMA
Parameters:
x: Input series.
ma_length: Lookback period.
Returns: Approximate SMA series.
f_maSelect(serie, ma_type, ma_length)
Generalized moving average selector
Parameters:
serie: Input series
ma_type: String describing which moving average to use
ma_length: Lookback period
Returns: Serie smoothed with the selected moving average.
generalized_dev(src, length, avg, lmode)
Generalized deviation calculation: Whereas other Bollinger Bands often just change the basis but not the stdev calculation, the correct way to change the basis is to also change it inside the stdev calculation.
Parameters:
src: Series to use (default: close)
length: Lookback period
avg: Average basis to use to calculate the standard deviation
lmode: L1 or L2 regularization? (ie, lmode=1 uses abs() to cutoff negative values hence it calculates the Mean Absolute Deviation as does the ta.dev(), lmode=2 uses sum of squares hence it calculates the true Standard Deviation as the ta.stdev() function does). See also the research works of everget:![[RESEARCH] Mean Absolute Deviation](https://s3.tradingview.com/q/qXc06HaE_mid.png)
Returns: stdev Standard deviation series
generalized_dev_discount(src, length, avg, lmode, temporal_discount)
Standard deviation calculation but with different probabilities assigned to each bar, with newer bars having more weights en.wikipedia.org/wiki/Standard_deviation
Parameters:
src: Series to use (default: close)
length: Lookback period
avg: Average basis to use to calculate the standard deviation
lmode: L1 or L2 regularization? (ie, lmode=1 uses abs() to cutoff negative values hence it calculates the Mean Absolute Deviation as does the ta.dev(), lmode=2 uses sum of squares hence it calculates the true Standard Deviation as the ta.stdev() function does). See also the research works of everget:![[RESEARCH] Mean Absolute Deviation](https://s3.tradingview.com/q/qXc06HaE_mid.png)
temporal_discount: Probabilistic gamma factor to discount old values in favor of new ones, higher value = more weight to newer bars
Returns: stdev Standard deviation series
median_absdev(src, length, median)
Median Absolute Deviation
Parameters:
src: Input series
length: Lookback period
median: Median already calculated on the input series
Returns: mad, the median absolute deviation value
Easy to use drop-in facade function to lots of different moving average calculations, including some that are not natively available in PineScript v5 such as Zero-Lag EMA. Simply call f_maSelect(series float serie, simple string ma_type="sma", ma_length=14) instead of a ta.*ma() call and you get access to all MAs offered by PineScript and more.
zema(src, len)
Zero-lag EMA (ZLMA)
Parameters:
src: Input series
len: Lookback period
Returns: Series smoothed with ZLMA
approximate_sma(x, ma_length)
Approximate Standard Moving Average, which substracts the average instead of popping the oldest element, hence losing the base frequency and is why it is approximative. For some reason, this appears to give the same results as a standard RMA
Parameters:
x: Input series.
ma_length: Lookback period.
Returns: Approximate SMA series.
f_maSelect(serie, ma_type, ma_length)
Generalized moving average selector
Parameters:
serie: Input series
ma_type: String describing which moving average to use
ma_length: Lookback period
Returns: Serie smoothed with the selected moving average.
generalized_dev(src, length, avg, lmode)
Generalized deviation calculation: Whereas other Bollinger Bands often just change the basis but not the stdev calculation, the correct way to change the basis is to also change it inside the stdev calculation.
Parameters:
src: Series to use (default: close)
length: Lookback period
avg: Average basis to use to calculate the standard deviation
lmode: L1 or L2 regularization? (ie, lmode=1 uses abs() to cutoff negative values hence it calculates the Mean Absolute Deviation as does the ta.dev(), lmode=2 uses sum of squares hence it calculates the true Standard Deviation as the ta.stdev() function does). See also the research works of everget:
![[RESEARCH] Mean Absolute Deviation](https://s3.tradingview.com/q/qXc06HaE_mid.png)
Returns: stdev Standard deviation series
generalized_dev_discount(src, length, avg, lmode, temporal_discount)
Standard deviation calculation but with different probabilities assigned to each bar, with newer bars having more weights en.wikipedia.org/wiki/Standard_deviation
Parameters:
src: Series to use (default: close)
length: Lookback period
avg: Average basis to use to calculate the standard deviation
lmode: L1 or L2 regularization? (ie, lmode=1 uses abs() to cutoff negative values hence it calculates the Mean Absolute Deviation as does the ta.dev(), lmode=2 uses sum of squares hence it calculates the true Standard Deviation as the ta.stdev() function does). See also the research works of everget:
![[RESEARCH] Mean Absolute Deviation](https://s3.tradingview.com/q/qXc06HaE_mid.png)
temporal_discount: Probabilistic gamma factor to discount old values in favor of new ones, higher value = more weight to newer bars
Returns: stdev Standard deviation series
median_absdev(src, length, median)
Median Absolute Deviation
Parameters:
src: Input series
length: Lookback period
median: Median already calculated on the input series
Returns: mad, the median absolute deviation value
版本注释
* Minor changes in text (remove unnecessary references to Bollinger Bands)Pine脚本库
本着真正的TradingView精神,作者将此Pine代码发布为开源库,以便我们社区的其他Pine程序员可以重复使用它。向作者致敬!您可以私密或在其他开源出版物中使用此库,但在出版物中重复使用此代码受网站规则约束。
免责声明
这些信息和出版物并不意味着也不构成TradingView提供或认可的金融、投资、交易或其它类型的建议或背书。请在使用条款阅读更多信息。
Pine脚本库
本着真正的TradingView精神,作者将此Pine代码发布为开源库,以便我们社区的其他Pine程序员可以重复使用它。向作者致敬!您可以私密或在其他开源出版物中使用此库,但在出版物中重复使用此代码受网站规则约束。
免责声明
这些信息和出版物并不意味着也不构成TradingView提供或认可的金融、投资、交易或其它类型的建议或背书。请在使用条款阅读更多信息。