OPEN-SOURCE SCRIPT
已更新

KDE-Gaussian

6 777
"In statistics, kernel density estimation (KDE) is a non-parametric way to estimate the probability density function of a random variable."
from wikipedia.com
版本注释
fixed a issue when using float type observations.
added a draw function to draw the KDE graph(you need to see all the bar history to see it, doesnt work for float observations)
版本注释
removed some redundant parameters, added bandwidth, nstep parameters, the graph looks stepd due to x axis havin interdigit floating numbers so it rounds to nearest causing that effect.
版本注释
improved the kde draw function

免责声明

这些信息和出版物并非旨在提供,也不构成TradingView提供或认可的任何形式的财务、投资、交易或其他类型的建议或推荐。请阅读使用条款了解更多信息。