PINE LIBRARY
Kalmanfilter

Library "Kalmanfilter"
A sophisticated Kalman Filter implementation for financial time series analysis
Author Rocky-Studio
version 1.0
initialize(initial_value, process_noise, measurement_noise)
Initializes Kalman Filter parameters
Parameters:
initial_value (float): (float) The initial state estimate
process_noise (float): (float) The process noise coefficient (Q)
measurement_noise (float): (float) The measurement noise coefficient (R)
Returns: [float, float] A tuple containing [initial_state, initial_covariance]
update(prev_state, prev_covariance, measurement, process_noise, measurement_noise)
Update Kalman Filter state
Parameters:
prev_state (float)
prev_covariance (float)
measurement (float)
process_noise (float)
measurement_noise (float)
calculate_measurement_noise(price_series, length)
Adaptive measurement noise calculation
Parameters:
price_series (array<float>)
length (int)
calculate_measurement_noise_simple(price_series)
Parameters:
price_series (array<float>)
update_trading(prev_state, prev_velocity, prev_covariance, measurement, volatility_window)
Enhanced trading update with velocity
Parameters:
prev_state (float)
prev_velocity (float)
prev_covariance (float)
measurement (float)
volatility_window (int)
model4_update(prev_mean, prev_speed, prev_covariance, price, process_noise, measurement_noise)
Kalman Filter Model 4 implementation (Benhamou 2018)
Parameters:
prev_mean (float)
prev_speed (float)
prev_covariance (array<float>)
price (float)
process_noise (array<float>)
measurement_noise (float)
model4_initialize(initial_price)
Initialize Model 4 parameters
Parameters:
initial_price (float)
model4_default_process_noise()
Create default process noise matrix for Model 4
model4_calculate_measurement_noise(price_series, length)
Adaptive measurement noise calculation for Model 4
Parameters:
price_series (array<float>)
length (int)
A sophisticated Kalman Filter implementation for financial time series analysis
Author Rocky-Studio
version 1.0
initialize(initial_value, process_noise, measurement_noise)
Initializes Kalman Filter parameters
Parameters:
initial_value (float): (float) The initial state estimate
process_noise (float): (float) The process noise coefficient (Q)
measurement_noise (float): (float) The measurement noise coefficient (R)
Returns: [float, float] A tuple containing [initial_state, initial_covariance]
update(prev_state, prev_covariance, measurement, process_noise, measurement_noise)
Update Kalman Filter state
Parameters:
prev_state (float)
prev_covariance (float)
measurement (float)
process_noise (float)
measurement_noise (float)
calculate_measurement_noise(price_series, length)
Adaptive measurement noise calculation
Parameters:
price_series (array<float>)
length (int)
calculate_measurement_noise_simple(price_series)
Parameters:
price_series (array<float>)
update_trading(prev_state, prev_velocity, prev_covariance, measurement, volatility_window)
Enhanced trading update with velocity
Parameters:
prev_state (float)
prev_velocity (float)
prev_covariance (float)
measurement (float)
volatility_window (int)
model4_update(prev_mean, prev_speed, prev_covariance, price, process_noise, measurement_noise)
Kalman Filter Model 4 implementation (Benhamou 2018)
Parameters:
prev_mean (float)
prev_speed (float)
prev_covariance (array<float>)
price (float)
process_noise (array<float>)
measurement_noise (float)
model4_initialize(initial_price)
Initialize Model 4 parameters
Parameters:
initial_price (float)
model4_default_process_noise()
Create default process noise matrix for Model 4
model4_calculate_measurement_noise(price_series, length)
Adaptive measurement noise calculation for Model 4
Parameters:
price_series (array<float>)
length (int)
Pine脚本库
本着真正的TradingView精神,作者将此Pine代码发布为开源库,以便我们社区的其他Pine程序员可以重复使用它。向作者致敬!您可以私密或在其他开源出版物中使用此库,但在出版物中重复使用此代码受网站规则约束。
免责声明
这些信息和出版物并不意味着也不构成TradingView提供或认可的金融、投资、交易或其它类型的建议或背书。请在使用条款阅读更多信息。
Pine脚本库
本着真正的TradingView精神,作者将此Pine代码发布为开源库,以便我们社区的其他Pine程序员可以重复使用它。向作者致敬!您可以私密或在其他开源出版物中使用此库,但在出版物中重复使用此代码受网站规则约束。
免责声明
这些信息和出版物并不意味着也不构成TradingView提供或认可的金融、投资、交易或其它类型的建议或背书。请在使用条款阅读更多信息。